Download citation
Download citation
link to html
In the crystal structures of the proton-transfer compounds of strychnine with 3,5-dinitro­salicylic acid, namely strychninium 3,5-dinitro­salicylate, C21H23N2O2+·C7H3N2O7-, (I), and 5-nitro­salicylic acid, namely strychninium-5-nitro­salicylate-5-nitro­salicylic acid (1/1/2), C21H23N2O2+·C7H4NO5-·2C7H5NO5, (II), protonation of one of the N atoms of the strychnine mol­ecule occurs and this group is subsequently involved in inter­molecular hydrogen-bonding inter­actions. In (I), this is four-centred, the primary being with an adjacent strychninium carbonyl O-atom acceptor in a side-to-side inter­action giving linear chains. Other inter­actions are with the phenolate and nitro O-atom acceptors of the anionic species, resulting in a one-dimensional polymer structure. In (II), the N+-H inter­action is three-centred, the hydrogen bonding involving carboxyl O-atom acceptors of the anion and both acid adduct species, giving unique discrete hetero-tetramer units. The structure of (II) also features [pi]-bonding inter­actions between the two acid adduct mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105018226/ta1499sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105018226/ta1499Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105018226/ta1499IIsup3.hkl
Contains datablock II

CCDC references: 278578; 278579

Comment top

Strychnine and brucine have been variously employed on a hit-or-miss basis as resolving agents for a range of chiral organic compounds, and the crystal structures of a large number of complexes with strychnine and brucine, together with their absolute configurations, have been determined. The complexes include those with acidic species, in which atom N19 of the strychnine or brucine molecule (pKa2 = 11.7) is protonated, e.g. the N-benzoyl, N-phthaloyl and N-acetyl protected amino acids (Gould & Walkinshaw, 1984; Gould, Taylor & Walkinshaw, 1984; Gould et al., 1985; Bialońska & Ciunik, 2004a; Quinkert et al., 1986; Kuwata et al., 1993), and other chiral acid types (Gould et al., 1987; Boiadjiev et al., 1992; Wright et al., 1994; Bao et al., 1996; Costente et al., 1996; Dijksma, Gould, Parsons, Taylor & Walkinshaw, 1998; Andersson et al., 1999; Allenmark & Skogsberg, 2000; Gould et al., 2002; Bialońska et al., 2005). Other structures with neutral chiral guest species are known, e.g. with alcohols, lactones, cyanohydrins and ketones (Toda et al., 1981, 1985; Tanaka et al., 2001; Chandramohan & Ravikumar, 1999; Pinkerton et al., 1993; Yamagishi et al., 1992).

Although strychnine and brucine are both physicochemically and structurally similar and configurationally identical, brucine has proved to be the better of the two for optical resolution. This appears to be because of the presence of methoxy groups in the 2- and 3-positions of the aromatic ring, influencing the solid-state packing of the brucine molecules, which commonly form undulating parallel chain structures (Gould & Walkinshaw, 1984; Dijksma et al., 1998 Please specify unique reference; Bialońska et al., 2005). These recognize compatible molecular guest species which occupy the interstitial cavities between the chains and associate with the host through hydrogen bonding. Water or other molecules of solvation may also act, if needed, in a space-filling and/or in a proton-donor or -acceptor capacity. This is apparent in the isomorphous crystals of brucine–ethanol–water (1/1/2) (Glover et al., 1985) and brucine–propan-2-ol–water (1/1/2) (Bialońska & Ciunik, 2004b), and in brucine–acetone (1/1) structures (Bialońska & Ciunik, 2004b). Strychnine is less regular as a host structure for organic molecule recognition, often giving isolated molecular complexes or forming double-layer polymeric structures (Gould & Walkinshaw, 1984; Dijksma, Gould, Parsons, Taylor & Walkinshaw, 1998).

More recently, the structures of a number of neutral and proton-transfer compounds of strychnine and brucine with achiral organic molecules have been determined, e.g. with 4-nitrophenol (Guo et al. 2001), fumaric and maleic acids (Dijksma, Gould, Parsons & Walkinshaw, 1998), 4-hydroxybenzoic acid (Sada et al., 1998), 3-nitrobenzoic acid (Oshikawa et al., 2002), and 8-aminonaphthalene-2-sulfonic acid (Smith, Wermuth, Healy & Young, 2005). Because it was observed by Oshikawa et al. (2002) that brucine has a recognitive affinity for meta-substituted benzoic acids, we therefore considered that the analogous acids 3,5-dinitrosalicylic acid (DNSA), 5-nitrosalicylic acid (5-NSA), 5-sulfosalicylic acid (5-SSA) and 3-nitrophthalic acid (NPA) were likely candidates for similar recognition by brucine and possibly strychnine. This has proved to be the case with brucine, where good crystalline products were obtained within 1 week for DNSA, two weeks for 5-NSA and 5-SSA, and several weeks with NPA. The crystal structures of all four compounds have now been determined (Smith, Wermuth & Healy, 2005; Smith, Wermuth, Young & Healy, 2005). However, with strychnine, no complex was obtained with 5-SSA or NPA, although good crystals of the compounds with DNSA and 5-NSA were formed, albeit more slowly than with brucine. The crystal structures of these two compounds, C21H23N2O2+·C7H3N2O7, (I), and the adduct C21H23N2O2+·C7H4NO5·2(C7H5NO5), (II), respectively, are reported here.

Both compounds (I) and (II) are anhydrous, which is consistent with the structures of the proton-transfer compounds of both DNSA and 5-NSA with Lewis bases, where water or other molecules of solvation are seldom incorporated (Smith et al., 2002, 2003; Smith, Hartono et al., 2005), although the brucine complex with DNSA is a monohydrate (Smith, Wermuth & Healy, 2005). The major difference between (I) and (II) is the presence in (II) of two additional adduct molecules of 5-NSA acid, adduct formation being unusual among 5-NSA compounds, as well as among examples of brucine or strychnine complexes.

In the structures of both (I) and (II) (Figs. 1 and 2), the expected proton transfer to N19 of the strychnine molecule occurs and this group is subsequently involved in intermolecular N+—H···O hydrogen-bonding interactions with two O-acceptors of the anion species, and, in the case of (I), a strychnine carbonyl-O (Tables 1 and 2).

In each structure, the absolute configuration of the parent strychnine molecule (Peerdeman, 1956) is invoked. This includes the `apparent' change in configuration at C7 (R to S), which is a consequence of the change in the heirarchy of the protonated N19 group in the Cahn–Ingold–Prelog system and the introduction of a new chiral centre at N19 (S) (Smith, Wermuth, Healy & Young, 2005). This gives the overall absolute stereochemistry for the strychninium cations in (I) and (II) (as with all proton-transfer compounds of both brucine and strychnine) as C7(S), C8(S), C12(S), C13(R), C14(R), C16(S), N19(S).

In (I), the linear strychninium framework is formed through side-to-side hydrogen-bonding interactions involving the protonated N19 group and an adjacent strychnine carbonyl-O [N19–H19···O25i 3.148 (4) Å], extending along the c axis direction (Fig. 3) [for symmetry codes, see Table 1]. Atom N19 is then involved in a proximal association with both a phenolic O and a disordered nitro-O acceptor of a glide-related DNSA anion [N19···O2Dii 2.857 (5) and N19···O33Dii 3.00 (3) Å]. This generates a linear polymer structure in which, surprisingly, there are no intermolecular associations involving the O-acceptors of the DNSA carboxyl group.

In (II), an unusual discrete hetero-tetramer is formed, comprising the strychninium cation, the 5-NSA anion (molecule B) and the two 5-NSA acid adduct molecules (A and C) (Fig 4). The three-centre association with N19+—H involves carboxyl-O acceptors of the anion [N19···O72Bi 3.223 (8) Å] and an adduct molecule A [N19···O72Aii 2.958 (5) Å] [for symmetry codes, see Table 2]. Completing a cyclic R22(6) association is the carboxyl H atom of the adduct molecule A [O71A···O72Bii 2.553 (6) Å]. The second adduct molecule is linearly hydrogen-bonded to the anion molecule through the carboxyl groups [2.709 (8) Å], such that both adduct molecules form π-associated stacks [ring centroid separations CgA···CgC 3.72 (1) Å (intra) and 4.09 (1) Å (inter); CgA and CgC denote the centroids of the rings in molecules A and C, respectively]. Both adduct formation and π-stacking effects are previously unknown among structures of 5-NSA compounds (Smith, Hartono et al., 2005). The tetramer units are unassociated except for an unusual side-on interaction between the intramolecularly hydrogen-bonded phenolic group of an adduct molecule C and a nitro-O of an adjacent adduct molecule A [O2C···O52A 2.854 (6) Å] (Figs. 2 and 4).

Within the DNSA anion in (I), the structural features vary slightly from those of the majority of proton-transfer compounds (Smith et al., 2003), particularly with regard to the conformation of the nitro-substituent groups. The proximal nitro group at C3 is more commonly involved in hydrogen bonding than the C5 nitro group and therefore usually shows a greater rotation out of the plane of the ring than the C5 group. In (I), this is also the case [torsion angles C2D—C3D—N3D—O33D 167.4 (5)° and C4D—C5D—N5D—O52D 179.5 (4)°]. However, the previously mentioned intermolecularly unassociated carboxyl group is noncoplanar [torsion angle C2D—C1D—C7D—O71D −166.4 (4)°], although it is involved in the intramolecular hydrogen-bond. This hydrogen bond [O2D···O72D 2.492 (5) Å] has the H atom located on the carboxyl-O, rather than on the phenolic group as is found in ca 70% of the proton-transfer compounds of DNSA (Smith et al., 2002, 2003).

With the 5-NSA species in (II), despite the presence of adduct acid molecules and the associated π-stacking effects, structural features vary little from those previously reported (Smith, Hartono et al., 2005), which includes near-coplanarity between the parent ring and both the carboxyl- and nitro-substituent groups, the invariable location of the intramolecular H atom on the phenolic O atom, and a contraction of this intramolecular O···O distance with deprotonation [2.509 (10) Å in molecule B, compared with 2.595 (5) in molecule A and 2.605 (6) Å in molecule C].

Experimental top

The title compounds were synthesized by heating 1 mmol quantities of strychnine (strychnidin-10-one) and either 3,5-dinitrosalicylic acid (DNSA) or 5-nitrosalicylic acid (5-NSA) in 50% ethanol–water (50 ml) for 10 min under reflux. After concentration to ca 30 ml, partial room-temperature evaporation of the hot-filtered solutions gave yellow prisms of (I) (m.p. 468–470 K) and minor colourless prisms of (II) (m.p. 487–489 K).

Refinement top

H atoms potentially involved in hydrogen-bonding interactions were located by difference methods but, with the exception of the strychninium atom H19 (on N19), their positional and isotropic displacement parameters were not refined. Other H atoms were included in the refinement in calculated positions [C—H(aromatic) = 0.93 Å and C—H(aliphatic) = 0.97 Å] and treated using a riding model, with Uiso(H) = 1.2Ueq(C). The atom-numbering scheme for the strychninium species in (I) and (II) (Figs. 1 and 2, respectively) follows the original Robinson convention (Holmes, 1952). Friedel pairs were averaged and the absolute configuration determined for the parent strychnine (Peerdeman, 1956) was invoked, giving the overall Cahn–Ingold–Prelog absolute stereochemistry (Eliel, 1962) as C7(S), C8(S), C12(S), C13(R), C14(R), C16(S), N19(S). One of the nitro O atoms in (I) was found to be disordered and was subsequently refined over two sites [O31D, with a site occupancy factor of 0.44 (5), and O33D, with a site occupancy factor of 0.56 (5)].

Computing details top

Data collection: SMART (Bruker, 2000) for (I); CAD-4 Software (Enraf–Nonius, 1989) for (II). Cell refinement: SMART for (I); CAD-4 Software (Enraf–Nonius, 1989) for (II). Data reduction: SAINT (Bruker, 1999) for (I); XCAD4 (Harms & Wocadlo, 1995) for (II). Program(s) used to solve structure: SHELXTL (Bruker, 1997) for (I); SHELXS97 (Sheldrick, 1997) in WinGX (Farrugia, 1999) for (II). Program(s) used to refine structure: SHELXTL for (I); SHELXL97 (Sheldrick, 1997) in WinGX (Farrugia, 1999) for (II). For both compounds, molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the strychninium cation and the DNSA anion species in compound (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Atoms O31D and O33D are disordered sites (see text).
[Figure 2] Fig. 2. The molecular configuration and atom-numbering scheme for the strychninium cation, the 5-NSA anion and the two 5-NSA acid adduct species in compound (II). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The packing of (I) in the unit cell, viewed down the a axis. Non-interacting H atoms have been omitted. Hydrogen-bonding associations are shown as broken lines. [Symmetry codes: (iii) x, y, 1 + z; (iv) −x, −1/2 + y, −z; (v) −x, −1/2 + y, 1 − z; for others, see Table 1.]
[Figure 4] Fig. 4. The packing of (II) in the unit cell, viewed down the c axis. The discrete hydrogen-bonded tetrameric units are shown (dashed lines). Also illustrated are the π-bonding associations between the two 5-NSA adduct molecules (A and C). [Symmetry codes: (iii) 1 − x, −1/2 + y, 1 − z; for others, see Table 2.]
(I) strychninium 3,5-dinitrosalicylate top
Crystal data top
C21H23N2O2+·C7H3N2O7F(000) = 588
Mr = 562.53Dx = 1.536 Mg m3
Monoclinic, P21Melting point = 468–470 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 7.5036 (15) ÅCell parameters from 2715 reflections
b = 17.219 (3) Åθ = 2.4–27.3°
c = 9.4799 (19) ŵ = 0.12 mm1
β = 96.905 (3)°T = 295 K
V = 1216.0 (4) Å3Block, yellow
Z = 20.40 × 0.30 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1909 reflections with F2 > 2σ(F2)
Radiation source: sealed tubeRint = 0.071
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ϕ and ω scansh = 88
5865 measured reflectionsk = 2018
2222 independent reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0734P)2 + 0.1261P]
where P = (Fo2 + 2Fc2)/3
2222 reflections(Δ/σ)max = 0.021
384 parametersΔρmax = 0.22 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C21H23N2O2+·C7H3N2O7V = 1216.0 (4) Å3
Mr = 562.53Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.5036 (15) ŵ = 0.12 mm1
b = 17.219 (3) ÅT = 295 K
c = 9.4799 (19) Å0.40 × 0.30 × 0.20 mm
β = 96.905 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1909 reflections with F2 > 2σ(F2)
5865 measured reflectionsRint = 0.071
2222 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.22 e Å3
2222 reflectionsΔρmin = 0.25 e Å3
384 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O2D0.5068 (5)0.43231 (17)0.1817 (3)0.0558 (11)
O32D0.4009 (7)0.2831 (2)0.4942 (4)0.0913 (18)
O33D0.500 (5)0.2945 (5)0.298 (2)0.079 (7)0.56 (5)
O51D0.2235 (5)0.4930 (2)0.7604 (3)0.0619 (11)
O52D0.2476 (5)0.6101 (2)0.6866 (4)0.0754 (14)
O71D0.4909 (4)0.66320 (19)0.2467 (4)0.0587 (11)
O72D0.5121 (6)0.5691 (2)0.0964 (4)0.0749 (14)
N3D0.4138 (6)0.3223 (2)0.3908 (4)0.0578 (14)
N5D0.2583 (5)0.5400 (2)0.6715 (4)0.0482 (12)
C1D0.4242 (5)0.5368 (2)0.3194 (4)0.0344 (12)
C2D0.4455 (5)0.4552 (2)0.2928 (4)0.0352 (12)
C3D0.3966 (5)0.4057 (2)0.4013 (4)0.0386 (12)
C4D0.3330 (5)0.4332 (2)0.5222 (4)0.0360 (12)
C5D0.3185 (5)0.5120 (2)0.5413 (4)0.0386 (12)
C6D0.3632 (5)0.5634 (2)0.4403 (4)0.0387 (11)
C7D0.4761 (5)0.5949 (3)0.2183 (4)0.0425 (12)
O31D0.372 (6)0.2935 (6)0.2696 (11)0.075 (7)0.44 (5)
O240.0355 (4)0.66153 (16)0.2910 (3)0.0497 (10)
O250.0896 (5)0.8683 (2)0.6125 (3)0.0632 (13)
N90.1795 (4)0.86689 (17)0.3935 (3)0.0339 (9)
N190.2533 (5)0.82367 (19)0.0767 (3)0.0420 (10)
C10.2695 (6)1.0348 (2)0.1883 (5)0.0473 (14)
C20.2621 (7)1.0958 (3)0.2825 (5)0.0578 (16)
C30.2237 (7)1.0819 (3)0.4178 (5)0.0537 (16)
C40.1937 (5)1.0074 (2)0.4658 (4)0.0406 (12)
C50.2039 (5)0.9475 (2)0.3715 (4)0.0335 (12)
C60.2409 (5)0.9602 (2)0.2344 (4)0.0360 (12)
C70.2511 (5)0.8843 (2)0.1561 (4)0.0324 (11)
C80.1741 (5)0.8255 (2)0.2559 (3)0.0300 (10)
C100.1016 (6)0.8347 (2)0.4995 (4)0.0420 (12)
C110.0332 (6)0.7531 (2)0.4728 (4)0.0488 (14)
C120.0497 (6)0.7328 (2)0.3206 (4)0.0439 (12)
C130.0176 (5)0.7986 (2)0.2200 (4)0.0366 (12)
C140.0687 (5)0.7863 (2)0.0594 (4)0.0404 (12)
C150.0437 (6)0.8661 (3)0.0107 (4)0.0458 (15)
C160.1526 (5)0.8839 (2)0.0029 (4)0.0399 (13)
C170.4417 (5)0.8630 (2)0.1308 (4)0.0411 (12)
C180.4184 (6)0.8007 (2)0.0194 (4)0.0414 (12)
C200.1387 (6)0.7545 (2)0.1251 (4)0.0474 (16)
C210.0438 (6)0.7263 (2)0.0056 (4)0.0444 (14)
C220.0561 (6)0.6530 (3)0.0386 (4)0.0473 (14)
C230.0316 (7)0.6246 (3)0.1622 (5)0.0570 (17)
H6D0.3518000.6165000.4545000.0460*
H72D0.516000.511000.11600.1000*
H4D0.3001000.3988000.5902000.0430*
H10.2933001.0439000.0956000.0570*
H20.2833001.1463000.2539000.0690*
H30.2175001.1236000.4793000.0650*
H40.1679000.9984000.5579000.0490*
H80.2532000.7801000.2679000.0360*
H11A0.0565000.7431000.5362000.0580*
H11B0.1321000.7176000.4990000.0580*
H120.1790000.7243000.3191000.0530*
H130.0925000.8418000.2458000.0440*
H140.1953000.7712000.0417000.0480*
H15A0.0925000.8646000.1102000.0550*
H15B0.1065000.9060000.0360000.0550*
H160.1683000.9350000.0395000.0480*
H17A0.5035000.9076000.0973000.0490*
H17B0.5095000.8438000.2173000.0490*
H18A0.5219000.7984000.0327000.0500*
H18B0.4024000.7504000.0621000.0500*
H190.294 (6)0.850 (3)0.150 (5)0.057 (13)*
H20A0.0518000.7690000.2048000.0570*
H20B0.2136000.7134000.1559000.0570*
H220.1219000.6181000.0092000.0570*
H23A0.1599000.6337000.1436000.0680*
H23B0.0129000.5691000.1721000.0680*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O2D0.091 (2)0.0407 (17)0.0407 (19)0.0026 (15)0.0278 (16)0.0049 (13)
O32D0.168 (4)0.0389 (19)0.075 (3)0.006 (2)0.048 (3)0.0115 (19)
O33D0.15 (2)0.035 (4)0.064 (8)0.008 (6)0.059 (11)0.002 (4)
O51D0.083 (2)0.068 (2)0.0395 (19)0.0042 (17)0.0275 (17)0.0079 (16)
O52D0.123 (3)0.051 (2)0.058 (2)0.0233 (19)0.035 (2)0.0078 (17)
O71D0.078 (2)0.0379 (18)0.062 (2)0.0036 (15)0.0159 (17)0.0125 (15)
O72D0.126 (3)0.056 (2)0.050 (2)0.007 (2)0.041 (2)0.0069 (17)
N3D0.101 (3)0.0268 (19)0.049 (2)0.0015 (18)0.023 (2)0.0021 (17)
N5D0.058 (2)0.049 (2)0.040 (2)0.0070 (17)0.0154 (16)0.0012 (18)
C1D0.037 (2)0.038 (2)0.030 (2)0.0002 (16)0.0108 (15)0.0039 (17)
C2D0.043 (2)0.033 (2)0.030 (2)0.0014 (16)0.0056 (17)0.0010 (16)
C3D0.050 (2)0.031 (2)0.035 (2)0.0005 (17)0.0060 (18)0.0021 (16)
C4D0.044 (2)0.037 (2)0.028 (2)0.0039 (16)0.0089 (16)0.0058 (16)
C5D0.042 (2)0.042 (2)0.033 (2)0.0059 (17)0.0099 (16)0.0020 (17)
C6D0.044 (2)0.0293 (19)0.044 (2)0.0098 (17)0.0101 (17)0.0006 (16)
C7D0.049 (2)0.041 (2)0.040 (2)0.0034 (18)0.0152 (18)0.0080 (19)
O31D0.14 (2)0.031 (4)0.051 (5)0.006 (7)0.000 (7)0.011 (3)
O240.074 (2)0.0345 (15)0.0429 (17)0.0058 (14)0.0161 (14)0.0025 (13)
O250.110 (3)0.0559 (19)0.0273 (15)0.0086 (18)0.0225 (15)0.0061 (15)
N90.0499 (18)0.0277 (16)0.0242 (15)0.0061 (14)0.0053 (13)0.0025 (13)
N190.068 (2)0.0369 (18)0.0240 (16)0.0086 (16)0.0169 (15)0.0033 (14)
C10.066 (3)0.034 (2)0.041 (2)0.0002 (19)0.003 (2)0.0055 (19)
C20.084 (3)0.031 (2)0.056 (3)0.007 (2)0.002 (2)0.001 (2)
C30.074 (3)0.039 (2)0.045 (3)0.015 (2)0.005 (2)0.014 (2)
C40.044 (2)0.040 (2)0.037 (2)0.0066 (18)0.0022 (17)0.0041 (18)
C50.037 (2)0.034 (2)0.029 (2)0.0065 (16)0.0024 (15)0.0009 (16)
C60.044 (2)0.032 (2)0.031 (2)0.0031 (16)0.0005 (16)0.0006 (16)
C70.040 (2)0.0316 (19)0.0261 (18)0.0012 (15)0.0064 (15)0.0043 (15)
C80.046 (2)0.0258 (17)0.0196 (17)0.0060 (16)0.0093 (15)0.0004 (14)
C100.057 (2)0.047 (2)0.023 (2)0.001 (2)0.0084 (17)0.0014 (17)
C110.075 (3)0.037 (2)0.037 (2)0.007 (2)0.018 (2)0.0059 (17)
C120.047 (2)0.047 (2)0.040 (2)0.0075 (18)0.0147 (18)0.0041 (19)
C130.039 (2)0.040 (2)0.032 (2)0.0023 (16)0.0098 (16)0.0064 (16)
C140.040 (2)0.046 (2)0.034 (2)0.0002 (18)0.0006 (17)0.0029 (18)
C150.056 (3)0.053 (3)0.0255 (19)0.013 (2)0.0075 (17)0.0010 (18)
C160.063 (3)0.035 (2)0.0224 (18)0.0115 (18)0.0078 (17)0.0032 (16)
C170.050 (2)0.039 (2)0.036 (2)0.0022 (18)0.0117 (17)0.0044 (17)
C180.053 (2)0.038 (2)0.035 (2)0.0105 (18)0.0125 (18)0.0025 (17)
C200.066 (3)0.048 (3)0.028 (2)0.007 (2)0.0051 (19)0.0030 (18)
C210.050 (3)0.050 (2)0.032 (2)0.0002 (19)0.0002 (17)0.0137 (19)
C220.063 (3)0.039 (2)0.040 (2)0.0068 (19)0.006 (2)0.0160 (19)
C230.074 (3)0.043 (3)0.056 (3)0.022 (2)0.016 (2)0.011 (2)
Geometric parameters (Å, º) top
O2D—C2D1.262 (5)C7—C161.548 (5)
O31D—N3D1.256 (13)C7—C171.523 (5)
O32D—N3D1.204 (5)C7—C81.544 (5)
O33D—N3D1.25 (3)C8—C131.511 (5)
O51D—N5D1.219 (5)C10—C111.507 (5)
O52D—N5D1.219 (5)C11—C121.541 (5)
O71D—C7D1.209 (6)C12—C131.519 (5)
O72D—C7D1.296 (6)C13—C141.539 (5)
O72D—H72D1.02C14—C211.512 (5)
O24—C231.415 (6)C14—C151.548 (6)
O24—C121.427 (5)C15—C161.495 (6)
O25—C101.230 (5)C17—C181.501 (5)
N3D—C3D1.446 (5)C20—C211.490 (6)
N5D—C5D1.447 (5)C21—C221.330 (6)
N9—C101.342 (5)C22—C231.493 (6)
N9—C81.483 (4)C1—H10.9308
N9—C51.419 (5)C2—H20.9302
N19—C181.500 (5)C3—H30.9296
N19—C161.534 (5)C4—H40.9298
N19—C201.508 (5)C8—H80.9799
N19—H190.91 (5)C11—H11A0.9701
C1D—C6D1.363 (5)C11—H11B0.9704
C1D—C2D1.440 (5)C12—H120.9796
C1D—C7D1.470 (6)C13—H130.9808
C2D—C3D1.418 (5)C14—H140.9797
C3D—C4D1.377 (5)C15—H15A0.9703
C4D—C5D1.375 (5)C15—H15B0.9697
C5D—C6D1.375 (5)C16—H160.9803
C4D—H4D0.9304C17—H17A0.9701
C6D—H6D0.9296C17—H17B0.9697
C1—C61.382 (5)C18—H18A0.9700
C1—C21.384 (6)C18—H18B0.9696
C2—C31.369 (7)C20—H20A0.9695
C3—C41.389 (6)C20—H20B0.9703
C4—C51.373 (5)C22—H220.9295
C5—C61.379 (5)C23—H23A0.9704
C6—C71.509 (5)C23—H23B0.9688
C7D—O72D—H72D100C13—C14—C15105.9 (3)
C12—O24—C23115.8 (3)C13—C14—C21114.4 (3)
O32D—N3D—C3D119.0 (4)C14—C15—C16108.3 (3)
O31D—N3D—O32D119.2 (8)N19—C16—C7104.9 (3)
O31D—N3D—C3D116.1 (7)N19—C16—C15110.9 (3)
O32D—N3D—O33D117.3 (7)C7—C16—C15115.9 (3)
O33D—N3D—C3D119.2 (7)C7—C17—C18104.5 (3)
O51D—N5D—C5D118.9 (3)N19—C18—C17104.9 (3)
O51D—N5D—O52D123.6 (4)N19—C20—C21109.5 (3)
O52D—N5D—C5D117.5 (4)C14—C21—C22122.8 (4)
C5—N9—C8109.3 (3)C14—C21—C20115.4 (3)
C8—N9—C10119.5 (3)C20—C21—C22121.8 (4)
C5—N9—C10126.1 (3)C21—C22—C23122.5 (4)
C16—N19—C18107.4 (3)O24—C23—C22112.7 (4)
C16—N19—C20112.8 (3)C2—C1—H1120.56
C18—N19—C20112.1 (3)C6—C1—H1120.65
C20—N19—H19113 (3)C1—C2—H2119.99
C16—N19—H19106 (3)C3—C2—H2119.94
C18—N19—H19105 (3)C2—C3—H3118.98
C2D—C1D—C6D122.0 (3)C4—C3—H3119.06
C2D—C1D—C7D120.4 (3)C3—C4—H4121.47
C6D—C1D—C7D117.5 (3)C5—C4—H4121.36
O2D—C2D—C1D120.7 (3)N9—C8—H8109.22
O2D—C2D—C3D124.7 (3)C7—C8—H8109.16
C1D—C2D—C3D114.6 (3)C13—C8—H8109.19
N3D—C3D—C2D120.9 (3)C10—C11—H11A108.01
N3D—C3D—C4D116.2 (3)C10—C11—H11B108.05
C2D—C3D—C4D122.9 (3)C12—C11—H11A107.92
C3D—C4D—C5D119.3 (3)C12—C11—H11B107.87
C4D—C5D—C6D120.9 (3)H11A—C11—H11B107.21
N5D—C5D—C6D120.5 (3)O24—C12—H12109.57
N5D—C5D—C4D118.6 (3)C11—C12—H12109.58
C1D—C6D—C5D120.3 (3)C13—C12—H12109.51
O72D—C7D—C1D116.6 (4)C8—C13—H13105.66
O71D—C7D—C1D122.8 (4)C12—C13—H13105.68
O71D—C7D—O72D120.6 (4)C14—C13—H13105.60
C3D—C4D—H4D120.33C13—C14—H14109.09
C5D—C4D—H4D120.35C15—C14—H14109.10
C1D—C6D—H6D119.88C21—C14—H14109.05
C5D—C6D—H6D119.87C14—C15—H15A110.05
C2—C1—C6118.8 (4)C14—C15—H15B110.02
C1—C2—C3120.1 (5)C16—C15—H15A110.00
C2—C3—C4122.0 (4)C16—C15—H15B110.08
C3—C4—C5117.2 (4)H15A—C15—H15B108.38
N9—C5—C4128.4 (3)N19—C16—H16108.33
N9—C5—C6109.8 (3)C7—C16—H16108.25
C4—C5—C6121.9 (3)C15—C16—H16108.33
C5—C6—C7110.7 (3)C7—C17—H17A110.84
C1—C6—C5120.1 (3)C7—C17—H17B110.86
C1—C6—C7129.1 (4)C18—C17—H17A110.81
C6—C7—C8102.8 (3)C18—C17—H17B110.87
C6—C7—C16114.7 (3)H17A—C17—H17B108.90
C6—C7—C17113.0 (3)N19—C18—H18A110.79
C16—C7—C17101.7 (3)N19—C18—H18B110.76
C8—C7—C17111.5 (3)C17—C18—H18A110.78
C8—C7—C16113.6 (3)C17—C18—H18B110.77
C7—C8—C13118.6 (3)H18A—C18—H18B108.85
N9—C8—C13105.7 (3)N19—C20—H20A109.83
N9—C8—C7104.5 (3)N19—C20—H20B109.75
O25—C10—N9122.8 (3)C21—C20—H20A109.77
O25—C10—C11121.7 (4)C21—C20—H20B109.76
N9—C10—C11115.4 (3)H20A—C20—H20B108.24
C10—C11—C12117.4 (3)C21—C22—H22118.74
C11—C12—C13110.0 (3)C23—C22—H22118.73
O24—C12—C11103.8 (3)O24—C23—H23A109.07
O24—C12—C13114.2 (3)O24—C23—H23B109.11
C8—C13—C12107.8 (3)C22—C23—H23A109.01
C8—C13—C14112.5 (3)C22—C23—H23B109.06
C12—C13—C14118.6 (3)H23A—C23—H23B107.81
C15—C14—C21109.2 (3)
C23—O24—C12—C1367.2 (5)C3—C4—C5—N9179.9 (4)
C12—O24—C23—C2286.9 (5)C4—C5—C6—C7177.8 (3)
C23—O24—C12—C11173.0 (3)N9—C5—C6—C1179.9 (4)
O33D—N3D—C3D—C4D167.1 (17)N9—C5—C6—C72.5 (4)
O32D—N3D—C3D—C4D11.8 (6)C4—C5—C6—C10.2 (6)
O33D—N3D—C3D—C2D12.1 (17)C1—C6—C7—C1646.9 (6)
O32D—N3D—C3D—C2D167.4 (5)C5—C6—C7—C16135.7 (3)
O52D—N5D—C5D—C6D0.7 (6)C1—C6—C7—C1769.0 (5)
O52D—N5D—C5D—C4D179.5 (4)C5—C6—C7—C811.9 (4)
O51D—N5D—C5D—C4D0.5 (6)C5—C6—C7—C17108.4 (4)
O51D—N5D—C5D—C6D178.4 (4)C1—C6—C7—C8170.7 (4)
C10—N9—C5—C6163.2 (4)C17—C7—C8—C13137.5 (3)
C8—N9—C5—C68.7 (4)C17—C7—C8—N9105.2 (3)
C5—N9—C10—O2522.4 (6)C16—C7—C8—C1323.3 (4)
C8—N9—C5—C4170.9 (4)C6—C7—C16—N19152.3 (3)
C8—N9—C10—O25174.5 (4)C16—C7—C17—C1840.9 (3)
C5—N9—C10—C11159.2 (4)C8—C7—C17—C1880.4 (3)
C10—N9—C8—C1346.2 (4)C8—C7—C16—N1989.9 (3)
C10—N9—C5—C416.5 (6)C6—C7—C17—C18164.4 (3)
C8—N9—C10—C117.0 (5)C6—C7—C8—N916.1 (4)
C5—N9—C8—C13110.2 (3)C17—C7—C16—N1930.0 (3)
C5—N9—C8—C715.8 (4)C6—C7—C8—C13101.2 (3)
C10—N9—C8—C7172.2 (3)C16—C7—C8—N9140.7 (3)
C18—N19—C16—C15134.5 (3)C6—C7—C16—C1585.1 (4)
C20—N19—C16—C7115.2 (3)C17—C7—C16—C15152.7 (3)
C20—N19—C18—C17141.0 (3)C8—C7—C16—C1532.8 (5)
C18—N19—C20—C2174.2 (4)C7—C8—C13—C12171.5 (3)
C16—N19—C20—C2147.1 (4)N9—C8—C13—C1271.8 (3)
C16—N19—C18—C1716.6 (4)C7—C8—C13—C1438.8 (4)
C18—N19—C16—C78.7 (4)N9—C8—C13—C14155.6 (3)
C20—N19—C16—C1510.5 (4)N9—C10—C11—C1236.8 (5)
C7D—C1D—C2D—O2D0.9 (6)O25—C10—C11—C12144.7 (4)
C6D—C1D—C2D—C3D0.5 (5)C10—C11—C12—O24131.7 (4)
C6D—C1D—C2D—O2D178.1 (4)C10—C11—C12—C139.1 (5)
C6D—C1D—C7D—O72D171.6 (4)O24—C12—C13—C873.0 (4)
C2D—C1D—C7D—O71D166.6 (4)O24—C12—C13—C1456.3 (5)
C7D—C1D—C2D—C3D177.7 (3)C11—C12—C13—C843.3 (4)
C2D—C1D—C6D—C5D0.5 (6)C11—C12—C13—C14172.5 (3)
C2D—C1D—C7D—O72D11.1 (6)C8—C13—C14—C1560.2 (4)
C6D—C1D—C7D—O71D10.7 (6)C12—C13—C14—C15172.7 (3)
C7D—C1D—C6D—C5D177.7 (3)C8—C13—C14—C2160.1 (4)
O2D—C2D—C3D—N3D0.3 (6)C12—C13—C14—C2167.0 (4)
C1D—C2D—C3D—N3D178.9 (4)C13—C14—C21—C20122.8 (4)
C1D—C2D—C3D—C4D0.3 (5)C15—C14—C21—C204.3 (5)
O2D—C2D—C3D—C4D178.9 (4)C21—C14—C15—C1654.5 (4)
C2D—C3D—C4D—C5D1.2 (6)C15—C14—C21—C22176.6 (4)
N3D—C3D—C4D—C5D178.0 (4)C13—C14—C21—C2258.2 (5)
C3D—C4D—C5D—N5D177.5 (4)C13—C14—C15—C1669.1 (4)
C3D—C4D—C5D—C6D1.3 (6)C14—C15—C16—C756.9 (4)
C4D—C5D—C6D—C1D0.5 (6)C14—C15—C16—N1962.5 (4)
N5D—C5D—C6D—C1D178.3 (4)C7—C17—C18—N1936.2 (4)
C6—C1—C2—C31.2 (7)N19—C20—C21—C1455.6 (5)
C2—C1—C6—C7176.5 (4)N19—C20—C21—C22125.3 (4)
C2—C1—C6—C50.7 (7)C20—C21—C22—C23177.3 (4)
C1—C2—C3—C40.9 (8)C14—C21—C22—C233.7 (7)
C2—C3—C4—C50.1 (7)C21—C22—C23—O2462.6 (6)
C3—C4—C5—C60.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O72D—H72D···O2D1.021.502.492 (5)165
N19—H19···O25i0.91 (5)2.59 (5)3.148 (4)120 (4)
N19—H19···O2Dii0.91 (5)2.11 (5)2.857 (5)139 (4)
N19—H19···O33Dii0.91 (5)2.41 (6)3.00 (3)123 (4)
C1—H1···O72Dii0.932.503.374 (6)156
C4—H4···O250.932.38842.923 (5)116
C18—H18A···O33Dii0.972.503.14 (2)124
C18—H18B···O71D0.972.343.204 (5)148
C20—H20A···O25i0.972.473.153 (5)127
C20—H20B···O52Di0.972.363.223 (5)148
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1/2, z.
(II) strychninium–5-nitrosalicylate–5-nitrosalicylic acid (1/1/2) top
Crystal data top
C21H23N2O2+·C7H4NO5·2C7H5NO5F(000) = 920
Mr = 883.77Dx = 1.513 Mg m3
Monoclinic, P21Melting point = 486.5–488.8 K
Hall symbol: P 2ybCu Kα radiation, λ = 1.54180 Å
a = 7.5762 (9) ÅCell parameters from 25 reflections
b = 12.3729 (9) Åθ = 20–30°
c = 20.891 (4) ŵ = 1.01 mm1
β = 97.96 (1)°T = 295 K
V = 1939.5 (5) Å3Prismatic, colourless
Z = 20.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4F
diffractometer
Rint = 0.045
Radiation source: sealed tubeθmax = 69.9°, θmin = 2.1°
Graphite monochromatorh = 99
ω/2θ scansk = 015
3960 measured reflectionsl = 025
3856 independent reflections3 standard reflections every 160 min
3427 reflections with F2 > 2σ(F2) intensity decay: 0.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.1204P)2 + 0.567P]
where P = (Fo2 + 2Fc2)/3
3856 reflections(Δ/σ)max = 0.002
585 parametersΔρmax = 0.57 e Å3
1 restraintΔρmin = 0.35 e Å3
Crystal data top
C21H23N2O2+·C7H4NO5·2C7H5NO5V = 1939.5 (5) Å3
Mr = 883.77Z = 2
Monoclinic, P21Cu Kα radiation
a = 7.5762 (9) ŵ = 1.01 mm1
b = 12.3729 (9) ÅT = 295 K
c = 20.891 (4) Å0.30 × 0.20 × 0.20 mm
β = 97.96 (1)°
Data collection top
Enraf–Nonius CAD-4F
diffractometer
Rint = 0.045
3960 measured reflections3 standard reflections every 160 min
3856 independent reflections intensity decay: 0.0%
3427 reflections with F2 > 2σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.0561 restraint
wR(F2) = 0.168H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.57 e Å3
3856 reflectionsΔρmin = 0.35 e Å3
585 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O240.7869 (4)0.5600 (3)0.08916 (16)0.0490 (10)
O250.2797 (5)0.6610 (4)0.04851 (16)0.0706 (13)
N90.3564 (4)0.7165 (3)0.05539 (14)0.0436 (10)
N190.6401 (4)0.8093 (4)0.25759 (16)0.0388 (9)
C10.2057 (6)0.9603 (4)0.1252 (3)0.0519 (16)
C20.0712 (7)0.9977 (5)0.0786 (3)0.0632 (18)
C30.0240 (6)0.9399 (5)0.0217 (3)0.0620 (18)
C40.1092 (5)0.8445 (5)0.0098 (2)0.0536 (16)
C50.2465 (5)0.8086 (4)0.05664 (18)0.0401 (11)
C60.2926 (5)0.8652 (4)0.11367 (19)0.0384 (11)
C70.4309 (5)0.8028 (3)0.15808 (17)0.0353 (10)
C80.4982 (5)0.7200 (3)0.11164 (16)0.0329 (10)
C100.3895 (6)0.6616 (4)0.00053 (19)0.0462 (11)
C110.5604 (7)0.6039 (5)0.0042 (2)0.0558 (16)
C120.7242 (6)0.6478 (4)0.04896 (19)0.0419 (11)
C130.6725 (5)0.7475 (3)0.08614 (17)0.0341 (10)
C140.8109 (5)0.7957 (3)0.13871 (18)0.0360 (10)
C150.7329 (5)0.9017 (4)0.1603 (2)0.0406 (11)
C160.5768 (5)0.8739 (4)0.19561 (19)0.0395 (11)
C170.3504 (5)0.7478 (4)0.21320 (18)0.0421 (13)
C180.5101 (6)0.7180 (4)0.26145 (18)0.0474 (13)
C200.8295 (5)0.7699 (5)0.2614 (2)0.0499 (14)
C210.8589 (5)0.7226 (4)0.19722 (19)0.0406 (13)
C220.9266 (5)0.6252 (4)0.1929 (2)0.0478 (14)
C230.9539 (6)0.5760 (4)0.1291 (3)0.0546 (16)
O2A0.4440 (6)0.1873 (3)0.52283 (18)0.0671 (13)
O51A0.3213 (9)0.4584 (5)0.27038 (18)0.106 (2)
O52A0.2491 (7)0.5766 (4)0.33510 (19)0.0779 (16)
O71A0.2467 (6)0.4909 (3)0.56211 (16)0.0624 (13)
O72A0.3384 (6)0.3297 (3)0.60045 (15)0.0623 (13)
N5A0.2999 (7)0.4865 (4)0.3241 (2)0.0648 (16)
C1A0.3432 (6)0.3664 (4)0.4887 (2)0.0423 (12)
C2A0.4095 (6)0.2628 (4)0.4772 (2)0.0478 (12)
C3A0.4401 (8)0.2358 (4)0.4150 (3)0.0587 (16)
C4A0.4026 (8)0.3089 (5)0.3656 (2)0.0588 (16)
C5A0.3371 (6)0.4104 (4)0.3774 (2)0.0466 (12)
C6A0.3098 (6)0.4407 (4)0.4391 (2)0.0440 (12)
C7A0.3099 (6)0.3934 (4)0.5553 (2)0.0465 (12)
O2B0.9661 (9)0.1656 (6)0.2680 (3)0.113 (3)
O51B0.3799 (9)0.4163 (8)0.0944 (5)0.172 (4)
O52B0.2223 (8)0.2917 (8)0.1271 (4)0.132 (3)
O71B0.4728 (11)0.0520 (4)0.2997 (2)0.111 (3)
O72B0.7682 (12)0.0401 (5)0.3201 (2)0.107 (2)
N5B0.3668 (8)0.3367 (6)0.1263 (3)0.090 (2)
C1B0.6505 (10)0.1674 (5)0.2431 (3)0.069 (2)
C2B0.8184 (10)0.2067 (5)0.2348 (3)0.076 (2)
C3B0.8385 (10)0.2929 (6)0.1918 (3)0.078 (2)
C4B0.6885 (8)0.3349 (5)0.1571 (3)0.0679 (19)
C5B0.5252 (9)0.2929 (5)0.1648 (3)0.0649 (19)
C6B0.5033 (11)0.2105 (5)0.2068 (3)0.070 (2)
C7B0.6235 (14)0.0794 (5)0.2920 (3)0.083 (3)
O2C0.0777 (6)0.6857 (3)0.4299 (2)0.0784 (16)
O51C0.1326 (10)0.9609 (6)0.6799 (3)0.120 (3)
O52C0.2815 (6)1.0635 (4)0.6255 (2)0.0771 (16)
O71C0.3032 (8)0.9862 (4)0.3988 (2)0.0865 (16)
O72C0.2100 (7)0.8272 (4)0.35736 (19)0.0827 (18)
N5C0.1956 (7)0.9817 (4)0.6314 (2)0.0668 (16)
C1C0.1801 (7)0.8626 (4)0.4665 (2)0.0536 (16)
C2C0.1061 (7)0.7608 (5)0.4767 (3)0.0584 (16)
C3C0.0586 (7)0.7347 (5)0.5369 (3)0.0658 (19)
C4C0.0857 (7)0.8070 (5)0.5874 (3)0.0634 (17)
C5C0.1621 (6)0.9066 (4)0.5772 (3)0.0533 (14)
C6C0.2088 (6)0.9357 (4)0.5188 (2)0.0523 (14)
C7C0.2281 (9)0.8906 (5)0.4028 (2)0.0667 (18)
H10.2368000.9983000.1635000.0620*
H20.0123001.0617000.0854000.0760*
H30.0666000.9658000.0090000.0750*
H40.0762000.8055000.0280000.0650*
H80.5088000.6488000.1324000.0390*
H11A0.5918000.6004000.0392000.0670*
H11B0.5406000.5303000.0175000.0670*
H120.8163000.6684000.0226000.0500*
H130.6436000.8046000.0539000.0410*
H140.9195000.8118000.1199000.0430*
H15A0.8227000.9411000.1887000.0490*
H15B0.6931000.9466000.1230000.0490*
H160.5160000.9400000.2050000.0670*
H17A0.2725000.7969000.2322000.0500*
H17B0.2833000.6840000.1978000.0500*
H18A0.4777000.7122000.3046000.0570*
H18B0.5606000.6497000.2501000.0570*
H190.629 (5)0.857 (6)0.295 (7)0.066 (9)*
H20A0.9111000.8295000.2724000.0600*
H20B0.8525000.7154000.2949000.0600*
H220.9584000.5855000.2305000.0570*
H23A1.0283000.6233000.1072000.0660*
H23B1.0147000.5072000.1365000.0660*
H2A0.4070000.2370000.5500000.0800*
H3A0.4860000.1683000.4069000.0700*
H4A0.4213000.2902000.3240000.0710*
H6A0.2696000.5099000.4470000.0530*
H71A0.2410000.5080000.6040000.0730*
H2B0.9140000.1200000.2870000.1320*
H3B0.9506000.3200000.1874000.0940*
H4B0.6969000.3915000.1284000.0810*
H6B0.3901000.1843000.2105000.0840*
H71C0.3590001.008000.3660000.1020*
H2C0.1230000.7350000.4050000.0960*
H3C0.0081000.6677000.5431000.0790*
H4C0.0535000.7896000.6275000.0760*
H6C0.2591001.0031000.5135000.0630*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O240.0546 (17)0.0406 (16)0.0526 (17)0.0002 (14)0.0107 (14)0.0007 (14)
O250.068 (2)0.102 (3)0.0378 (16)0.015 (2)0.0073 (15)0.0142 (19)
N90.0387 (16)0.064 (2)0.0278 (15)0.0079 (16)0.0031 (12)0.0058 (16)
N190.0377 (15)0.0507 (19)0.0274 (14)0.0090 (15)0.0023 (12)0.0007 (14)
C10.039 (2)0.052 (3)0.067 (3)0.0017 (19)0.016 (2)0.007 (2)
C20.048 (2)0.058 (3)0.087 (4)0.007 (2)0.021 (2)0.034 (3)
C30.040 (2)0.084 (4)0.062 (3)0.004 (2)0.007 (2)0.038 (3)
C40.0385 (19)0.083 (4)0.038 (2)0.007 (2)0.0007 (16)0.026 (2)
C50.0338 (17)0.053 (2)0.0343 (18)0.0052 (17)0.0075 (14)0.0122 (17)
C60.0342 (18)0.044 (2)0.0376 (19)0.0042 (16)0.0066 (14)0.0097 (16)
C70.0345 (17)0.043 (2)0.0284 (16)0.0020 (16)0.0045 (14)0.0007 (16)
C80.0347 (17)0.0392 (19)0.0240 (15)0.0065 (15)0.0014 (13)0.0001 (15)
C100.055 (2)0.052 (2)0.0312 (18)0.017 (2)0.0042 (17)0.0055 (18)
C110.064 (3)0.060 (3)0.042 (2)0.004 (2)0.002 (2)0.019 (2)
C120.047 (2)0.043 (2)0.0375 (19)0.0061 (18)0.0125 (17)0.0034 (17)
C130.0350 (17)0.039 (2)0.0293 (16)0.0049 (15)0.0078 (14)0.0040 (15)
C140.0349 (16)0.039 (2)0.0349 (18)0.0062 (16)0.0074 (14)0.0028 (16)
C150.0393 (19)0.043 (2)0.040 (2)0.0100 (17)0.0070 (15)0.0051 (18)
C160.0399 (19)0.043 (2)0.0359 (19)0.0041 (17)0.0062 (15)0.0061 (17)
C170.0346 (18)0.062 (3)0.0309 (17)0.0083 (18)0.0093 (14)0.0032 (18)
C180.047 (2)0.068 (3)0.0277 (17)0.012 (2)0.0065 (15)0.0058 (19)
C200.040 (2)0.074 (3)0.0337 (19)0.010 (2)0.0018 (16)0.001 (2)
C210.0292 (17)0.057 (3)0.0348 (19)0.0076 (17)0.0018 (14)0.0030 (18)
C220.0367 (19)0.062 (3)0.044 (2)0.0015 (19)0.0030 (16)0.013 (2)
C230.043 (2)0.055 (3)0.066 (3)0.006 (2)0.008 (2)0.003 (2)
O2A0.100 (3)0.0450 (18)0.057 (2)0.0137 (19)0.0129 (19)0.0092 (16)
O51A0.185 (5)0.100 (4)0.038 (2)0.031 (4)0.029 (3)0.006 (2)
O52A0.113 (3)0.065 (3)0.057 (2)0.013 (2)0.016 (2)0.017 (2)
O71A0.097 (3)0.0479 (19)0.0424 (17)0.0127 (19)0.0105 (17)0.0010 (14)
O72A0.102 (3)0.0483 (19)0.0353 (15)0.0023 (19)0.0052 (16)0.0020 (14)
N5A0.082 (3)0.064 (3)0.050 (2)0.007 (2)0.015 (2)0.006 (2)
C1A0.046 (2)0.041 (2)0.039 (2)0.0072 (18)0.0023 (16)0.0033 (17)
C2A0.057 (2)0.043 (2)0.043 (2)0.003 (2)0.0058 (18)0.0002 (19)
C3A0.081 (3)0.041 (2)0.057 (3)0.002 (2)0.020 (2)0.007 (2)
C4A0.079 (3)0.058 (3)0.043 (2)0.008 (3)0.021 (2)0.009 (2)
C5A0.052 (2)0.050 (2)0.038 (2)0.005 (2)0.0070 (17)0.0002 (19)
C6A0.049 (2)0.041 (2)0.041 (2)0.0032 (18)0.0024 (17)0.0034 (17)
C7A0.059 (2)0.043 (2)0.036 (2)0.006 (2)0.0017 (17)0.0048 (18)
O2B0.119 (4)0.114 (5)0.105 (4)0.027 (4)0.015 (3)0.035 (4)
O51B0.106 (4)0.193 (9)0.204 (8)0.026 (5)0.023 (5)0.145 (8)
O52B0.083 (3)0.172 (7)0.140 (5)0.038 (4)0.011 (3)0.035 (5)
O71B0.206 (7)0.074 (3)0.061 (3)0.023 (4)0.046 (4)0.019 (3)
O72B0.202 (6)0.071 (3)0.061 (3)0.042 (4)0.062 (3)0.005 (2)
N5B0.072 (3)0.115 (5)0.082 (4)0.017 (3)0.012 (3)0.024 (4)
C1B0.120 (5)0.043 (3)0.050 (3)0.011 (3)0.031 (3)0.006 (2)
C2B0.110 (5)0.066 (4)0.049 (3)0.032 (4)0.003 (3)0.003 (3)
C3B0.090 (4)0.077 (4)0.070 (4)0.005 (4)0.019 (3)0.016 (3)
C4B0.083 (4)0.061 (3)0.060 (3)0.005 (3)0.011 (3)0.020 (3)
C5B0.090 (4)0.056 (3)0.052 (3)0.011 (3)0.022 (3)0.003 (2)
C6B0.123 (5)0.050 (3)0.042 (2)0.023 (3)0.025 (3)0.004 (2)
C7B0.155 (7)0.055 (3)0.044 (3)0.005 (4)0.030 (4)0.012 (3)
O2C0.083 (3)0.058 (2)0.088 (3)0.006 (2)0.010 (2)0.027 (2)
O51C0.181 (6)0.103 (4)0.091 (4)0.020 (4)0.067 (4)0.030 (3)
O52C0.098 (3)0.070 (3)0.061 (2)0.011 (2)0.003 (2)0.021 (2)
O71C0.151 (4)0.057 (2)0.051 (2)0.013 (3)0.012 (2)0.0043 (19)
O72C0.121 (4)0.072 (3)0.050 (2)0.000 (3)0.006 (2)0.019 (2)
N5C0.081 (3)0.067 (3)0.054 (2)0.010 (3)0.015 (2)0.012 (2)
C1C0.059 (3)0.043 (2)0.054 (3)0.006 (2)0.009 (2)0.007 (2)
C2C0.049 (2)0.054 (3)0.069 (3)0.003 (2)0.003 (2)0.013 (2)
C3C0.052 (3)0.049 (3)0.097 (4)0.001 (2)0.012 (3)0.005 (3)
C4C0.058 (3)0.061 (3)0.074 (3)0.007 (3)0.019 (2)0.001 (3)
C5C0.048 (2)0.049 (2)0.062 (3)0.008 (2)0.004 (2)0.007 (2)
C6C0.055 (2)0.046 (2)0.052 (3)0.007 (2)0.006 (2)0.006 (2)
C7C0.093 (4)0.057 (3)0.043 (2)0.009 (3)0.016 (2)0.007 (2)
Geometric parameters (Å, º) top
O24—C121.414 (6)C22—C231.505 (7)
O24—C231.430 (6)C1—H10.9298
O25—C101.227 (5)C2—H20.9295
O2A—C2A1.334 (6)C3—H30.9291
O51A—N5A1.207 (6)C4—H40.9297
O52A—N5A1.212 (7)C8—H80.9803
O71A—C7A1.313 (6)C11—H11B0.9698
O72A—C7A1.225 (6)C11—H11A0.9697
O2A—H2A0.9072C12—H120.9806
O71A—H71A0.9072C13—H130.9797
O2B—C2B1.333 (10)C14—H140.9801
O51B—N5B1.201 (12)C15—H15B0.9704
O52B—N5B1.230 (10)C15—H15A0.9699
O71B—C7B1.223 (13)C16—H160.9719
O72B—C7B1.267 (12)C17—H17A0.9694
O2B—H2B0.8216C17—H17B0.9694
O2C—C2C1.344 (7)C18—H18B0.9705
O51C—N5C1.206 (8)C18—H18A0.9692
O52C—N5C1.219 (7)C20—H20B0.9701
O71C—C7C1.320 (8)C20—H20A0.9693
O71C—H71C0.900C22—H220.9295
O72C—C7C1.224 (7)C23—H23B0.9700
O2C—H2C0.8999C23—H23A0.9700
N9—C51.414 (6)C1A—C6A1.382 (6)
N9—C101.385 (5)C1A—C7A1.486 (6)
N9—C81.479 (5)C1A—C2A1.409 (7)
N19—C161.541 (6)C2A—C3A1.392 (7)
N19—C201.507 (5)C3A—C4A1.372 (8)
N19—C181.508 (6)C4A—C5A1.385 (8)
N19—H190.99 (13)C5A—C6A1.385 (6)
N5A—C5A1.456 (6)C3A—H3A0.9292
N5B—C5B1.454 (9)C4A—H4A0.9290
N5C—C5C1.460 (7)C6A—H6A0.9311
C1—C21.388 (8)C1B—C7B1.526 (9)
C1—C61.386 (7)C1B—C6B1.367 (10)
C2—C31.391 (9)C1B—C2B1.395 (11)
C3—C41.384 (8)C2B—C3B1.416 (9)
C4—C51.398 (6)C3B—C4B1.363 (10)
C5—C61.384 (6)C4B—C5B1.372 (9)
C6—C71.512 (6)C5B—C6B1.370 (9)
C7—C81.545 (5)C3B—H3B0.9294
C7—C171.535 (5)C4B—H4B0.9298
C7—C161.540 (6)C6B—H6B0.9300
C8—C131.529 (5)C1C—C6C1.412 (6)
C10—C111.471 (7)C1C—C7C1.469 (6)
C11—C121.545 (7)C1C—C2C1.407 (8)
C12—C131.537 (6)C2C—C3C1.393 (9)
C13—C141.530 (5)C3C—C4C1.377 (9)
C14—C151.532 (6)C4C—C5C1.390 (8)
C14—C211.524 (6)C5C—C6C1.365 (7)
C15—C161.517 (6)C3C—H3C0.9296
C17—C181.509 (6)C4C—H4C0.9297
C20—C211.507 (6)C6C—H6C0.9298
C21—C221.318 (7)
C12—O24—C23115.9 (4)C14—C15—H15A110.12
C2A—O2A—H2A85.73C16—C15—H15A110.15
C7A—O71A—H71A112.68C16—C15—H15B110.10
C2B—O2B—H2B95.08H15A—C15—H15B108.49
C7C—O71C—H71C125C14—C15—H15B110.08
C2C—O2C—H2C85.21C7—C16—H16104.87
C8—N9—C10118.5 (3)C15—C16—H16109.30
C5—N9—C8109.1 (3)N19—C16—H16111.59
C5—N9—C10125.8 (3)C18—C17—H17B110.96
C18—N19—C20112.3 (4)C7—C17—H17B110.90
C16—N19—C18107.7 (3)H17A—C17—H17B108.98
C16—N19—C20113.3 (3)C7—C17—H17A110.92
C18—N19—H19106 (4)C18—C17—H17A110.90
C16—N19—H19108 (6)C17—C18—H18B110.87
C20—N19—H19110 (4)N19—C18—H18B110.90
O51A—N5A—C5A119.2 (5)C17—C18—H18A110.88
O52A—N5A—C5A118.9 (4)H18A—C18—H18B108.78
O51A—N5A—O52A121.9 (5)N19—C18—H18A110.89
O52B—N5B—C5B119.5 (7)C21—C20—H20A109.77
O51B—N5B—C5B119.2 (6)C21—C20—H20B109.75
O51B—N5B—O52B121.4 (8)N19—C20—H20A109.74
O51C—N5C—C5C118.0 (6)N19—C20—H20B109.73
O52C—N5C—C5C119.2 (4)H20A—C20—H20B108.23
O51C—N5C—O52C122.8 (5)C23—C22—H22118.90
C2—C1—C6118.8 (5)C21—C22—H22118.90
C1—C2—C3120.3 (5)O24—C23—H23B109.50
C2—C3—C4121.4 (5)C22—C23—H23B109.52
C3—C4—C5117.7 (5)O24—C23—H23A109.47
N9—C5—C4128.8 (4)C22—C23—H23A109.49
C4—C5—C6121.1 (4)H23A—C23—H23B108.09
N9—C5—C6110.2 (3)C2A—C1A—C7A118.3 (4)
C1—C6—C7129.2 (4)C6A—C1A—C7A121.0 (4)
C5—C6—C7109.9 (4)C2A—C1A—C6A120.6 (4)
C1—C6—C5120.7 (4)C1A—C2A—C3A119.1 (4)
C16—C7—C17101.7 (3)O2A—C2A—C1A123.6 (4)
C6—C7—C17111.9 (3)O2A—C2A—C3A117.2 (4)
C8—C7—C17112.2 (3)C2A—C3A—C4A120.0 (5)
C8—C7—C16115.0 (3)C3A—C4A—C5A120.4 (4)
C6—C7—C16114.1 (3)N5A—C5A—C6A119.9 (4)
C6—C7—C8102.4 (3)N5A—C5A—C4A119.1 (4)
C7—C8—C13116.6 (3)C4A—C5A—C6A121.0 (4)
N9—C8—C13107.3 (3)C1A—C6A—C5A118.8 (4)
N9—C8—C7104.6 (3)O72A—C7A—C1A122.8 (4)
O25—C10—C11122.0 (4)O71A—C7A—O72A122.4 (4)
O25—C10—N9121.0 (4)O71A—C7A—C1A114.8 (4)
N9—C10—C11117.0 (4)C4A—C3A—H3A119.95
C10—C11—C12119.2 (4)C2A—C3A—H3A120.04
C11—C12—C13110.4 (4)C5A—C4A—H4A119.81
O24—C12—C13113.9 (3)C3A—C4A—H4A119.80
O24—C12—C11105.4 (4)C5A—C6A—H6A120.56
C8—C13—C12106.9 (3)C1A—C6A—H6A120.61
C8—C13—C14112.1 (3)C6B—C1B—C7B118.4 (7)
C12—C13—C14118.6 (3)C2B—C1B—C7B122.8 (7)
C13—C14—C15106.9 (3)C2B—C1B—C6B118.9 (6)
C13—C14—C21114.1 (3)C1B—C2B—C3B121.4 (6)
C15—C14—C21109.3 (3)O2B—C2B—C1B121.1 (6)
C14—C15—C16107.9 (4)O2B—C2B—C3B117.5 (7)
C7—C16—C15115.8 (3)C2B—C3B—C4B118.0 (7)
N19—C16—C15110.7 (3)C3B—C4B—C5B119.5 (6)
N19—C16—C7104.4 (3)N5B—C5B—C6B117.9 (6)
C7—C17—C18104.1 (3)C4B—C5B—C6B123.2 (6)
N19—C18—C17104.5 (4)N5B—C5B—C4B118.9 (6)
N19—C20—C21109.6 (3)C1B—C6B—C5B118.9 (7)
C14—C21—C20115.8 (4)O71B—C7B—C1B120.0 (7)
C14—C21—C22122.7 (4)O71B—C7B—O72B126.6 (7)
C20—C21—C22121.5 (4)O72B—C7B—C1B113.4 (8)
C21—C22—C23122.2 (4)C2B—C3B—H3B120.96
O24—C23—C22110.7 (4)C4B—C3B—H3B121.05
C6—C1—H1120.60C5B—C4B—H4B120.29
C2—C1—H1120.60C3B—C4B—H4B120.23
C1—C2—H2119.89C1B—C6B—H6B120.58
C3—C2—H2119.78C5B—C6B—H6B120.49
C4—C3—H3119.24C2C—C1C—C7C120.2 (5)
C2—C3—H3119.37C6C—C1C—C7C121.3 (5)
C3—C4—H4121.19C2C—C1C—C6C118.6 (4)
C5—C4—H4121.07O2C—C2C—C1C122.4 (5)
C7—C8—H8109.39O2C—C2C—C3C117.4 (5)
C13—C8—H8109.41C1C—C2C—C3C120.2 (5)
N9—C8—H8109.34C2C—C3C—C4C120.8 (6)
H11A—C11—H11B107.08C3C—C4C—C5C118.7 (6)
C12—C11—H11B107.45N5C—C5C—C6C119.1 (4)
C10—C11—H11B107.50C4C—C5C—C6C122.4 (5)
C10—C11—H11A107.52N5C—C5C—C4C118.5 (5)
C12—C11—H11A107.52C1C—C6C—C5C119.4 (5)
C11—C12—H12109.01O71C—C7C—C1C115.6 (4)
O24—C12—H12109.06O72C—C7C—C1C122.4 (6)
C13—C12—H12109.03O71C—C7C—O72C121.9 (5)
C12—C13—H13106.24C2C—C3C—H3C119.69
C14—C13—H13106.14C4C—C3C—H3C119.56
C8—C13—H13106.16C3C—C4C—H4C120.67
C21—C14—H14108.78C5C—C4C—H4C120.67
C13—C14—H14108.74C1C—C6C—H6C120.27
C15—C14—H14108.88C5C—C6C—H6C120.28
C23—O24—C12—C1367.4 (5)C10—C11—C12—O24126.0 (4)
C23—O24—C12—C11171.5 (4)O24—C12—C13—C1455.0 (5)
C12—O24—C23—C2288.9 (5)C11—C12—C13—C14173.3 (3)
C10—N9—C5—C6158.0 (4)C11—C12—C13—C845.5 (4)
C8—N9—C10—C114.3 (6)O24—C12—C13—C872.7 (4)
C8—N9—C5—C67.3 (4)C8—C13—C14—C2158.4 (4)
C10—N9—C8—C1345.8 (5)C12—C13—C14—C2166.8 (4)
C10—N9—C5—C421.7 (7)C12—C13—C14—C15172.2 (3)
C10—N9—C8—C7170.2 (4)C8—C13—C14—C1562.6 (4)
C5—N9—C10—C11152.5 (4)C15—C14—C21—C22179.0 (4)
C5—N9—C8—C13107.4 (3)C13—C14—C15—C1668.6 (4)
C8—N9—C5—C4172.4 (4)C15—C14—C21—C202.8 (5)
C5—N9—C10—O2528.0 (7)C13—C14—C21—C20122.5 (4)
C5—N9—C8—C717.0 (4)C13—C14—C21—C2259.4 (5)
C8—N9—C10—O25176.3 (4)C21—C14—C15—C1655.3 (4)
C18—N19—C20—C2177.3 (5)C14—C15—C16—C754.8 (5)
C16—N19—C18—C1714.8 (4)C14—C15—C16—N1963.8 (4)
C20—N19—C16—C1511.8 (6)C7—C17—C18—N1935.6 (4)
C18—N19—C16—C15136.6 (4)N19—C20—C21—C1453.9 (5)
C20—N19—C16—C7113.5 (4)N19—C20—C21—C22127.9 (5)
C18—N19—C16—C711.3 (4)C20—C21—C22—C23178.9 (4)
C16—N19—C20—C2145.0 (6)C14—C21—C22—C233.0 (6)
C20—N19—C18—C17140.2 (3)C21—C22—C23—O2464.3 (6)
O51A—N5A—C5A—C4A2.4 (8)C6A—C1A—C2A—O2A179.8 (5)
O52A—N5A—C5A—C6A1.7 (8)C7A—C1A—C6A—C5A177.8 (4)
O51A—N5A—C5A—C6A178.7 (6)C2A—C1A—C7A—O71A179.4 (4)
O52A—N5A—C5A—C4A177.2 (5)C6A—C1A—C7A—O71A0.5 (7)
O51B—N5B—C5B—C4B8.5 (11)C7A—C1A—C2A—C3A179.5 (5)
O51B—N5B—C5B—C6B172.0 (8)C7A—C1A—C2A—O2A0.1 (7)
O52B—N5B—C5B—C4B171.5 (7)C2A—C1A—C6A—C5A2.1 (7)
O52B—N5B—C5B—C6B7.9 (10)C6A—C1A—C2A—C3A0.4 (7)
O51C—N5C—C5C—C4C10.5 (8)C6A—C1A—C7A—O72A179.8 (5)
O52C—N5C—C5C—C4C171.3 (5)C2A—C1A—C7A—O72A0.3 (7)
O51C—N5C—C5C—C6C170.4 (6)O2A—C2A—C3A—C4A178.2 (5)
O52C—N5C—C5C—C6C7.8 (7)C1A—C2A—C3A—C4A1.2 (8)
C6—C1—C2—C30.6 (8)C2A—C3A—C4A—C5A1.1 (9)
C2—C1—C6—C7174.3 (5)C3A—C4A—C5A—C6A0.7 (8)
C2—C1—C6—C50.2 (7)C3A—C4A—C5A—N5A179.5 (5)
C1—C2—C3—C40.2 (8)C4A—C5A—C6A—C1A2.2 (7)
C2—C3—C4—C50.8 (8)N5A—C5A—C6A—C1A178.9 (4)
C3—C4—C5—N9178.1 (4)C7B—C1B—C2B—C3B176.2 (6)
C3—C4—C5—C61.6 (7)C6B—C1B—C2B—O2B178.5 (6)
C4—C5—C6—C11.3 (7)C6B—C1B—C2B—C3B2.7 (9)
C4—C5—C6—C7174.2 (4)C7B—C1B—C2B—O2B2.7 (10)
N9—C5—C6—C1178.4 (4)C6B—C1B—C7B—O72B175.7 (6)
N9—C5—C6—C76.1 (5)C2B—C1B—C7B—O72B5.4 (9)
C5—C6—C7—C16140.9 (4)C7B—C1B—C6B—C5B177.1 (6)
C1—C6—C7—C1644.2 (6)C2B—C1B—C7B—O71B176.1 (6)
C5—C6—C7—C17104.3 (4)C2B—C1B—C6B—C5B1.8 (9)
C1—C6—C7—C8169.0 (4)C6B—C1B—C7B—O71B2.8 (9)
C1—C6—C7—C1770.7 (6)O2B—C2B—C3B—C4B179.4 (6)
C5—C6—C7—C816.0 (4)C1B—C2B—C3B—C4B1.8 (10)
C16—C7—C17—C1842.3 (4)C2B—C3B—C4B—C5B0.0 (10)
C17—C7—C16—N1932.3 (4)C3B—C4B—C5B—C6B0.9 (10)
C6—C7—C8—C1398.9 (4)C3B—C4B—C5B—N5B178.5 (6)
C8—C7—C16—C1532.8 (5)N5B—C5B—C6B—C1B179.4 (6)
C6—C7—C8—N919.3 (4)C4B—C5B—C6B—C1B0.0 (10)
C6—C7—C16—C1585.0 (4)C2C—C1C—C6C—C5C0.9 (7)
C16—C7—C8—C1325.4 (4)C2C—C1C—C7C—O72C1.7 (9)
C8—C7—C16—N1989.1 (4)C7C—C1C—C6C—C5C179.9 (7)
C8—C7—C17—C1881.1 (4)C2C—C1C—C7C—O71C177.4 (5)
C6—C7—C17—C18164.5 (4)C7C—C1C—C2C—O2C0.5 (8)
C6—C7—C16—N19153.0 (3)C7C—C1C—C2C—C3C179.2 (5)
C17—C7—C16—C15154.3 (4)C6C—C1C—C2C—O2C178.7 (5)
C17—C7—C8—C13141.0 (3)C6C—C1C—C2C—C3C1.6 (8)
C16—C7—C8—N9143.6 (3)C6C—C1C—C7C—O72C177.5 (6)
C17—C7—C8—N9100.8 (3)C6C—C1C—C7C—O71C1.8 (8)
N9—C8—C13—C14157.9 (3)C1C—C2C—C3C—C4C1.0 (8)
C7—C8—C13—C12172.6 (3)O2C—C2C—C3C—C4C179.2 (5)
N9—C8—C13—C1270.6 (4)C2C—C3C—C4C—C5C0.2 (8)
C7—C8—C13—C1441.2 (4)C3C—C4C—C5C—N5C178.2 (5)
O25—C10—C11—C12150.4 (5)C3C—C4C—C5C—C6C0.9 (8)
N9—C10—C11—C1230.1 (6)N5C—C5C—C6C—C1C178.7 (5)
C10—C11—C12—C132.7 (6)C4C—C5C—C6C—C1C0.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N19—H19···O72Bi0.99 (13)2.52 (7)3.233 (8)128 (2)
N19—H19···O72Aii0.99 (13)2.19 (13)2.958 (5)133 (2)
O71A—H71A···O72Bii0.911.652.553 (6)179
O71C—H71C···O71Bi0.901.812.709 (8)179
O2A—H2A···O72A0.911.692.595 (5)180
O2B—H2B···O72B0.821.702.509 (10)168
O2C—H2C···O72C0.901.712.605 (6)179
C2—H2···O25iii0.932.553.329 (7)141
C3B—H3B···O52Biv0.932.583.372 (10)143
C4—H4···O250.932.442.957 (7)115
C4B—H4B···O240.932.373.259 (7)159
C11—H11B···O51B0.972.573.394 (11)143
C16—H16···O71Bi0.972.473.268 (7)139
C18—H18A···O52A0.972.553.191 (7)123
C22—H22···O51Cv0.932.593.424 (8)149
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1; (iii) x, y+1/2, z; (iv) x+1, y, z; (v) x+1, y1/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC21H23N2O2+·C7H3N2O7C21H23N2O2+·C7H4NO5·2C7H5NO5
Mr562.53883.77
Crystal system, space groupMonoclinic, P21Monoclinic, P21
Temperature (K)295295
a, b, c (Å)7.5036 (15), 17.219 (3), 9.4799 (19)7.5762 (9), 12.3729 (9), 20.891 (4)
β (°) 96.905 (3) 97.96 (1)
V3)1216.0 (4)1939.5 (5)
Z22
Radiation typeMo KαCu Kα
µ (mm1)0.121.01
Crystal size (mm)0.40 × 0.30 × 0.200.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Enraf–Nonius CAD-4F
diffractometer
Absorption correction
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
5865, 2222, 1909 3960, 3856, 3427
Rint0.0710.045
(sin θ/λ)max1)0.5940.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.142, 1.17 0.056, 0.168, 1.02
No. of reflections22223856
No. of parameters384585
No. of restraints11
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.250.57, 0.35

Computer programs: SMART (Bruker, 2000), CAD-4 Software (Enraf–Nonius, 1989), SMART, SAINT (Bruker, 1999), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Bruker, 1997), SHELXS97 (Sheldrick, 1997) in WinGX (Farrugia, 1999), SHELXTL, SHELXL97 (Sheldrick, 1997) in WinGX (Farrugia, 1999), PLATON (Spek, 2003), PLATON.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O72D—H72D···O2D1.021.502.492 (5)165
N19—H19···O25i0.91 (5)2.59 (5)3.148 (4)120 (4)
N19—H19···O2Dii0.91 (5)2.11 (5)2.857 (5)139 (4)
N19—H19···O33Dii0.91 (5)2.41 (6)3.00 (3)123 (4)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1/2, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N19—H19···O72Bi0.99 (13)2.52 (7)3.233 (8)128 (2)
N19—H19···O72Aii0.99 (13)2.19 (13)2.958 (5)133 (2)
O71A—H71A···O72Bii0.911.652.553 (6)179
O71C—H71C···O71Bi0.901.812.709 (8)179
O2A—H2A···O72A0.911.692.595 (5)180
O2B—H2B···O72B0.821.702.509 (10)168
O2C—H2C···O72C0.901.712.605 (6)179
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds