Download citation
Download citation
link to html
The title compound was obtained by reacting UO2 powder in 2 M K2CO3 with hydrogen peroxide. The compound contains individual [U(CO3)2O2(O2)]4- ions, which are linked via an extended network of K atoms and hydrogen bonding. The U atom is coordinated to two trans-axial O atoms and six O atoms in the equatorial plane, forming distorted hexagonal bipyramids. The carbonate ligands are bound to the U center in a bidentate manner, with U-O bond distances ranging from 2.438 (5) to 2.488 (5) Å. The peroxo group forms a three-membered ring with the U atom, with U-O bond distances of 2.256 (6) and 2.240 (6) Å. The U=O bond distances of 1.806 (5) and 1.817 (5) Å, and an O-U-O angle of 175.3 (3)° are characteristic of the linear uranyl(VI) unit.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104027994/ta1480sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104027994/ta1480Isup2.hkl
Contains datablock I

Comment top

The use of oxidizing alkaline solutions for the successful dissolution of metals has been recognized for many decades. The interaction of oxidizing agents, such as peroxide, with actinide elements has been of great importance, due to the multiple uses of peroxide in plutonium reprocessing (Cleveland et al., 1979). Several research groups have investigated the complexation and precipitation of uranium by peroxide in alkaline media. However, the characterization and identification of major solution species and solid structures remains relatively unexplored.

Gurevich and co-workers suggested about a dozen uranium(VI) peroxo compounds that form under different carbonate or peroxide concentrations, studying both their compositions and their solubilities (Gurevich, 1961; Gurevich & Polozhenskaya, 1960, 1961). Most of the reported compounds were obtained as solid phases and characterized by classical gravimetric and vibrational spectroscopic techniques; only a few structural characterizations of single crystals have been reported which reveal a more detailed picture of coordination geometries and bond lengths in UVI peroxo complexes. Burns & Hughes (2003) reported a one-dimensional peroxide mineral, [UO2(O2)(H2O)2](H2O)2, with bridging peroxo groups. In addition, Alcock et al. (1968) reported the crystal structure of the layered compound Na4[UO2(O2)3]·9H2O, where the U atom is coordinated to three peroxo groups, while Mikhailov et al. (1981) determined the crystal structure of (CN3H6)4[UO2(O2)(CO3)2]·2H2O, which to date is the only molecular structure of a mixed UVI peroxo-carbonate complex. Here, we report the synthesis and structural characterization of the title compound, (I), a structurally different mixed uranyl(VI) peroxo-carbonate compound, K4[UO2(O2)(CO3)2]·2.5H2O. \sch

The structure of (I) consists of [UO8] polyhedra staggered down the crystallographic b axis and linked by a network of K+ ions and interstitial water molecules. These polyhedra are comprised of two axial trans-O atoms [mean UO 1.81 (1) Å], with an OUO angle of 175.3 (3)°, and six O atoms in the equatorial plane, to complete a slightly distorted hexagonal-bipyramidal coordination (Fig. 1). Four O atoms originate from two bidentate carbonate ligands, with U—O bond lengths between 2.438 (5) (U1—O3) and 2.488 (5) Å (U1—O6; Table 1). The peroxo ligand is coordinated through both O atoms, with slightly shorter U—O bond distances of 2.256 (6) Å for U1—O9 and 2.240 (6) Å for U1—O10. These distances are very similar to those in (CN3H6)4[UO2(O2)(CO3)2]x2H2O (2.23 Å; Mikhailov et al., 1981) and Na4[UO2(O2)3]·9H2O (mean 2.28 Å; Alcock et al., 1968). The distance of 1.495 (8) Å between the two peroxo O atoms agrees well with the O—O distances found in (CN3H6)4[UO2(O2)(CO3)2]·2H2O (1.52 Å; Mikhailov et al., 1981), Na4[UO2(O2)3]·9H2O (1.51 Å; Alcock et al., 1968) and sodium peroxide (1.49 Å; Tallman et al., 1957).

The [UO8] polyhedra extend along the b axis, with the equatorial planes being parallel to one another (Fig. 2). In contrast, the [UO8] polyhedra in the previously reported compound (CN3H6)4[UO2(O2)(CO3)2]·2H2O (Mikhailov et al., 1981) are angled towards each other. Interestingly, one of the three crystallographically distinct K atoms, K1, lies within the equatorial planes of adjacent [UO8] polyhedra and is surrounded by six O atoms from three carbonate groups of three different [UO2(O2)(CO3)3]4− molecules (Fig. 3). The distances between atom K1 and the nearest O atoms range between 2.72 and 2.91 Å.

Experimental top

UO2 powder (591 mg, 2.2 mmol in U) was suspended in a 2M K2CO3 solution (30 ml), followed by the addition of 35% H2O2 (1.8 ml). After vigorous stirring for 15 min, the reaction was stopped by filtering the solution through a 45 mm polyamide syringe filter. Subsequently, the resulting deep-red solution (4 ml) was layered with methanol (6 ml). Single crystals of (I), in the form of reddish rectangular plates, grew overnight at the interface of these two layers. After 4 d, some of these crystals reached a size of 1.0 mm x 0.6 mm. Evaporating the solvent over a period of weeks resulted in the subsequent crystallization of yellow K4[UO2(CO3)3], which has been previously reported by Anderson et al. (1980). This is caused by degradation of the peroxide.

Refinement top

Water atom O3W was refined as one-half occupancy, based on a comparison of its displacement parameters with those of other water O atoms in the structure. H-atom positions were not assigned to any of the water O atoms. In the case of water O3W, the O is one-half occupancy. In the cases of atoms O1W and O2W, the displacement parameters, and the presence of more than one set of hydrogen-bond donors at meaningful hydrogen-bonding distances, strongly suggest that these water molecules are disordered. This disorder, when combined with a difference map that suggested too few H-atom positions, precluded including the H-atom positions in the model. The highest residual electron-density peak was 4.376 e Å−3 near U1, and the largest hole was 1.927 e Å−3 near C2 (2 Å from U1). Both these peaks are most likely to be a combination of uncompensated electron density (from premature truncation of the Fourier map in a heavy-atom structure) and the inability to perform an ideal absorption correction for this highly absorbing crystal.

Computing details top

Data collection: Please provide missing information; cell refinement: Please provide missing information; data reduction: Please provide missing information; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Please provide missing information; software used to prepare material for publication: Please provide missing information.

Figures top
[Figure 1] Fig. 1. A view of the anionic [UO2(O2)(CO3)2]4− unit in the molecular structure of K4[UO2(O2)(CO3)2]·2.5H2O, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of the [UO2(O2)(CO3)2]4− units in K4[UO2(O2)(CO3)2]·2.5H2O, with interstitial K+ ions and water molecules, viewed along the b axis.
[Figure 3] Fig. 3. The arrangement of K1 atoms in the equatorial planes of three adjacent [UO2(O2)(CO3)2]4− units.
Tetrapotassium dicarbonatodioxoperoxouranium(VI) 2.5-hydrate top
Crystal data top
K4[U(O2)O2(CO3)2]·2.5H2OF(000) = 1140
Mr = 623.49Dx = 2.978 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9687 reflections
a = 6.9077 (14) Åθ = 1.9–28.3°
b = 9.2332 (18) ŵ = 12.92 mm1
c = 21.809 (4) ÅT = 293 K
β = 91.310 (4)°Plate, red
V = 1390.6 (5) Å30.10 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker P4 with SMART 1K CCD area-detector
diffractometer
3046 independent reflections
Radiation source: fine-focus sealed tube2616 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ scansθmax = 28.3°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.300, Tmax = 0.356k = 1111
9687 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters not defined
S = 1.56 w = 1/[σ2(Fo2) + (0.0388P)2]
where P = (Fo2 + 2Fc2)/3
3046 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 4.38 e Å3
0 restraintsΔρmin = 1.93 e Å3
Crystal data top
K4[U(O2)O2(CO3)2]·2.5H2OV = 1390.6 (5) Å3
Mr = 623.49Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9077 (14) ŵ = 12.92 mm1
b = 9.2332 (18) ÅT = 293 K
c = 21.809 (4) Å0.10 × 0.10 × 0.08 mm
β = 91.310 (4)°
Data collection top
Bruker P4 with SMART 1K CCD area-detector
diffractometer
3046 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2616 reflections with I > 2σ(I)
Tmin = 0.300, Tmax = 0.356Rint = 0.029
9687 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.095H-atom parameters not defined
S = 1.56Δρmax = 4.38 e Å3
3046 reflectionsΔρmin = 1.93 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
U10.30151 (4)0.69810 (3)0.135628 (13)0.01418 (11)
K10.0984 (3)0.70015 (17)0.29476 (8)0.0195 (4)
K20.7976 (3)0.8614 (2)0.13309 (10)0.0294 (4)
K30.0819 (3)0.37162 (18)0.21006 (8)0.0219 (4)
K40.3845 (4)0.3383 (2)0.04074 (11)0.0428 (6)
O10.1452 (9)0.7090 (6)0.2014 (3)0.0217 (13)
O20.4721 (9)0.6946 (6)0.0741 (3)0.0251 (13)
O30.4447 (9)0.4760 (5)0.1767 (3)0.0239 (13)
O40.7054 (9)0.4723 (6)0.2395 (3)0.0281 (14)
O50.5783 (9)0.6809 (5)0.2071 (3)0.0204 (12)
O60.4182 (8)0.9444 (5)0.1643 (3)0.0211 (13)
O70.2667 (9)1.1487 (6)0.1326 (3)0.0279 (15)
O80.1672 (8)0.9295 (6)0.1009 (3)0.0222 (13)
O90.0480 (9)0.6465 (7)0.0723 (3)0.0291 (15)
O100.1307 (9)0.5098 (6)0.0988 (3)0.0238 (13)
O1W0.2237 (9)0.5840 (8)0.0373 (3)0.0372 (16)
O2W0.3705 (10)0.6882 (7)0.3834 (4)0.0400 (17)
O3W0.296 (2)1.0256 (17)0.0121 (8)0.055 (4)*0.50
C10.5821 (12)0.5404 (8)0.2088 (4)0.0191 (17)
C20.2841 (12)1.0106 (9)0.1329 (4)0.0241 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.01573 (17)0.01050 (15)0.01640 (16)0.00146 (11)0.00252 (11)0.00088 (11)
K10.0195 (9)0.0143 (7)0.0247 (9)0.0008 (7)0.0025 (7)0.0006 (7)
K20.0197 (10)0.0312 (10)0.0374 (11)0.0047 (8)0.0033 (8)0.0025 (8)
K30.0223 (10)0.0214 (9)0.0221 (9)0.0032 (7)0.0018 (7)0.0031 (7)
K40.0585 (17)0.0295 (10)0.0416 (13)0.0100 (10)0.0264 (12)0.0071 (9)
O10.027 (3)0.022 (3)0.016 (3)0.002 (2)0.013 (2)0.003 (2)
O20.024 (3)0.027 (3)0.025 (3)0.004 (3)0.015 (3)0.004 (3)
O30.026 (3)0.010 (2)0.036 (4)0.001 (2)0.006 (3)0.000 (2)
O40.025 (3)0.017 (3)0.043 (4)0.001 (2)0.012 (3)0.003 (3)
O50.026 (3)0.010 (2)0.025 (3)0.001 (2)0.001 (3)0.001 (2)
O60.023 (3)0.015 (3)0.025 (3)0.003 (2)0.003 (3)0.004 (2)
O70.035 (4)0.009 (2)0.039 (4)0.003 (2)0.009 (3)0.000 (2)
O80.021 (3)0.014 (3)0.031 (3)0.003 (2)0.004 (3)0.002 (2)
O90.030 (4)0.030 (3)0.026 (4)0.001 (3)0.004 (3)0.002 (3)
O100.032 (4)0.014 (3)0.026 (3)0.000 (2)0.003 (3)0.000 (2)
O1W0.028 (4)0.054 (4)0.030 (4)0.006 (3)0.002 (3)0.004 (3)
O2W0.030 (4)0.040 (4)0.051 (4)0.001 (3)0.014 (3)0.001 (3)
C10.018 (4)0.015 (3)0.024 (4)0.001 (3)0.003 (3)0.000 (3)
C20.018 (5)0.017 (4)0.038 (5)0.001 (3)0.005 (4)0.006 (4)
Geometric parameters (Å, º) top
U1—O21.806 (5)K3—K1ix3.695 (3)
U1—O11.817 (5)K4—O102.699 (6)
U1—O102.240 (6)K4—O2x2.731 (6)
U1—O92.256 (6)K4—O7viii2.796 (6)
U1—O32.438 (5)K4—O1Wx2.803 (7)
U1—O52.445 (6)K4—O1W3.032 (7)
U1—O82.443 (5)K4—O3Wviii3.163 (16)
U1—O62.488 (5)K4—O33.244 (7)
U1—C12.878 (9)K4—O23.421 (6)
U1—C22.888 (8)K4—K4x3.841 (4)
U1—K23.745 (2)K4—K1iii4.054 (3)
U1—K33.7599 (17)O1—K3i3.061 (6)
K1—O12.673 (5)O1—K2ii3.131 (7)
K1—O4i2.719 (6)O2—K4x2.731 (6)
K1—O2W2.729 (7)O3—C11.310 (10)
K1—O4ii2.764 (6)O3—K1iii2.824 (6)
K1—O7iii2.797 (7)O4—C11.242 (10)
K1—O6iii2.806 (6)O4—K1iii2.719 (6)
K1—O3i2.824 (6)O4—K1v2.764 (6)
K1—O5ii2.912 (6)O4—K3v2.848 (7)
K1—C1i3.145 (8)O4—K2xi2.962 (7)
K1—C2iii3.180 (9)O5—C11.298 (9)
K1—C1ii3.221 (9)O5—K3i2.771 (6)
K1—K3iv3.695 (3)O5—K1v2.912 (6)
K2—O8v2.737 (6)O6—C21.293 (10)
K2—O52.791 (6)O6—K1i2.806 (6)
K2—O62.829 (6)O6—K3i2.821 (6)
K2—O3Wvi2.896 (17)O7—C21.280 (10)
K2—O4vii2.962 (7)O7—K4xii2.796 (6)
K2—O9v2.965 (7)O7—K1i2.797 (6)
K2—O22.991 (7)O7—K3xii2.970 (6)
K2—O2Wi3.082 (7)O8—C21.294 (10)
K2—O1v3.131 (7)O8—K2ii2.737 (6)
K2—K1i3.775 (3)O9—O101.496 (8)
K2—U1v3.793 (2)O9—K2ii2.965 (7)
K3—O102.769 (6)O1W—K4x2.803 (7)
K3—O5iii2.771 (6)O2W—K3iv3.004 (8)
K3—O32.797 (6)O2W—K2iii3.082 (7)
K3—O6iii2.821 (6)O3W—K2vi2.896 (17)
K3—O4ii2.848 (7)O3W—K4xii3.163 (16)
K3—O7viii2.970 (6)C1—K1iii3.145 (8)
K3—O2Wix3.004 (8)C1—K1v3.221 (9)
K3—O1iii3.061 (6)C2—K1i3.180 (9)
K3—O13.152 (5)
O2—U1—O1175.3 (3)O4ii—K3—O2Wix84.54 (19)
O2—U1—O1093.8 (2)O7viii—K3—O2Wix55.36 (18)
O1—U1—O1090.5 (2)O10—K3—O1iii133.89 (17)
O2—U1—O993.0 (3)O5iii—K3—O1iii61.73 (17)
O1—U1—O991.6 (3)O3—K3—O1iii77.92 (16)
O10—U1—O938.9 (2)O6iii—K3—O1iii61.17 (15)
O2—U1—O389.5 (2)O4ii—K3—O1iii124.75 (17)
O1—U1—O390.0 (2)O7viii—K3—O1iii75.67 (16)
O10—U1—O371.6 (2)O2Wix—K3—O1iii115.75 (18)
O9—U1—O3110.5 (2)O10—K3—O158.14 (15)
O2—U1—O587.6 (3)O5iii—K3—O1136.49 (16)
O1—U1—O588.3 (2)O3—K3—O161.14 (15)
O10—U1—O5125.19 (18)O6iii—K3—O179.98 (15)
O9—U1—O5164.1 (2)O4ii—K3—O179.61 (16)
O3—U1—O553.59 (18)O7viii—K3—O1126.07 (16)
O2—U1—O892.0 (2)O2Wix—K3—O1125.63 (19)
O1—U1—O888.2 (2)O1iii—K3—O1115.99 (11)
O10—U1—O8112.0 (2)O10—K3—K1ix107.49 (14)
O9—U1—O873.2 (2)O5iii—K3—K1ix51.12 (13)
O3—U1—O8175.96 (19)O3—K3—K1ix162.71 (14)
O5—U1—O8122.72 (18)O6iii—K3—K1ix96.29 (13)
O2—U1—O689.4 (2)O4ii—K3—K1ix46.93 (12)
O1—U1—O686.9 (2)O7viii—K3—K1ix94.98 (13)
O10—U1—O6164.7 (2)O2Wix—K3—K1ix46.69 (13)
O9—U1—O6126.1 (2)O1iii—K3—K1ix110.54 (12)
O3—U1—O6123.38 (19)O1—K3—K1ix123.26 (13)
O5—U1—O669.81 (18)O10—K3—U136.28 (12)
O8—U1—O652.9 (2)O5iii—K3—U1164.15 (13)
O2—U1—C187.7 (3)O3—K3—U140.41 (11)
O1—U1—C189.7 (3)O6iii—K3—U1103.73 (12)
O10—U1—C198.6 (2)O4ii—K3—U1102.42 (13)
O9—U1—C1137.4 (2)O7viii—K3—U197.31 (12)
O3—U1—C126.9 (2)O2Wix—K3—U1110.72 (14)
O5—U1—C126.67 (19)O1iii—K3—U1114.64 (12)
O8—U1—C1149.4 (2)O1—K3—U128.80 (9)
O6—U1—C196.5 (2)K1ix—K3—U1134.79 (6)
O2—U1—C291.7 (2)O10—K3—K196.13 (12)
O1—U1—C286.3 (2)O5iii—K3—K192.90 (12)
O10—U1—C2138.3 (2)O3—K3—K199.09 (12)
O9—U1—C299.6 (2)O6iii—K3—K147.66 (11)
O3—U1—C2149.8 (2)O4ii—K3—K146.76 (12)
O5—U1—C296.3 (2)O7viii—K3—K1170.26 (13)
O8—U1—C226.4 (2)O2Wix—K3—K1128.62 (15)
O6—U1—C226.5 (2)O1iii—K3—K1106.88 (11)
C1—U1—C2123.0 (2)O1—K3—K144.24 (10)
O2—U1—K251.9 (2)K1ix—K3—K192.87 (5)
O1—U1—K2123.34 (19)U1—K3—K173.03 (4)
O10—U1—K2141.42 (15)O10—K4—O2x138.4 (2)
O9—U1—K2140.68 (16)O10—K4—O7viii80.13 (18)
O3—U1—K288.88 (14)O2x—K4—O7viii134.84 (18)
O5—U1—K248.16 (13)O10—K4—O1Wx120.0 (2)
O8—U1—K289.10 (14)O2x—K4—O1Wx68.5 (2)
O6—U1—K249.05 (14)O7viii—K4—O1Wx118.5 (2)
C1—U1—K266.85 (16)O10—K4—O1W65.83 (18)
C2—U1—K268.60 (17)O2x—K4—O1W72.80 (18)
O2—U1—K3125.67 (17)O7viii—K4—O1W139.64 (19)
O1—U1—K356.69 (16)O1Wx—K4—O1W97.76 (19)
O10—U1—K347.01 (15)O10—K4—O3Wviii125.7 (3)
O9—U1—K377.27 (16)O2x—K4—O3Wviii68.6 (3)
O3—U1—K348.04 (14)O7viii—K4—O3Wviii68.4 (3)
O5—U1—K389.43 (12)O1Wx—K4—O3Wviii113.8 (3)
O8—U1—K3132.93 (14)O1W—K4—O3Wviii114.4 (3)
O6—U1—K3139.10 (13)O10—K4—O354.01 (17)
C1—U1—K368.18 (16)O2x—K4—O3147.1 (2)
C2—U1—K3142.46 (16)O7viii—K4—O367.91 (16)
K2—U1—K3135.03 (4)O1Wx—K4—O379.65 (19)
O1—K1—O4i86.24 (19)O1W—K4—O3104.91 (17)
O1—K1—O2W175.5 (2)O3Wviii—K4—O3135.3 (3)
O4i—K1—O2W92.6 (2)O10—K4—O256.60 (15)
O1—K1—O4ii90.11 (19)O2x—K4—O2103.64 (14)
O4i—K1—O4ii117.13 (8)O7viii—K4—O2120.19 (17)
O2W—K1—O4ii86.5 (2)O1Wx—K4—O265.99 (19)
O1—K1—O7iii85.1 (2)O1W—K4—O257.34 (17)
O4i—K1—O7iii121.79 (18)O3Wviii—K4—O2170.8 (3)
O2W—K1—O7iii99.2 (2)O3—K4—O253.85 (14)
O4ii—K1—O7iii120.32 (18)O10—K4—K4x92.40 (14)
O1—K1—O6iii89.17 (17)O2x—K4—K4x59.94 (12)
O4i—K1—O6iii168.83 (19)O7viii—K4—K4x161.67 (18)
O2W—K1—O6iii92.77 (19)O1Wx—K4—K4x51.45 (16)
O4ii—K1—O6iii73.00 (18)O1W—K4—K4x46.31 (13)
O7iii—K1—O6iii47.53 (16)O3Wviii—K4—K4x128.3 (3)
O1—K1—O3i84.28 (17)O3—K4—K4x94.13 (13)
O4i—K1—O3i47.59 (18)O2—K4—K4x43.71 (10)
O2W—K1—O3i98.15 (19)O10—K4—U132.85 (12)
O4ii—K1—O3i163.93 (19)O2x—K4—U1129.19 (13)
O7iii—K1—O3i74.29 (17)O7viii—K4—U195.90 (13)
O6iii—K1—O3i121.81 (18)O1Wx—K4—U187.17 (16)
O1—K1—O5ii89.35 (18)O1W—K4—U167.06 (13)
O4i—K1—O5ii71.12 (17)O3Wviii—K4—U1157.8 (3)
O2W—K1—O5ii86.1 (2)O3—K4—U137.92 (10)
O4ii—K1—O5ii46.07 (16)O2—K4—U127.06 (9)
O7iii—K1—O5ii165.42 (17)K4x—K4—U169.89 (6)
O6iii—K1—O5ii119.05 (16)O10—K4—K1iii89.83 (14)
O3i—K1—O5ii118.61 (16)O2x—K4—K1iii130.09 (16)
O1—K1—C1i85.83 (18)O7viii—K4—K1iii43.54 (13)
O4i—K1—C1i23.0 (2)O1Wx—K4—K1iii76.79 (15)
O2W—K1—C1i94.8 (2)O1W—K4—K1iii148.60 (15)
O4ii—K1—C1i140.1 (2)O3Wviii—K4—K1iii95.7 (3)
O7iii—K1—C1i98.9 (2)O3—K4—K1iii43.79 (10)
O6iii—K1—C1i146.4 (2)O2—K4—K1iii93.16 (13)
O3i—K1—C1i24.6 (2)K4x—K4—K1iii120.46 (12)
O5ii—K1—C1i94.14 (19)U1—K4—K1iii81.71 (5)
O1—K1—C2iii87.7 (2)O10—K4—K338.81 (12)
O4i—K1—C2iii145.4 (2)O2x—K4—K3171.91 (17)
O2W—K1—C2iii95.7 (2)O7viii—K4—K343.41 (13)
O4ii—K1—C2iii96.9 (2)O1Wx—K4—K3119.59 (16)
O7iii—K1—C2iii23.64 (19)O1W—K4—K3104.46 (13)
O6iii—K1—C2iii23.92 (18)O3Wviii—K4—K3106.5 (3)
O3i—K1—C2iii97.9 (2)O3—K4—K340.62 (11)
O5ii—K1—C2iii142.85 (18)O2—K4—K380.53 (10)
C1i—K1—C2iii122.5 (2)K4x—K4—K3123.88 (9)
O1—K1—C1ii90.3 (2)U1—K4—K353.98 (3)
O4i—K1—C1ii94.87 (19)K1iii—K4—K355.71 (5)
O2W—K1—C1ii85.4 (2)U1—O1—K1174.5 (3)
O4ii—K1—C1ii22.33 (18)U1—O1—K3i99.0 (2)
O7iii—K1—C1ii142.53 (19)K1—O1—K3i85.62 (16)
O6iii—K1—C1ii95.33 (19)U1—O1—K2ii96.5 (2)
O3i—K1—C1ii142.3 (2)K1—O1—K2ii83.49 (17)
O5ii—K1—C1ii23.76 (17)K3i—O1—K2ii122.30 (17)
C1i—K1—C1ii117.88 (16)U1—O1—K394.50 (19)
C2iii—K1—C1ii119.2 (2)K1—O1—K380.40 (14)
O1—K1—K3iv123.34 (15)K3i—O1—K3122.1 (2)
O4i—K1—K3iv49.94 (14)K2ii—O1—K3111.51 (19)
O2W—K1—K3iv53.20 (16)U1—O2—K4x160.0 (3)
O4ii—K1—K3iv83.11 (14)U1—O2—K299.7 (2)
O7iii—K1—K3iv144.82 (14)K4x—O2—K299.61 (18)
O6iii—K1—K3iv139.80 (13)U1—O2—K493.4 (2)
O3i—K1—K3iv87.42 (13)K4x—O2—K476.36 (14)
O5ii—K1—K3iv47.80 (11)K2—O2—K4135.6 (2)
C1i—K1—K3iv66.68 (16)C1—O3—U195.6 (4)
C2iii—K1—K3iv148.90 (16)C1—O3—K3131.3 (5)
C1ii—K1—K3iv64.71 (14)U1—O3—K391.55 (19)
O8v—K2—O5143.86 (19)C1—O3—K1iii91.6 (5)
O8v—K2—O6150.98 (18)U1—O3—K1iii170.8 (3)
O5—K2—O660.29 (16)K3—O3—K1iii88.08 (16)
O8v—K2—O3Wvi82.7 (4)C1—O3—K4138.0 (5)
O5—K2—O3Wvi129.0 (4)U1—O3—K487.23 (18)
O6—K2—O3Wvi86.2 (4)K3—O3—K490.34 (17)
O8v—K2—O4vii100.83 (18)K1iii—O3—K483.55 (15)
O5—K2—O4vii69.40 (17)C1—O4—K1iii98.1 (5)
O6—K2—O4vii69.76 (17)C1—O4—K1v100.0 (5)
O3Wvi—K2—O4vii136.4 (4)K1iii—O4—K1v161.9 (3)
O8v—K2—O9v58.79 (17)C1—O4—K3v131.4 (5)
O5—K2—O9v100.89 (18)K1iii—O4—K3v83.13 (17)
O6—K2—O9v147.37 (19)K1v—O4—K3v84.59 (17)
O3Wvi—K2—O9v87.3 (3)C1—O4—K2xi131.4 (5)
O4vii—K2—O9v131.87 (19)K1iii—O4—K2xi86.01 (17)
O8v—K2—O2134.78 (18)K1v—O4—K2xi82.41 (18)
O5—K2—O261.90 (17)K3v—O4—K2xi97.16 (19)
O6—K2—O263.36 (16)C1—O5—U195.6 (5)
O3Wvi—K2—O269.2 (4)C1—O5—K3i128.7 (5)
O4vii—K2—O2124.06 (17)U1—O5—K3i93.23 (19)
O9v—K2—O284.48 (17)C1—O5—K2127.0 (5)
O8v—K2—O2Wi65.74 (17)U1—O5—K291.10 (18)
O5—K2—O2Wi138.11 (18)K3i—O5—K2103.17 (17)
O6—K2—O2Wi85.27 (17)C1—O5—K1v91.6 (5)
O3Wvi—K2—O2Wi64.8 (4)U1—O5—K1v172.6 (2)
O4vii—K2—O2Wi77.04 (19)K3i—O5—K1v81.09 (16)
O9v—K2—O2Wi120.30 (19)K2—O5—K1v85.70 (17)
O2—K2—O2Wi125.2 (2)C2—O6—U194.3 (5)
O8v—K2—O1v61.01 (16)C2—O6—K1i94.5 (5)
O5—K2—O1v82.94 (16)U1—O6—K1i171.2 (3)
O6—K2—O1v135.40 (16)C2—O6—K3i127.7 (5)
O3Wvi—K2—O1v138.4 (4)U1—O6—K3i91.11 (16)
O4vii—K2—O1v74.39 (16)K1i—O6—K3i84.35 (16)
O9v—K2—O1v57.51 (16)C2—O6—K2131.0 (5)
O2—K2—O1v122.28 (17)U1—O6—K289.33 (17)
O2Wi—K2—O1v111.72 (19)K1i—O6—K284.13 (16)
O8v—K2—U1162.86 (14)K3i—O6—K2100.95 (19)
O5—K2—U140.73 (13)C2—O7—K4xii126.7 (5)
O6—K2—U141.62 (11)C2—O7—K1i95.2 (5)
O3Wvi—K2—U188.5 (3)K4xii—O7—K1i92.94 (19)
O4vii—K2—U195.69 (13)C2—O7—K3xii136.8 (5)
O9v—K2—U1106.30 (14)K4xii—O7—K3xii96.29 (18)
O2—K2—U128.39 (10)K1i—O7—K3xii85.25 (17)
O2Wi—K2—U1123.22 (15)C2—O8—U196.4 (5)
O1v—K2—U1120.28 (11)C2—O8—K2ii124.7 (5)
O8v—K2—K1i105.52 (13)U1—O8—K2ii93.97 (18)
O5—K2—K1i92.62 (12)O10—O9—U170.0 (3)
O6—K2—K1i47.67 (11)O10—O9—K2ii127.9 (4)
O3Wvi—K2—K1i90.3 (3)U1—O9—K2ii92.2 (2)
O4vii—K2—K1i46.53 (12)O9—O10—U171.1 (3)
O9v—K2—K1i164.31 (15)O9—O10—K4124.1 (4)
O2—K2—K1i109.16 (12)U1—O10—K4106.3 (2)
O2Wi—K2—K1i45.53 (13)O9—O10—K3132.4 (4)
O1v—K2—K1i117.19 (12)U1—O10—K396.7 (2)
U1—K2—K1i89.14 (5)K4—O10—K3103.54 (19)
O8v—K2—U1v39.98 (11)K4x—O1W—K482.24 (19)
O5—K2—U1v105.33 (13)K1—O2W—K3iv80.1 (2)
O6—K2—U1v163.60 (13)K1—O2W—K2iii80.79 (17)
O3Wvi—K2—U1v109.9 (3)K3iv—O2W—K2iii123.4 (3)
O4vii—K2—U1v98.62 (13)K2vi—O3W—K4xii92.3 (4)
O9v—K2—U1v36.47 (12)O4—C1—O5122.3 (8)
O2—K2—U1v118.83 (12)O4—C1—O3122.6 (7)
O2Wi—K2—U1v103.80 (14)O5—C1—O3115.1 (7)
O1v—K2—U1v28.43 (9)O4—C1—U1178.9 (6)
U1—K2—U1v132.81 (6)O5—C1—U157.7 (4)
K1i—K2—U1v131.79 (6)O3—C1—U157.5 (4)
O10—K3—O5iii157.29 (19)O4—C1—K1iii58.9 (4)
O10—K3—O359.02 (18)O5—C1—K1iii176.8 (6)
O5iii—K3—O3139.65 (19)O3—C1—K1iii63.8 (4)
O10—K3—O6iii138.08 (17)U1—C1—K1iii121.1 (3)
O5iii—K3—O6iii60.62 (16)O4—C1—K1v57.7 (4)
O3—K3—O6iii100.99 (18)O5—C1—K1v64.6 (5)
O10—K3—O4ii100.21 (19)O3—C1—K1v176.4 (6)
O5iii—K3—O4ii71.36 (18)U1—C1—K1v122.3 (3)
O3—K3—O4ii140.73 (17)K1iii—C1—K1v116.6 (3)
O6iii—K3—O4ii71.52 (18)O7—C2—O8121.1 (8)
O10—K3—O7viii76.01 (17)O7—C2—O6122.6 (8)
O5iii—K3—O7viii96.52 (17)O8—C2—O6116.3 (7)
O3—K3—O7viii72.03 (16)O7—C2—U1176.8 (6)
O6iii—K3—O7viii136.65 (17)O8—C2—U157.2 (4)
O4ii—K3—O7viii139.54 (19)O6—C2—U159.2 (4)
O10—K3—O2Wix74.45 (18)O7—C2—K1i61.2 (5)
O5iii—K3—O2Wix83.63 (18)O8—C2—K1i175.5 (6)
O3—K3—O2Wix116.24 (19)O6—C2—K1i61.6 (4)
O6iii—K3—O2Wix141.51 (19)U1—C2—K1i120.8 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x1/2, y+1/2, z+1/2; (v) x+1, y, z; (vi) x+1, y+2, z; (vii) x+3/2, y+1/2, z+1/2; (viii) x, y1, z; (ix) x1/2, y1/2, z+1/2; (x) x+1, y+1, z; (xi) x+3/2, y1/2, z+1/2; (xii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaK4[U(O2)O2(CO3)2]·2.5H2O
Mr623.49
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.9077 (14), 9.2332 (18), 21.809 (4)
β (°) 91.310 (4)
V3)1390.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)12.92
Crystal size (mm)0.10 × 0.10 × 0.08
Data collection
DiffractometerBruker P4 with SMART 1K CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.300, 0.356
No. of measured, independent and
observed [I > 2σ(I)] reflections
9687, 3046, 2616
Rint0.029
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.095, 1.56
No. of reflections3046
No. of parameters176
H-atom treatmentH-atom parameters not defined
Δρmax, Δρmin (e Å3)4.38, 1.93

Computer programs: Please provide missing information, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997).

Selected geometric parameters (Å, º) top
U1—O21.806 (5)U1—O82.443 (5)
U1—O11.817 (5)U1—O62.488 (5)
U1—O102.240 (6)U1—C12.878 (9)
U1—O92.256 (6)U1—C22.888 (8)
U1—O32.438 (5)O9—O101.496 (8)
U1—O52.445 (6)
O2—U1—O1175.3 (3)O10—U1—O938.9 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds