Download citation
Download citation
link to html
The only specific inter­actions that influence the crystal packing of the title compound, C15H17ClN4O2, are weak C-H...N and C-H...Cl hydrogen bonds, even though there is a possibility of, for example, [pi]-[pi] stacking or halogen bonding. The dihedral angle between the mean planes of the imidazole and benzene rings is 59.82 (5)°. The length of the C-N bond connecting the imidazole and piperidine fragments is correlated with the degree of pyramidalization of the piperidine N atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105021608/ta1498sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105021608/ta1498Isup2.hkl
Contains datablock I

CCDC reference: 282211

Comment top

Nitroimidazoles have been intensively investigated as radiosensitizers of hypoxic tumour cells and as veterinary drugs (Smithen & Hardy, 1982). In particular, 4-nitro-5-aminoimidazole derivatives have been relatively widely studied, due to their expected radiosensitizing activity combined with good water solubility (see, for example, Wolska et al., 1993, 1994). More recently, in the crystal structure of 1,2-dimethyl-4-nitro-5-morpholinylimidazole hydrate, the interesting case of centro–noncentro ambiguity was found (Kubicki et al., 2003). Moreover, a number of simple 4-nitroimidazole derivatives have been used for studying different intermolecular interactions (see, for example, Kubicki, 2005, and references therein). The structure of another 4-nitro-5-aminoimidazole, the title compound, (I), is reported here. The ability of 4-nitroimidazoles to undergo nucleophilic substitution has been widely investigated (see, for example, M\,akosza, 1992) and provides a convenient way of modifying azole derivatives. Some amino derivatives have also been synthesized in this way (M\,akosza & Białecki, 1998; Suwiński & Świerczek, 1996).

Fig. 1 shows a displacement ellipsoid representation of (I). The benzene and imidazole rings are almost perfectly planar, the maximum deviations from the least-squares planes being not larger than 0.015 (1) Å. The dihedral angle between the mean planes of these rings is 59.82 (5)°. The nitro group is also significantly twisted out of the imidazole plane, the dihedral angle between the appropriate planes being 14.7 (2)°. This value is larger than in similar compounds and is probably caused by the presence of the bulky substituent at position 5. The C—N—O angles are asymmetric, and this asymmetry is typical of 5-substituted 4-nitroimidazole derivatives (Kubicki, 2004a). The C4—N4—O41 angle (cis with respect to imidazole ring atom N3) is smaller than the angle trans to N3 (C4—N4—O42) by 1.1°. For 5-H derivatives, this asymmetry in C—N—O angles is also observed, but in reverse: the cis angle is larger than the trans one (Kubicki, 2004b).

The molecular geometry of (I) is quite typical. In this type of compound, there is an interesting correlation between the C5—N51 bond length and the sum of the bond angles around N51: the longer the bond, the larger is the pyramidalization of the N atom, i.e. the smaller the sum of the bond angles. For 16 fragments of 5-(cyclic)amino imidazoles found in the CSD (November 2004 version, February 2005 updates; Allen, 2002), the correlation coefficient is 0.98 (Fig. 2), and the data for (I) fit perfectly into this relation. It might also be noted that there is no such correlation between the C5—N51 bond length and the angles around atom C5.

The piperidine ring is in a chair conformation. The asymmetry parameters (Duax & Norton, 1975) show only minor distortions from the ideal C3d symmetry (maximum value of the ΔC2 parameter is 3.83°, and of ΔCs −3.15°).

In the crystal structure of (I), there are infinite chains of molecules extending along the [100] direction, created by C—H···N3 hydrogen bonds. Using graph-set notation (Etter et al., 1990; Bernstein et al., 1995), this motif can be described as a C(7) chain. Neighbouring chains are connected by weak three-centred C—H···Cl hydrogen bonds {C(12)[R21(5)] chains along the [001] direction}. These two kinds of weak interactions close larger rings of molecules of motif R44(30) (Fig. 3). The geometric details of these interactions are given in Table 2. Interestingly, in this case no other specific interatomic interactions (e.g. ππ stacking or halogen bonds) take part in the creation of the supramolecular structure, even though these interactions could compete succesfully with weak hydrogen bonding.

Experimental top

The title compound was synthesized by nucleophilic replacement of bromine at the 5-position of the imidazole ring by piperidine (see scheme). The reaction was carried out in boiling methanol with an excess of piperidine over 24 h with a high yield. In contrast with the reactivity of the 1-alkyl derivative, in which double substitution of the bromo and nitro groups was observed (Kulkarni et al., 1987), the arene substituent significantly decreases the reactivity of the imidazole moiety. Crystals of (I) for X-ray data collection were grown from a methanol solution.

Refinement top

The positions of the H atoms were freely refined. For each group of these atoms, i.e. for the methyl group, for each CH2 group and for ring H atoms, one common Uiso(H) parameter was refined.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A correlation between the C—N bond length and the sum of the valence angles around the amino N atom for 5-(cyclic)aminoimidazoles.
[Figure 3] Fig. 3. The crystal packing of (I), viewed approximately along the [010] direction. Hydrogen bonds are depicted as dashed lines. [Symmetry codes: (iii) −1 + x, y, z; (iv) 3/2 − x, −y, 1/2 + z; (v) 3/2 − x, −y, 1/2 + z; (vi) 5/2 − x, −y, 1/2 + z; (vii) 1/2 − x, −y, −1/2 + z; (viii) 5/2 − x, −y, −1/2 + z. For other symmetry codes, see Table 2.]
1-(4-Chlorophenyl)-2-methyl-4-nitro-5-(1-piperidyl)-1H-imidazole top
Crystal data top
C15H17ClN4O2F(000) = 672
Mr = 320.78Dx = 1.466 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2320 reflections
a = 8.5841 (12) Åθ = 3–20°
b = 9.0352 (12) ŵ = 0.28 mm1
c = 18.738 (2) ÅT = 90 K
V = 1453.3 (3) Å3Needle, colourless
Z = 40.4 × 0.15 × 0.1 mm
Data collection top
Kuma KM4 CCD four-circle
diffractometer
4072 independent reflections
Radiation source: fine-focus sealed tube3298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1989)
h = 1212
Tmin = 0.958, Tmax = 0.972k = 1212
15516 measured reflectionsl = 2523
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031All H-atom parameters refined
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.021P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.008
4069 reflectionsΔρmax = 0.25 e Å3
257 parametersΔρmin = 0.22 e Å3
0 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (4)
Crystal data top
C15H17ClN4O2V = 1453.3 (3) Å3
Mr = 320.78Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.5841 (12) ŵ = 0.28 mm1
b = 9.0352 (12) ÅT = 90 K
c = 18.738 (2) Å0.4 × 0.15 × 0.1 mm
Data collection top
Kuma KM4 CCD four-circle
diffractometer
4072 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1989)
3298 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.972Rint = 0.027
15516 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031All H-atom parameters refined
wR(F2) = 0.054Δρmax = 0.25 e Å3
S = 0.93Δρmin = 0.22 e Å3
4069 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
257 parametersAbsolute structure parameter: 0.03 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.19042 (12)0.07948 (15)0.71631 (6)0.0126 (3)
C110.33192 (15)0.04219 (17)0.75320 (8)0.0124 (3)
C120.47264 (15)0.09400 (18)0.72753 (8)0.0137 (3)
H120.4765 (17)0.1533 (18)0.6841 (9)0.019 (2)*
C130.60879 (15)0.05860 (18)0.76298 (8)0.0157 (3)
H130.7086 (17)0.0936 (17)0.7448 (8)0.019 (2)*
C140.59994 (16)0.02462 (17)0.82484 (8)0.0150 (3)
Cl140.76976 (4)0.07192 (5)0.86936 (2)0.02338 (10)
C150.45927 (15)0.07465 (19)0.85163 (8)0.0142 (3)
H150.4595 (18)0.1330 (18)0.8939 (9)0.019 (2)*
C160.32332 (17)0.04355 (18)0.81422 (8)0.0140 (3)
H160.2236 (17)0.0833 (18)0.8289 (8)0.019 (2)*
C20.06975 (15)0.16119 (17)0.74527 (8)0.0148 (3)
C210.07373 (19)0.2204 (2)0.81911 (9)0.0213 (4)
H21A0.010 (2)0.293 (2)0.8260 (10)0.045 (3)*
H21B0.165 (2)0.271 (2)0.8307 (10)0.045 (3)*
H21C0.056 (2)0.140 (2)0.8538 (11)0.045 (3)*
N30.04125 (14)0.18348 (15)0.69922 (7)0.0159 (3)
C40.00696 (15)0.11221 (17)0.63817 (8)0.0144 (3)
N40.09856 (13)0.09276 (15)0.58097 (7)0.0178 (3)
O410.22275 (12)0.16262 (13)0.58280 (6)0.0239 (3)
O420.06557 (12)0.00420 (14)0.53316 (6)0.0246 (3)
C50.15393 (14)0.04953 (17)0.64545 (8)0.0133 (3)
N510.25744 (14)0.01388 (14)0.59974 (6)0.0143 (3)
C520.32780 (17)0.15815 (18)0.61540 (8)0.0149 (3)
H52A0.2683 (18)0.2385 (17)0.5884 (8)0.016 (3)*
H52B0.3182 (17)0.1755 (18)0.6671 (9)0.016 (3)*
C530.49641 (17)0.1627 (2)0.59020 (9)0.0173 (3)
H53A0.5566 (18)0.098 (2)0.6202 (9)0.024 (3)*
H53B0.5392 (19)0.263 (2)0.5973 (9)0.024 (3)*
C540.50843 (18)0.1180 (2)0.51212 (9)0.0195 (4)
H54A0.4547 (17)0.1915 (18)0.4839 (8)0.015 (3)*
H54B0.6182 (17)0.1056 (17)0.4983 (8)0.015 (3)*
C550.43086 (17)0.0315 (2)0.49973 (9)0.0180 (4)
H55A0.4873 (17)0.1138 (19)0.5230 (8)0.018 (3)*
H55B0.4351 (16)0.0596 (19)0.4499 (9)0.018 (3)*
C560.26227 (17)0.02967 (19)0.52466 (8)0.0170 (3)
H56A0.2142 (17)0.1267 (18)0.5202 (8)0.019 (3)*
H56B0.2013 (17)0.0394 (18)0.4944 (8)0.019 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0101 (5)0.0132 (7)0.0145 (6)0.0013 (5)0.0005 (4)0.0004 (6)
C110.0098 (5)0.0126 (9)0.0149 (7)0.0011 (5)0.0003 (5)0.0021 (6)
C120.0146 (6)0.0117 (8)0.0148 (8)0.0019 (6)0.0011 (5)0.0005 (7)
C130.0120 (6)0.0145 (9)0.0205 (8)0.0006 (6)0.0005 (5)0.0039 (7)
C140.0129 (6)0.0135 (9)0.0186 (8)0.0029 (5)0.0052 (5)0.0060 (7)
Cl140.01719 (15)0.0261 (2)0.0268 (2)0.00672 (16)0.00870 (15)0.00548 (19)
C150.0182 (6)0.0109 (8)0.0134 (7)0.0024 (6)0.0000 (5)0.0003 (7)
C160.0146 (6)0.0136 (9)0.0138 (7)0.0013 (6)0.0008 (5)0.0026 (6)
C20.0113 (6)0.0128 (9)0.0205 (8)0.0008 (5)0.0034 (5)0.0001 (7)
C210.0188 (8)0.0254 (11)0.0197 (9)0.0066 (7)0.0022 (6)0.0030 (8)
N30.0131 (6)0.0170 (8)0.0177 (7)0.0020 (5)0.0006 (5)0.0013 (6)
C40.0115 (6)0.0148 (9)0.0170 (8)0.0005 (5)0.0007 (5)0.0023 (7)
N40.0129 (5)0.0192 (8)0.0214 (7)0.0003 (6)0.0010 (5)0.0031 (6)
O410.0130 (5)0.0260 (7)0.0326 (7)0.0055 (5)0.0065 (5)0.0005 (5)
O420.0189 (5)0.0306 (8)0.0245 (6)0.0017 (5)0.0038 (5)0.0077 (6)
C50.0119 (6)0.0112 (8)0.0169 (8)0.0004 (5)0.0002 (5)0.0016 (6)
N510.0136 (5)0.0154 (7)0.0139 (6)0.0044 (5)0.0017 (5)0.0021 (5)
C520.0150 (6)0.0133 (9)0.0163 (8)0.0006 (6)0.0011 (6)0.0004 (7)
C530.0162 (7)0.0171 (9)0.0186 (9)0.0050 (6)0.0012 (6)0.0011 (7)
C540.0187 (7)0.0210 (10)0.0187 (9)0.0030 (6)0.0046 (6)0.0002 (7)
C550.0179 (7)0.0202 (10)0.0160 (8)0.0019 (6)0.0030 (6)0.0025 (7)
C560.0173 (7)0.0200 (10)0.0136 (7)0.0030 (6)0.0003 (6)0.0025 (6)
Geometric parameters (Å, º) top
N1—C21.383 (2)C4—N41.414 (2)
N1—C51.391 (2)N4—O421.234 (2)
N1—C111.438 (2)N4—O411.239 (2)
C11—C121.382 (2)C5—N511.361 (2)
C11—C161.383 (2)N51—C561.462 (2)
C12—C131.382 (2)N51—C521.466 (2)
C12—H120.98 (2)C52—C531.523 (2)
C13—C141.384 (2)C52—H52A1.02 (2)
C13—H130.97 (2)C52—H52B0.98 (2)
C14—C151.384 (2)C53—C541.521 (2)
C14—Cl141.733 (1)C53—H53A0.96 (2)
C15—C161.390 (2)C53—H53B0.99 (2)
C15—H150.95 (2)C54—C551.524 (2)
C16—H160.97 (2)C54—H54A0.97 (2)
C2—N31.301 (2)C54—H54B0.98 (2)
C2—C211.484 (2)C55—C561.521 (2)
C21—H21A0.98 (2)C55—H55A0.99 (2)
C21—H21B0.93 (2)C55—H55B0.97 (2)
C21—H21C0.99 (2)C56—H56A0.97 (2)
N3—C41.376 (2)C56—H56B0.99 (2)
C4—C51.390 (2)
C2—N1—C5108.1 (1)N51—C5—C4134.7 (1)
C2—N1—C11124.7 (1)N51—C5—N1122.4 (1)
C5—N1—C11127.1 (1)C4—C5—N1102.6 (1)
C12—C11—C16121.6 (1)C5—N51—C56120.7 (1)
C12—C11—N1119.5 (1)C5—N51—C52121.2 (1)
C16—C11—N1118.9 (1)C56—N51—C52114.9 (1)
C13—C12—C11119.6 (1)N51—C52—C53110.7 (1)
C13—C12—H12120.0 (9)N51—C52—H52A109.1 (9)
C11—C12—H12120.4 (9)C53—C52—H52A107.6 (9)
C12—C13—C14118.8 (1)N51—C52—H52B107.7 (9)
C12—C13—H13120.0 (9)C53—C52—H52B112.3 (9)
C14—C13—H13121.1 (9)H52A—C52—H52B109 (1)
C15—C14—C13122.0 (1)C54—C53—C52110.8 (1)
C15—C14—Cl14118.6 (1)C54—C53—H53A112 (1)
C13—C14—Cl14119.4 (1)C52—C53—H53A108.3 (9)
C14—C15—C16118.9 (1)C54—C53—H53B110 (1)
C14—C15—H15118.8 (9)C52—C53—H53B110 (1)
C16—C15—H15122 (1)H53A—C53—H53B106 (1)
C11—C16—C15119.0 (1)C53—C54—C55110.6 (1)
C11—C16—H16119.3 (9)C53—C54—H54A108.1 (9)
C15—C16—H16121.6 (9)C55—C54—H54A108.5 (9)
N3—C2—N1111.8 (1)C53—C54—H54B110.4 (9)
N3—C2—C21125.4 (1)C55—C54—H54B106.1 (9)
N1—C2—C21122.8 (1)H54A—C54—H54B113 (1)
C2—C21—H21A110 (1)C56—C55—C54111.1 (1)
C2—C21—H21B115 (1)C56—C55—H55A109.8 (9)
H21A—C21—H21B105 (2)C54—C55—H55A112.7 (9)
C2—C21—H21C110 (1)C56—C55—H55B109.6 (8)
H21A—C21—H21C107 (2)C54—C55—H55B111 (1)
H21B—C21—H21C110 (2)H55A—C55—H55B102 (1)
C2—N3—C4105.0 (1)N51—C56—C55109.0 (1)
N3—C4—C5112.5 (1)N51—C56—H56A108.3 (9)
N3—C4—N4119.7 (1)C55—C56—H56A111.6 (9)
C5—C4—N4127.2 (1)N51—C56—H56B111.5 (9)
O42—N4—O41123.2 (1)C55—C56—H56B109.5 (8)
O42—N4—C4118.9 (1)H56A—C56—H56B107 (1)
O41—N4—C4117.8 (1)
C2—N1—C11—C12117.5 (2)C5—C4—N4—O425.0 (2)
C5—N1—C11—C1258.1 (2)N3—C4—N4—O4112.1 (2)
C2—N1—C11—C1661.7 (2)C5—C4—N4—O41177.4 (1)
C5—N1—C11—C16122.6 (2)N3—C4—C5—N51170.3 (2)
C16—C11—C12—C130.6 (2)N4—C4—C5—N5118.7 (3)
N1—C11—C12—C13179.9 (2)N3—C4—C5—N13.1 (2)
C11—C12—C13—C141.9 (2)N4—C4—C5—N1167.9 (1)
C12—C13—C14—C150.8 (2)C2—N1—C5—N51172.0 (1)
C12—C13—C14—Cl14179.2 (1)C11—N1—C5—N514.3 (2)
C13—C14—C15—C161.7 (2)C2—N1—C5—C42.5 (2)
Cl14—C14—C15—C16176.8 (1)C11—N1—C5—C4178.7 (1)
C12—C11—C16—C151.8 (2)C4—C5—N51—C5628.5 (2)
N1—C11—C16—C15177.4 (1)N1—C5—N51—C56143.9 (2)
C14—C15—C16—C113.0 (2)C4—C5—N51—C52130.1 (2)
C5—N1—C2—N31.1 (2)N1—C5—N51—C5257.5 (2)
C11—N1—C2—N3177.4 (1)C5—N51—C52—C53143.6 (1)
C5—N1—C2—C21176.3 (2)C56—N51—C52—C5356.7 (2)
C11—N1—C2—C210.1 (2)N51—C52—C53—C5453.0 (2)
N1—C2—N3—C40.9 (2)C52—C53—C54—C5553.8 (2)
C21—C2—N3—C4178.1 (2)C53—C54—C55—C5655.9 (2)
C2—N3—C4—C52.6 (2)C5—N51—C56—C55142.4 (1)
C2—N3—C4—N4169.2 (1)C52—N51—C56—C5557.8 (2)
N3—C4—N4—O42165.5 (1)C54—C55—C56—N5156.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N3i0.97 (2)2.45 (2)3.424 (2)180 (1)
C54—H54B···Cl14ii0.98 (2)3.06 (2)3.705 (2)125 (1)
C55—H55B···Cl14ii0.97 (2)2.95 (1)3.564 (2)122 (1)
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC15H17ClN4O2
Mr320.78
Crystal system, space groupOrthorhombic, P212121
Temperature (K)90
a, b, c (Å)8.5841 (12), 9.0352 (12), 18.738 (2)
V3)1453.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.4 × 0.15 × 0.1
Data collection
DiffractometerKuma KM4 CCD four-circle
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1989)
Tmin, Tmax0.958, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
15516, 4072, 3298
Rint0.027
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.054, 0.93
No. of reflections4069
No. of parameters257
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.25, 0.22
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.03 (4)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2002), CrysAlis CCD, CrysAlis RED (Oxford Diffraction, 2002), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), Stereochemical Workstation Operation Manual (Siemens, 1989), SHELXL97.

Selected geometric parameters (Å, º) top
N1—C21.383 (2)N3—C41.376 (2)
N1—C51.391 (2)N4—O421.234 (2)
N1—C111.438 (2)N4—O411.239 (2)
C2—N31.301 (2)C5—N511.361 (2)
C2—N1—C5108.1 (1)O42—N4—C4118.9 (1)
C2—N1—C11124.7 (1)O41—N4—C4117.8 (1)
C5—N1—C11127.1 (1)C5—N51—C56120.7 (1)
C2—N3—C4105.0 (1)C5—N51—C52121.2 (1)
O42—N4—O41123.2 (1)C56—N51—C52114.9 (1)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···N3i0.97 (2)2.45 (2)3.424 (2)180 (1)
C54—H54B···Cl14ii0.98 (2)3.06 (2)3.705 (2)125 (1)
C55—H55B···Cl14ii0.97 (2)2.95 (1)3.564 (2)122 (1)
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds