Download citation
Download citation
link to html
The first hydro­thermal synthesis of an Al-rich alluaudite-type compound, namely disodium dimanganese aluminium tris­(phosphate), which has been obtained at 1073 K and 0.1 GPa starting from the composition Na2Mn2Al(PO4)3, is reported. The crystal structure, which has been refined in the monoclinic C2/c space group, is identical to that of natural alluaudite. The structure consists of kinked chains of edge-sharing M1 and M2 octa­hedra, which contain Mn2+ and Al3+ ions. The chains are stacked parallel to {101} and are connected in the b direction by the P1 and P2 tetra­hedra. These inter­connected chains produce channels parallel to c, which contain the large A1 and A2' sites occupied by Na+ and Mn2+ ions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105037236/ta1500sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105037236/ta1500Isup2.hkl
Contains datablock I

Comment top

In the natural geological environment of granitic pegmatites, alluaudite-type phosphates generally show chemical compositions comprised between Na2MnFe2+Fe3+(PO4)3 and NaMnFe3+2(PO4)3. The incorporation of significant amounts of aluminium into the crystal structure of these minerals produces a splitting of the M2 site of alluaudite into the M2a and M2b positions, thus leading to the more ordered wyllieite-type phosphates (Moore & Molin-Case, 1974; Hatert, Lefèvre et al., 2005). Consequently, the C2/c space group of alluaudite transforms into P21/n in wyllieite, with no significant change in the unit-cell parameters.

During the past 20 years, numerous alluaudite-type phosphates have been synthesized, and the crystal chemistry of this structure type is now well known (Hatert, 2004; Hatert, Rebbouh et al., 2005). Nevertheless, the structural descriptions of natural or synthetic wyllieite-type phosphates are rather scarce (Moore & Molin-Case, 1974; Zhesheng et al., 1983; Brier, 2000; Hatert, Lefèvre et al., 2005). In order to understand better the crystal chemistry of wyllieite-type phosphates, we attempted to obtain a single-crystal of wyllieite by hydrothermal synthesis at 1073 K and 0.1 GPa, starting from the composition Na2Mn2Al(PO4)3 (Hatert, 2002). The synthesized crystals were investigated by single-crystal X-ray diffraction techniques, and a careful examination of systematic absences indicated the C2/c space group, characteristic of alluaudite-type phosphates. The crystal structure of this Al-rich alluaudite-type compound is reported here.

The structure is similar to that of natural alluaudite, described by Moore (1971), and consists of kinked chains of edge-sharing octahedra stacked parallel to {101}. These chains are formed by a succession of M2–M2 octahedral pairs, linked by highly distorted M1 octahedra (Fig. 1). Equivalent chains are connected in the b direction by the P1 and P2 phosphate tetrahedra to form sheets oriented perpendicular to [010] (Fig. 2). These interconnected chains produce channels parallel to c, which contain the large distorted cubic A1 site and the A2' site with a morphology of a gabled disphenoid (Fig. 2). The site-occupancy factors indicate the following cationic distribution: 0.891 (10) Na+ in A2', 0.619 (8) Na+ + 0.381 (7) Mn2+ in A1, 0.908 (4) Mn2+ in M1, and 0.573 (6) Mn2+ + 0.427 (6) A l3+ in M2. This cationic distribution is in very good agreement with the chemical composition.

Bond-valence sums were calculated for each ion using the parameters of Brown & Altermatt (1985). The P1 and P2 bond-valence sums are 4.99 and 4.98, respectively, and the O-atom bond-valence sums are within the normal acceptable range (1.89–2.10). For the M1 site, the low bond-valence sum obtained in the preliminary calculations indicates an occupancy by ca 0.150 Na+ + 0.850 Mn2+.

Experimental top

The title compound was synthesized under hydrothermal conditions. The starting material was prepared by mixing NaH2PO4·H2O, MnO and Al2O3 in the appropriate proportions. An H3PO4 solution was added in order to achieve stoichiometry, and the mixture was homogenized in a mortar after evaporation. About 25 mg of the resulting residue was sealed into a gold tube with an outer diameter of 2 mm and a length of 25 mm, containing 2 mg of distilled water. The gold capsule was then inserted in a Tuttle-type pressure vessel (Tuttle, 1949) and maintained at a temperature of 1073 K and a pressure of 0.1 GPa. After 7 d, the sample, still in the gold tube in the autoclave, was quenched to room temperature in a stream of cold air. The synthesized compounds consisted of colourless needles of the title alluaudite-type compound, associated with irregular colourless crystals of Na3Al2(PO4)3 and with an amorphous matrix. Chemical analysis of the title compound was carried out with a CAMEBAX SX-50 electron microprobe (15 kV acceleration voltage, 20 nA beam current). The standards used were graftonite from Kabira (sample KF16; Fransolet, 1975) (Mn, P), oligoclase (Na) and corundum (Al). The average of six point analyses gives P2O5 45.33, Al2O3 8.27, MnO 37.53 and Na2O 9.46, total 100.59 wt.%. The chemical composition, calculated on the basis of 12 O, corresponds to Na1.453Mn2.518Al0.772(P1.01O4)3.

Refinement top

Atomic coordinates similar to those given by Moore (1971) and by Hatert et al. (2000) were used during the refinement procedure. The site-occupancy factors indicated, in the early stages of the refinement, that the M2 site was occupied by Al3+ and Mn2+ ions, and that A1 was occupied by Mn2+ and Na+ ions. Consequently, the site-occupancy factors of both atoms were refined simultaneously on each site, and the sums of the site-occupancy factors were constrained to 1.0. The positions of these atoms and their temperature factors were constrained to be identical with the EXYZ and EADP instructions of SHELXL97 (Sheldrick, 1997).

Structure description top

In the natural geological environment of granitic pegmatites, alluaudite-type phosphates generally show chemical compositions comprised between Na2MnFe2+Fe3+(PO4)3 and NaMnFe3+2(PO4)3. The incorporation of significant amounts of aluminium into the crystal structure of these minerals produces a splitting of the M2 site of alluaudite into the M2a and M2b positions, thus leading to the more ordered wyllieite-type phosphates (Moore & Molin-Case, 1974; Hatert, Lefèvre et al., 2005). Consequently, the C2/c space group of alluaudite transforms into P21/n in wyllieite, with no significant change in the unit-cell parameters.

During the past 20 years, numerous alluaudite-type phosphates have been synthesized, and the crystal chemistry of this structure type is now well known (Hatert, 2004; Hatert, Rebbouh et al., 2005). Nevertheless, the structural descriptions of natural or synthetic wyllieite-type phosphates are rather scarce (Moore & Molin-Case, 1974; Zhesheng et al., 1983; Brier, 2000; Hatert, Lefèvre et al., 2005). In order to understand better the crystal chemistry of wyllieite-type phosphates, we attempted to obtain a single-crystal of wyllieite by hydrothermal synthesis at 1073 K and 0.1 GPa, starting from the composition Na2Mn2Al(PO4)3 (Hatert, 2002). The synthesized crystals were investigated by single-crystal X-ray diffraction techniques, and a careful examination of systematic absences indicated the C2/c space group, characteristic of alluaudite-type phosphates. The crystal structure of this Al-rich alluaudite-type compound is reported here.

The structure is similar to that of natural alluaudite, described by Moore (1971), and consists of kinked chains of edge-sharing octahedra stacked parallel to {101}. These chains are formed by a succession of M2–M2 octahedral pairs, linked by highly distorted M1 octahedra (Fig. 1). Equivalent chains are connected in the b direction by the P1 and P2 phosphate tetrahedra to form sheets oriented perpendicular to [010] (Fig. 2). These interconnected chains produce channels parallel to c, which contain the large distorted cubic A1 site and the A2' site with a morphology of a gabled disphenoid (Fig. 2). The site-occupancy factors indicate the following cationic distribution: 0.891 (10) Na+ in A2', 0.619 (8) Na+ + 0.381 (7) Mn2+ in A1, 0.908 (4) Mn2+ in M1, and 0.573 (6) Mn2+ + 0.427 (6) A l3+ in M2. This cationic distribution is in very good agreement with the chemical composition.

Bond-valence sums were calculated for each ion using the parameters of Brown & Altermatt (1985). The P1 and P2 bond-valence sums are 4.99 and 4.98, respectively, and the O-atom bond-valence sums are within the normal acceptable range (1.89–2.10). For the M1 site, the low bond-valence sum obtained in the preliminary calculations indicates an occupancy by ca 0.150 Na+ + 0.850 Mn2+.

Computing details top

Data collection: XSCANS in SHELXTL-Plus (Sheldrick, 1991); cell refinement: XSCANS; data reduction: SHELXTL-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1993); software used to prepare material for publication: SHELXTL-Plus.

Figures top
[Figure 1] Fig. 1. The M1–M2 octahedral chain in Na1.50Mn2.48Al0.85(PO4)3, projected along the b axis. Symmetry code: (i) x - 1/2, y - 1/2, z
[Figure 2] Fig. 2. The crystal structure of Na1.50Mn2.48Al0.85(PO4)3, projected approximately along the c axis.
Disodium dimanganese aluminium tris(phosphate) top
Crystal data top
Na1.50Mn2.48Al0.85(PO4)3F(000) = 922
Mr = 468.76Dx = 3.614 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.9816 (10) ÅCell parameters from 34 reflections
b = 12.5387 (13) Åθ = 5.8–12.5°
c = 6.4407 (10) ŵ = 4.31 mm1
β = 114.621 (8)°T = 293 K
V = 879.64 (18) Å3Acicular, elongated along the c axis, colourless
Z = 40.23 × 0.07 × 0.05 mm
Data collection top
Bruker P4
diffractometer
894 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube, Bruker P4Rint = 0.024
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
Profile data from ω scansh = 151
Absorption correction: ψ scan
XSCANS in SHELXTL-Plus (Sheldrick, 1991)
k = 161
Tmin = 0.761, Tmax = 0.806l = 78
1271 measured reflections3 standard reflections every 97 reflections
1019 independent reflections intensity decay: 2.3%
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.032Secondary atom site location: difference Fourier map
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0344P)2 + 2.4705P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1019 reflectionsΔρmax = 0.52 e Å3
100 parametersΔρmin = 0.65 e Å3
Crystal data top
Na1.50Mn2.48Al0.85(PO4)3V = 879.64 (18) Å3
Mr = 468.76Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.9816 (10) ŵ = 4.31 mm1
b = 12.5387 (13) ÅT = 293 K
c = 6.4407 (10) Å0.23 × 0.07 × 0.05 mm
β = 114.621 (8)°
Data collection top
Bruker P4
diffractometer
894 reflections with I > 2σ(I)
Absorption correction: ψ scan
XSCANS in SHELXTL-Plus (Sheldrick, 1991)
Rint = 0.024
Tmin = 0.761, Tmax = 0.8063 standard reflections every 97 reflections
1271 measured reflections intensity decay: 2.3%
1019 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032100 parameters
wR(F2) = 0.0752 restraints
S = 1.07Δρmax = 0.52 e Å3
1019 reflectionsΔρmin = 0.65 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.50000.00000.00000.0268 (5)0.619 (8)
Mn10.50000.00000.00000.0268 (5)0.381 (7)
Na20.00000.0207 (2)0.25000.0329 (9)0.891 (10)
Mn30.00000.26627 (6)0.25000.0144 (3)0.908 (4)
Mn40.27572 (5)0.65456 (5)0.35763 (10)0.0137 (2)0.573 (6)
Al40.27572 (5)0.65456 (5)0.35763 (10)0.0137 (2)0.427 (6)
P10.00000.28457 (9)0.25000.0158 (3)
P20.23711 (7)0.10611 (7)0.13087 (13)0.0154 (2)
O10.4524 (2)0.71353 (19)0.5356 (4)0.0183 (5)
O20.0959 (3)0.6397 (2)0.2321 (5)0.0422 (9)
O30.3317 (3)0.6633 (2)0.0992 (4)0.0290 (7)
O40.1268 (2)0.4078 (2)0.3175 (5)0.0266 (6)
O50.2279 (2)0.8255 (2)0.3217 (4)0.0282 (6)
O60.3272 (3)0.5010 (2)0.3849 (5)0.0291 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0365 (9)0.0114 (7)0.0133 (7)0.0006 (5)0.0087 (5)0.0001 (4)
Mn10.0365 (9)0.0114 (7)0.0133 (7)0.0006 (5)0.0087 (5)0.0001 (4)
Na20.0203 (13)0.0427 (17)0.0256 (14)0.0000.0004 (10)0.000
Mn30.0138 (4)0.0111 (4)0.0198 (4)0.0000.0085 (3)0.000
Mn40.0114 (3)0.0172 (3)0.0119 (3)0.0032 (2)0.0043 (2)0.0002 (2)
Al40.0114 (3)0.0172 (3)0.0119 (3)0.0032 (2)0.0043 (2)0.0002 (2)
P10.0201 (6)0.0129 (5)0.0087 (5)0.0000.0005 (4)0.000
P20.0124 (4)0.0194 (4)0.0104 (4)0.0005 (3)0.0007 (3)0.0044 (3)
O10.0181 (11)0.0202 (12)0.0129 (10)0.0059 (10)0.0028 (9)0.0034 (9)
O20.051 (2)0.0318 (16)0.0305 (16)0.0162 (14)0.0036 (15)0.0178 (13)
O30.0380 (16)0.0233 (14)0.0157 (12)0.0103 (12)0.0011 (11)0.0062 (10)
O40.0155 (12)0.0193 (12)0.0413 (16)0.0034 (10)0.0083 (11)0.0074 (11)
O50.0226 (13)0.0408 (16)0.0183 (13)0.0028 (12)0.0056 (10)0.0036 (11)
O60.0230 (14)0.0337 (15)0.0218 (13)0.0123 (12)0.0006 (10)0.0083 (11)
Geometric parameters (Å, º) top
Na1—O2i2.278 (3)Mn4—O52.206 (3)
Na1—O2ii2.278 (3)Mn4—Mn4xvii3.2268 (12)
Na1—O4i2.288 (2)Mn4—Na2ix3.2814 (16)
Na1—O4ii2.288 (2)Mn4—Na1xvi3.6925 (7)
Na1—O4iii2.552 (3)P1—O2xviii1.531 (3)
Na1—O4iv2.552 (3)P1—O2xix1.531 (3)
Na1—O2iii3.003 (4)P1—O1ix1.539 (2)
Na1—O2iv3.003 (4)P1—O1x1.539 (2)
Na1—P1v3.1447 (10)P1—Na1xi3.1447 (10)
Na1—P1vi3.1447 (10)P1—Na1iv3.1447 (10)
Na1—Mn1vii3.2204 (5)P2—O6iv1.531 (3)
Na1—Mn1viii3.2204 (5)P2—O4iv1.533 (3)
Na2—O6ix2.413 (3)P2—O5xix1.540 (3)
Na2—O6x2.413 (3)P2—O3i1.540 (2)
Na2—O6iv2.572 (3)P2—Na2xiii3.2877 (16)
Na2—O6xi2.572 (3)P2—Na1viii3.3323 (9)
Na2—O1x2.725 (3)O1—P1ix1.539 (2)
Na2—O1ix2.725 (3)O1—Mn3vi2.241 (2)
Na2—O3iv2.949 (4)O1—Na2ix2.725 (3)
Na2—O3xi2.949 (4)O2—P1xx1.531 (3)
Na2—Na2xii3.2618 (10)O2—Na1xvi2.278 (3)
Na2—Na2xiii3.2618 (10)O2—Mn1xvi2.278 (3)
Na2—Mn4x3.2814 (16)O2—Na1xv3.003 (4)
Na2—Al4x3.2814 (16)O3—P2i1.540 (2)
Mn3—O1xi2.241 (2)O3—Mn3vi2.246 (3)
Mn3—O1iv2.241 (2)O3—Na2vi2.949 (4)
Mn3—O3xi2.246 (3)O4—P2xv1.533 (3)
Mn3—O3iv2.246 (3)O4—Na1xvi2.288 (2)
Mn3—O42.257 (3)O4—Mn1xvi2.288 (2)
Mn3—O4xiv2.257 (3)O4—Na1xv2.552 (3)
Mn3—Na1xv3.3439 (7)O5—P2xx1.540 (3)
Mn3—Na1xvi3.3439 (7)O5—Al4xvii2.098 (3)
Mn4—O21.970 (3)O5—Mn4xvii2.098 (3)
Mn4—O62.007 (3)O6—P2xv1.531 (3)
Mn4—O32.041 (3)O6—Na2ix2.413 (3)
Mn4—O12.078 (2)O6—Na2vi2.572 (3)
Mn4—O5xvii2.098 (3)
O2i—Na1—O2ii180.00 (15)O3iv—Mn3—O4xiv161.10 (9)
O2i—Na1—O4i80.59 (10)O4—Mn3—O4xiv76.32 (13)
O2ii—Na1—O4i99.41 (10)O1xi—Mn3—Na1xv79.18 (6)
O2i—Na1—O4ii99.41 (10)O1iv—Mn3—Na1xv134.83 (6)
O2ii—Na1—O4ii80.59 (10)O3xi—Mn3—Na1xv122.15 (7)
O4i—Na1—O4ii180.00 (11)O3iv—Mn3—Na1xv118.42 (7)
O2i—Na1—O4iii106.26 (11)O4—Mn3—Na1xv49.69 (7)
O2ii—Na1—O4iii73.74 (11)O4xiv—Mn3—Na1xv43.00 (6)
O4i—Na1—O4iii70.15 (10)O1xi—Mn3—Na1xvi134.83 (6)
O4ii—Na1—O4iii109.85 (10)O1iv—Mn3—Na1xvi79.18 (6)
O2i—Na1—O4iv73.74 (11)O3xi—Mn3—Na1xvi118.42 (7)
O2ii—Na1—O4iv106.26 (11)O3iv—Mn3—Na1xvi122.15 (7)
O4i—Na1—O4iv109.85 (10)O4—Mn3—Na1xvi43.00 (6)
O4ii—Na1—O4iv70.15 (10)O4xiv—Mn3—Na1xvi49.69 (7)
O4iii—Na1—O4iv180.00 (12)Na1xv—Mn3—Na1xvi57.571 (15)
O2i—Na1—O2iii51.94 (13)O1xi—Mn3—Na272.84 (6)
O2ii—Na1—O2iii128.06 (13)O1iv—Mn3—Na272.84 (6)
O4i—Na1—O2iii92.95 (9)O3xi—Mn3—Na254.89 (7)
O4ii—Na1—O2iii87.05 (9)O3iv—Mn3—Na254.89 (7)
O4iii—Na1—O2iii63.63 (8)O4—Mn3—Na2141.84 (6)
O4iv—Na1—O2iii116.37 (8)O4xiv—Mn3—Na2141.84 (6)
O2i—Na1—O2iv128.06 (13)Na1xv—Mn3—Na2151.214 (8)
O2ii—Na1—O2iv51.94 (13)Na1xvi—Mn3—Na2151.214 (8)
O4i—Na1—O2iv87.05 (9)O2—Mn4—O6100.89 (12)
O4ii—Na1—O2iv92.95 (9)O2—Mn4—O3110.21 (12)
O4iii—Na1—O2iv116.37 (8)O6—Mn4—O385.92 (11)
O4iv—Na1—O2iv63.63 (8)O2—Mn4—O1161.56 (10)
O2iii—Na1—O2iv180.00 (17)O6—Mn4—O195.04 (10)
O2i—Na1—P1v27.28 (8)O3—Mn4—O179.95 (10)
O2ii—Na1—P1v152.72 (8)O2—Mn4—O5xvii87.01 (12)
O4i—Na1—P1v96.77 (7)O6—Mn4—O5xvii99.19 (11)
O4ii—Na1—P1v83.23 (7)O3—Mn4—O5xvii160.92 (11)
O4iii—Na1—P1v91.50 (6)O1—Mn4—O5xvii81.29 (10)
O4iv—Na1—P1v88.50 (6)O2—Mn4—O581.77 (11)
O2iii—Na1—P1v28.73 (6)O6—Mn4—O5176.65 (11)
O2iv—Na1—P1v151.27 (6)O3—Mn4—O591.26 (10)
O2i—Na1—P1vi152.72 (8)O1—Mn4—O582.68 (10)
O2ii—Na1—P1vi27.28 (8)O5xvii—Mn4—O582.92 (11)
O4i—Na1—P1vi83.23 (7)O2—Mn4—Mn4xvii82.43 (8)
O4ii—Na1—P1vi96.77 (7)O6—Mn4—Mn4xvii141.85 (9)
O4iii—Na1—P1vi88.50 (6)O3—Mn4—Mn4xvii129.02 (8)
O4iv—Na1—P1vi91.50 (6)O1—Mn4—Mn4xvii79.30 (7)
O2iii—Na1—P1vi151.27 (6)O5xvii—Mn4—Mn4xvii42.73 (8)
O2iv—Na1—P1vi28.73 (6)O5—Mn4—Mn4xvii40.19 (7)
P1v—Na1—P1vi180.0O2—Mn4—Na2ix132.26 (10)
O2i—Na1—Mn1vii63.51 (9)O6—Mn4—Na2ix47.05 (8)
O2ii—Na1—Mn1vii116.49 (9)O3—Mn4—Na2ix102.32 (8)
O4i—Na1—Mn1vii51.89 (7)O1—Mn4—Na2ix55.81 (8)
O4ii—Na1—Mn1vii128.11 (7)O5xvii—Mn4—Na2ix69.44 (8)
O4iii—Na1—Mn1vii44.88 (6)O5—Mn4—Na2ix132.19 (8)
O4iv—Na1—Mn1vii135.12 (6)Mn4xvii—Mn4—Na2ix103.34 (4)
O2iii—Na1—Mn1vii42.77 (5)O2—Mn4—Na1xvi32.10 (8)
O2iv—Na1—Mn1vii137.23 (5)O6—Mn4—Na1xvi73.35 (8)
P1v—Na1—Mn1vii59.201 (12)O3—Mn4—Na1xvi91.83 (7)
P1vi—Na1—Mn1vii120.799 (12)O1—Mn4—Na1xvi166.34 (7)
O2i—Na1—Mn1viii116.49 (9)O5xvii—Mn4—Na1xvi107.25 (8)
O2ii—Na1—Mn1viii63.51 (9)O5—Mn4—Na1xvi108.58 (7)
O4i—Na1—Mn1viii128.11 (7)Mn4xvii—Mn4—Na1xvi114.25 (3)
O4ii—Na1—Mn1viii51.89 (7)Na2ix—Mn4—Na1xvi116.40 (4)
O4iii—Na1—Mn1viii135.12 (6)O2xviii—P1—O2xix103.3 (3)
O4iv—Na1—Mn1viii44.88 (6)O2xviii—P1—O1ix107.51 (15)
O2iii—Na1—Mn1viii137.23 (5)O2xix—P1—O1ix114.65 (13)
O2iv—Na1—Mn1viii42.77 (5)O2xviii—P1—O1x114.65 (13)
P1v—Na1—Mn1viii120.799 (12)O2xix—P1—O1x107.51 (15)
P1vi—Na1—Mn1viii59.201 (12)O1ix—P1—O1x109.28 (19)
Mn1vii—Na1—Mn1viii180.0O2xviii—P1—Na1xi70.48 (14)
O6ix—Na2—O6x168.26 (19)O2xix—P1—Na1xi43.00 (12)
O6ix—Na2—O6iv80.43 (8)O1ix—P1—Na1xi151.32 (9)
O6x—Na2—O6iv98.32 (9)O1x—P1—Na1xi96.71 (9)
O6ix—Na2—O6xi98.32 (9)O2xviii—P1—Na1iv43.00 (12)
O6x—Na2—O6xi80.43 (8)O2xix—P1—Na1iv70.48 (14)
O6iv—Na2—O6xi167.88 (17)O1ix—P1—Na1iv96.71 (9)
O6ix—Na2—O1x119.89 (12)O1x—P1—Na1iv151.32 (9)
O6x—Na2—O1x71.53 (9)Na1xi—P1—Na1iv61.60 (2)
O6iv—Na2—O1x87.18 (9)O2xviii—P1—Na2128.33 (14)
O6xi—Na2—O1x103.69 (10)O2xix—P1—Na2128.33 (14)
O6ix—Na2—O1ix71.53 (9)O1ix—P1—Na254.64 (9)
O6x—Na2—O1ix119.89 (12)O1x—P1—Na254.64 (9)
O6iv—Na2—O1ix103.69 (10)Na1xi—P1—Na2149.201 (12)
O6xi—Na2—O1ix87.18 (9)Na1iv—P1—Na2149.201 (12)
O1x—Na2—O1ix54.87 (11)O6iv—P2—O4iv112.03 (16)
O6ix—Na2—O3iv53.67 (8)O6iv—P2—O5xix109.85 (16)
O6x—Na2—O3iv115.62 (12)O4iv—P2—O5xix108.32 (15)
O6iv—Na2—O3iv59.50 (9)O6iv—P2—O3i106.95 (15)
O6xi—Na2—O3iv110.02 (11)O4iv—P2—O3i110.91 (16)
O1x—Na2—O3iv146.22 (8)O5xix—P2—O3i108.74 (15)
O1ix—Na2—O3iv123.85 (7)O6iv—P2—Na2xiii43.25 (11)
O6ix—Na2—O3xi115.62 (12)O4iv—P2—Na2xiii128.12 (12)
O6x—Na2—O3xi53.67 (8)O5xix—P2—Na2xiii122.51 (11)
O6iv—Na2—O3xi110.02 (11)O3i—P2—Na2xiii63.70 (11)
O6xi—Na2—O3xi59.50 (9)O6iv—P2—Na1viii89.83 (11)
O1x—Na2—O3xi123.85 (7)O4iv—P2—Na1viii36.44 (10)
O1ix—Na2—O3xi146.22 (8)O5xix—P2—Na1viii90.79 (10)
O3iv—Na2—O3xi77.10 (12)O3i—P2—Na1viii147.20 (12)
O6ix—Na2—Na2xii51.27 (7)Na2xiii—P2—Na1viii127.26 (5)
O6x—Na2—Na2xii126.38 (8)O6iv—P2—Na245.20 (13)
O6iv—Na2—Na2xii130.38 (7)O4iv—P2—Na2145.73 (11)
O6xi—Na2—Na2xii47.05 (6)O5xix—P2—Na269.60 (11)
O1x—Na2—Na2xii123.72 (13)O3i—P2—Na2101.55 (12)
O1ix—Na2—Na2xii74.15 (8)Na2xiii—P2—Na258.26 (2)
O3iv—Na2—Na2xii80.31 (9)Na1viii—P2—Na2110.03 (3)
O3xi—Na2—Na2xii85.39 (10)P1ix—O1—Mn4127.78 (14)
O6ix—Na2—Na2xiii126.38 (8)P1ix—O1—Mn3vi116.07 (14)
O6x—Na2—Na2xiii51.27 (7)Mn4—O1—Mn3vi101.62 (9)
O6iv—Na2—Na2xiii47.05 (6)P1ix—O1—Na2ix97.93 (11)
O6xi—Na2—Na2xiii130.38 (7)Mn4—O1—Na2ix85.07 (9)
O1x—Na2—Na2xiii74.15 (8)Mn3vi—O1—Na2ix127.35 (10)
O1ix—Na2—Na2xiii123.72 (13)P1xx—O2—Mn4129.57 (18)
O3iv—Na2—Na2xiii85.39 (10)P1xx—O2—Na1xvi109.71 (17)
O3xi—Na2—Na2xiii80.31 (9)Mn4—O2—Na1xvi120.55 (13)
Na2xii—Na2—Na2xiii161.71 (19)P1xx—O2—Mn1xvi109.71 (17)
O6ix—Na2—Mn4x153.88 (12)Mn4—O2—Mn1xvi120.55 (13)
O6x—Na2—Mn4x37.51 (7)Na1xvi—O2—Mn1xvi0.0
O6iv—Na2—Mn4x108.07 (7)P1xx—O2—Na1xv80.79 (15)
O6xi—Na2—Mn4x78.34 (7)Mn4—O2—Na1xv115.74 (13)
O1x—Na2—Mn4x39.12 (5)Na1xvi—O2—Na1xv73.72 (10)
O1ix—Na2—Mn4x82.39 (8)Mn1xvi—O2—Na1xv73.72 (10)
O3iv—Na2—Mn4x151.88 (7)P2i—O3—Mn4122.26 (16)
O3xi—Na2—Mn4x85.31 (5)P2i—O3—Mn3vi135.09 (17)
Na2xii—Na2—Mn4x120.32 (6)Mn4—O3—Mn3vi102.65 (10)
Na2xiii—Na2—Mn4x69.99 (4)P2i—O3—Na2vi88.38 (12)
O6ix—Na2—Al4x153.88 (12)Mn4—O3—Na2vi95.83 (9)
O6x—Na2—Al4x37.51 (7)Mn3vi—O3—Na2vi86.56 (10)
O6iv—Na2—Al4x108.07 (7)P2xv—O4—Mn3121.45 (14)
O6xi—Na2—Al4x78.34 (7)P2xv—O4—Na1xvi120.11 (15)
O1x—Na2—Al4x39.12 (5)Mn3—O4—Na1xvi94.72 (9)
O1ix—Na2—Al4x82.39 (8)P2xv—O4—Mn1xvi120.11 (15)
O3iv—Na2—Al4x151.88 (7)Mn3—O4—Mn1xvi94.72 (9)
O3xi—Na2—Al4x85.31 (5)Na1xvi—O4—Mn1xvi0.0
Na2xii—Na2—Al4x120.32 (6)P2xv—O4—Na1xv137.34 (16)
Na2xiii—Na2—Al4x69.99 (4)Mn3—O4—Na1xv87.88 (9)
Mn4x—Na2—Al4x0.00 (3)Na1xvi—O4—Na1xv83.23 (8)
O1xi—Mn3—O1iv145.67 (12)Mn1xvi—O4—Na1xv83.23 (8)
O1xi—Mn3—O3xi72.27 (9)P2xx—O5—Al4xvii139.22 (18)
O1iv—Mn3—O3xi88.00 (9)P2xx—O5—Mn4xvii139.22 (18)
O1xi—Mn3—O3iv88.00 (9)Al4xvii—O5—Mn4xvii0.00 (3)
O1iv—Mn3—O3iv72.27 (9)P2xx—O5—Mn4121.51 (16)
O3xi—Mn3—O3iv109.79 (14)Al4xvii—O5—Mn497.08 (11)
O1xi—Mn3—O4117.07 (9)Mn4xvii—O5—Mn497.08 (11)
O1iv—Mn3—O490.52 (9)P2xv—O6—Mn4135.07 (18)
O3xi—Mn3—O4161.10 (9)P2xv—O6—Na2ix110.99 (15)
O3iv—Mn3—O487.61 (9)Mn4—O6—Na2ix95.44 (12)
O1xi—Mn3—O4xiv90.52 (9)P2xv—O6—Na2vi109.82 (17)
O1iv—Mn3—O4xiv117.07 (9)Mn4—O6—Na2vi109.46 (12)
O3xi—Mn3—O4xiv87.61 (9)Na2ix—O6—Na2vi81.68 (9)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z1/2; (iv) x+1/2, y1/2, z+1/2; (v) x+1/2, y1/2, z; (vi) x+1/2, y+1/2, z; (vii) x+1, y, z1/2; (viii) x+1, y, z+1/2; (ix) x+1/2, y+1/2, z+1; (x) x1/2, y+1/2, z1/2; (xi) x1/2, y1/2, z; (xii) x, y, z+1; (xiii) x, y, z; (xiv) x, y, z+1/2; (xv) x+1/2, y+1/2, z+1/2; (xvi) x1/2, y+1/2, z; (xvii) x+1/2, y+3/2, z+1; (xviii) x, y1, z+1/2; (xix) x, y1, z; (xx) x, y+1, z.

Experimental details

Crystal data
Chemical formulaNa1.50Mn2.48Al0.85(PO4)3
Mr468.76
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)11.9816 (10), 12.5387 (13), 6.4407 (10)
β (°) 114.621 (8)
V3)879.64 (18)
Z4
Radiation typeMo Kα
µ (mm1)4.31
Crystal size (mm)0.23 × 0.07 × 0.05
Data collection
DiffractometerBruker P4
Absorption correctionψ scan
XSCANS in SHELXTL-Plus (Sheldrick, 1991)
Tmin, Tmax0.761, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
1271, 1019, 894
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.075, 1.07
No. of reflections1019
No. of parameters100
No. of restraints2
Δρmax, Δρmin (e Å3)0.52, 0.65

Computer programs: XSCANS in SHELXTL-Plus (Sheldrick, 1991), XSCANS, SHELXTL-Plus, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ATOMS (Dowty, 1993).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds