Download citation
Download citation
link to html
The crystal structures of quinolinium 3-carboxy-4-hydroxy­benzene­sulfonate trihydrate, C9H8N+·C7H5O6S-·3H2O, (I), 8-hydroxy­quinolinium 3-carboxy-4-hydroxy­benzene­sulfonate monohydrate, C9H8NO+·C7H5O6S-·H2O, (II), 8-amino­quinolinium 3-carboxy-4-hydroxy­benzene­sulfonate dihydrate, C9H9N2+·C7H5O6S-·2H2O, (III), and 2-carboxy­quinolinium 3-carboxy-4-hydroxy­benzene­sulfonate quinolinium-2-carboxylate, C10H8NO2+·C7H5O6S-·C10H7NO2, (IV), four proton-transfer compounds of 5-sulfosalicylic acid with bicyclic heteroaromatic Lewis bases, reveal in each the presence of variously hydrogen-bonded polymers. In only one of these compounds, viz. (II), is the protonated quinolinium group involved in a direct primary N+-H...O(sulfonate) hydrogen-bonding interaction, while in the other hydrates, viz. (I) and (III), the water mol­ecules participate in the primary intermediate interaction. The quinaldic acid (quinoline-2-carboxylic acid) adduct, (IV), exhibits cation-cation and anion-adduct hydrogen bonding but no direct formal heteromolecular interaction other than a number of weak cation-anion and cation-adduct [pi]-[pi] stacking associations. In all other compounds, secondary interactions give rise to network polymer structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010401457X/ta1450sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010401457X/ta1450Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010401457X/ta1450IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010401457X/ta1450IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010401457X/ta1450IVsup5.hkl
Contains datablock IV

CCDC references: 248162; 248163; 248164; 248165

Comment top

We have previously reported the crystal structures of a number of proton-transfer compounds of 3,5-dinitrosalicylic acid (DNSA) with both monocyclic and polycyclic heteroaromatic Lewis bases (Smith et al., 1995, 1996, 2003a, 2003b, 2004b). In all of these compounds, the resulting cationic aminium species subsequently form direct primary hydrogen-bonding interactions with the carboxylate group of the DNSA anions, which, together with secondary hydrogen bonding, lead to the formation of both network and framework polymer structures. These secondary interactions may be either strong [O—H···O or N—H···O, depending on the nature of the substituent group on the heterocyclic ring, e.g. with 8-aminoquinoline (Smith et al., 2001a), 8-hydroxyquinoline (Smith et al., 2001b) and quinaldic acid (Smith et al., 2004b)] or weak but extensive [C—H···O, e.g. with quinoline, 1,10-phenanthroline and 2,2'-bipyridine (Smith et al., 2004b)]. Cation–anion ππ stacking is rare and is almost exclusive to the polycyclic aromatic Lewis bases, quinoline and 1,10-phenanthroline (Smith et al., 2004b).

With aromatic sulfonic acids, the acid strength is even greater than that of DNSA (pKa = 2.2), so proton transfer will occur on reaction of these acids with most Lewis bases. Furthermore, with deprotonation of the sulfonate group, the three O atoms provide an additional set of proton-accepting centres for hydrogen-bonding associations, enhancing their potential for self-assembly. The guanidinium salts of the aromatic sulfonates have been investigated as potentially useful optical materials generated because of the compatibility of their adjacent NH donors, with two of the sulfonate O-atom acceptors giving rise to a primary cyclic R22(8) interaction. This results in the assembly of hydrogen-bonded sheet structures, which may have interlayer linkages through the third sulfonate O atom, giving network polymer structures, hopefully with induced asymmetry (Russell et al., 1994a,1994b).

For this initial structural study we therefore chose 3-carboxy-4-hydroxybenzenesulfonic acid (5-sulfosalicylic acid, 5-SSA), which has structural features similar to DNSA and to the closer analogue 5-nitrosalicylic acid (5-NSA). These acids have an additional interactive substituent carboxylic acid group and phenol functional groups that lend themselves to secondary n-dimensional hydrogen-bonding extension. Not only is 5-SSA structurally similar to 5-NSA, but also its acid strength makes it capable of protonating water, and several hydrated structures of the acid are known, viz. the dihydrate (Attig & Mootz, 1977; Aliev et al., 1995), the dideuterate (Attig & Williams, 1977), the trihydrate (Attig & Mootz, 1977) and the pentahydrate (Merschenz-Quack & Mootz, 1990). With many of these, protonated polyaqua species have been identified, for example the H7O3+ cation species of the trihydrate (Mootz & Fayoz, 1970). This feature is considered to be responsible for the unusual conductivity properties of the acid and many of its compounds, for example with the lanthanum, praseodymium and samarium sulfosalicylate nonahydrates (Aliev et al., 1991a, 1991b). The structures of the 5-SSA proton-transfer compounds with the Lewis bases aniline (1:1; Bakasova et al., 1991), theophylline (a 1:1 monohydrate; Madarasz et al., 2002), trimethoprim (a 1:1 dihydrate; Raj et al., 2003) and 4,4'-bipyridine (a 1:2 dihydrate; Muthiah et al., 2003) are also known, while the structures of two different guanidinium (GU) salts have also been reported recently. The first of these is that of anhydrous [(GU)+ (5-SSA)] (Zhang et al., 2004), while the second is the hydrate [2(GU)+ (5-SSA)2−. H2O] (Smith et al., 2004a). Apart from the chemical difference due to deprotonation of both the sulfonic and carboxylic acid groups of 5-SSA in the hydrate, there is an absence of the expected cyclic R22(8) N—H···O guanidinium···sulfonate interactions (Russell et al., 1994a, 1994b) in the hydrate structure but found in the anhydrate (Zhang et al., 2004).

The choice of Lewis bases for this study was influenced by experience with DNSA, where the polycyclic aromatic analogues were found to be particularly efficient in structure building through both hydrogen bonding and, to a lesser extent, cation–anion ππ associations. The nitrogen bases selected were the parent bicyclic heteroaromatic quinoline (QUIN), the common 8-subsituted quinolines 8-hydroxyquinoline (oxine, 8-HQ) and 8-aminoquinoline (8-AQ), and quinoline-2-carboxylic acid (quinaldic acid, QA). Of these, oxine has proved most useful as a molecule with good structure-extending ability, achieved through secondary hydrogen bonding, forming both neutral and proton-transfer structures as well as molecular adducts. With a number of these structures, the reactions occur readily in the solid state (Rastogi et al., 1977; Singh et al., 1994, 1999, 2000]. The crystal structures of both the 1:1 and 1:2 compounds with salicylic acid (SA), [8-HQ)+(SA] (Singh et al., 2000; Smith et al., 2003c) and [(8-HQ)+(SA). (SA)] (Jebamony & Muthiah, 1998), are known and both formation reactions proceed in the solid state. With Kemp's triacid (cis-cis-1,3,5-trimethylhexane- 1,3,5-tricarboxylic acid), there is proton transfer as well as the retention of a partial oxine molecule in the crystal structure (Smith et al., 2000), while with a series of six 1:1 compounds with the nitrobenzoic acids, including DNSA and 5-NSA (Smith et al., 2001b), there are two examples of hydrates. We have also reported the structure of the guanidinium monohydrate salt of the analogous substituted oxine, 7-iodo-8-hydroxyquinolinesulfonic acid (ferron; Smith et al., 2003a), in which the hydrogen bonding is extensive. Examples of neutral adducts are less common but are found in the 1:1 complexes with chloranil (Prout & Wheeler, 1967) and 1,3,5-trinitrobenzene (Castellano & Prout, 1971), while the compound with 1,2,3-trihydroxybenzene (THB; Singh et al., 1994) is a 2:1 proton-transfer adduct [(8-HQ)+(THB). (8-HQ)]. Fewer structures of proton-transfer compounds of the other quinoline analogues used here have been reported; with 8-AQ they are limited to the series of compounds with the nitro-substituted carboxylic acids (Smith et al., 2001a), although the structure of the non-transfer compound with Kemp's triacid is known (Smith et al., 2000). With quinoline and quinaldic acid, the only known examples are the 1:1 proton-transfer compounds with DNSA, and in the quinoline structure there is evidence of ππ interaction (Smith et al., 2004b).

The crystal structures reported here are those of the 5-sulfosalicylates with quinoline, namely quinolinium 5-sulfosalicylate trihydrate, [(C9H8N)+ (C7H5O2S). 3(H2O)], (I), 8-hydroxyquinoline: 8-hydroxyquinolinium 5-sulfosalicylate monohydrate, [(C9H8NO)+ (C7H5O2S). H2O], (II), 8-aminoquinoline: 8-aminoquinolinium 5-sulfosalicylate dihydrate [(C9H9N2)+ (C7H5O2S). 2(H2O)], (III), and the adduct structure with quinaldic acid, quinolinium-2-carboxylic acid 5-sulfosalicylate quinoline-2-carboxylic acid (1/1) [(C10H9NO2)+ (C7H5O2S)(C10H8NO2)], (IV). Fig. 1 shows the atom-numbering scheme used for each of the four structures. All of these examples involve proton transfer, but in only one compound, viz. (II), is primary direct N+H···O(sulfonate) hydrogen bonding found; this situation contrasts with that reported for the analogous series of compounds with DNSA (Smith et al., 2004b). There is no occurrence of the R22(8) dimer interaction found in the anhydrous guanidinium sulfonates (Russell, 1994a, 1994b; Zhang, 2004) but absent in the bis(guanidinium) 5-sulfosalicylate hydrate structure (Smith et al., 2004a). The presence of water of solvation in this last structure and in compounds (I)–(III) of the current series (a feature that is rare among the DNSA analogues) appears to be the main contributing factor, resulting from a deficiency of proton-donor groups able to satisfy the additional acceptor requirements of sulfonate O atoms. In the case of (IV) (in which, in addition, there are 42 Å3 solvent-free voids in the lattice, capable of accommodating water molecules), the QA adduct molecule also acts in both a donor and an acceptor capacity, providing a structure in which there is no direct formal heteromolecular interaction. However, (IV) exhibits significant cation–anion and cation–adduct ππ stacking interactions, while in (I) there is ππ stacking but it is homomolecular, involving both cation–cation and anion–anion stacking interactions. In all other structures there is extensive secondary hydrogen bonding, utilizing the sulfonate acceptor O atoms, which results in framework polymer structures. Tables 1–4 list the hydrogen-bonding geometries for (I)–(IV) and the symmetry codes used in the following discussion.

Compound (I) with quinoline, [(QUIN)+ (5-SSA). 3H2O], has a 5-SSA anion with a rotationally disordered sulfonate group (O51A–O53A and O51B –O53B, with occupancy 0.74:0.26, respectively; Fig. 1a). Only the three primary (A) sites are considered in the discussion. These sites are involved in three hydrogen-bonding interactions. Although none of these is a direct N+H···O(sulfonate) link, there is a primary interaction between the quinolinium H atom and a water molecule (N11···O1Wiv; Fig. 2). The H atoms of this water molecule allow propagation of the structure through interactions with sulfonate atom O53 and a second glide-related water molecule (O3Wi). There is further extension via atom O3W through both of its H atoms to different sulfonate O-atom acceptors (O52A and O53Aiv). The third water molecule (O2W) links sulfonate atom O51Aii of a 5-SSA anion with carboxylic acid atom O72iii and serves as an acceptor for another 5-SSA carboxyl H atom [O71—H7···O2Wv). Both the 5-SSA anions and the QUIN cations form homomolecular stacks along the b direction, with a separation of b/2 (3.613 Å), a distance indicative of significant ππ interactions. The result is a three-dimensional framework polymer.

In the 8-HQ compound [(8-HQ)+ (5-SSA). H2O], (II) (Fig. 1 b), there is a direct N+H···O(sulfonate) interaction (N11···O53iii). The 8-hydroxy substituent group of the 8-HQ cation is associated intermolecularly with only the solvent water molecule (O1W) but has an usual intramolecular association with quinolinium atom H11. The water H atoms extend the structure via different sulfonate groups (O1W— ···O51i and O1W···O52ii), while the fourth formal hydrogen bond to the sulfonate group is one involving the carboxylic acid H atom [O71—H7···O51ii]. The result is a three-dimensional network structure (Fig. 3), with no significant ππ interactions.

Compound (III) with 8-AQ [(8-AQ)+ (5-SSA). 2H2O] has a rotationally disordered sulfonate group similar to that in (I) (O51A—O53A and O51B—O53B, with occupancy 0.74:0.26, respectively; Fig. 1c), with all three O atoms of the primary group acting as H-atom acceptors in four hydrogen-bonding interactions. Three of these are with water molecules (O1W···O53A, O2W···O52A, O2W···O51Aii) and the fourth is a much weaker bond to the 8-amine group of an inversion-related 8-AQ cation (N81···O51Av). This last interaction represents the only direct 5-SSA···8-AQ contact. The sulfonate···water interactions extend the structure along the a direction (Fig. 4), while one of the water molecules also extends the structure in the b direction through both O atoms of the carboxylic acid group of the 5-SSA anion molecule (O71···O1Wiv and O1W··· O72i). The second water molecule similarly extends the structure along the b axis, through the amine and quinolinium groups [2.768 (3) and 3.026 (3) Å]. There are no ππ cation–cation or cation–anion interactions with the two-dimensional sheet structure, which is only weakly linked in the third dimension via a hydrogen bond between the single 8-amino N atom (N81) and sulfonate atom O51.

The structure of the compound of 5-SSA with quinaldic acid [(QA)+ (5-SSA) (QA)], (IV) (Fig. 1 d), is unusual in many respects when compared with (I)–(III). Not only is (IV) anhydrous (although it has the previously mentioned 42 Å3 solvent-free voids in the crystal structure), with an adduct QA molecule in the structure, but also there are no formal heteromolecular hydrogen-bonding linkages between the 5-SSA anion and either the cationic or the neutral QA species. While both QA species have protonated hetero N atoms, one (N12+—H12) is derived from the 5-SSA sulfonic acid group and the other (N11+—H11) comes from a zwitterionic transfer from the adjacent carboxylic acid group. The two carboxyl groups are linked linearly by a single short hydrogen bond [O112···O121ii = 2.478 (2) Å; Fig. 5]. The two QA species are laterally associated to form a homomeric pseudo- centrosymmetric cyclic R22(10) dimer through their N+H and carboxyl O atoms [N···O = 2.803 (2) and 2.855 (2) Å]. These groups also give the usual intramolecular N—H···O associations [2.702 (2) and 2.719 (2) Å]. The 5-SSA anions are similarly propagated linearly along the a direction via strong head-to-tail O(carboxyl)···O(sulfonate) hydrogen bonds [O71···O51i = 2.576 (2) Å], with the only heteromolecular contact being a weak C—H···O association [C62···O53iii = 3.333 (3) Å; symmetry code: (iii) 3/2 − x, 1/2 + y, 3/2 − z]. The QA cation and the 5-SSA anion (molecule 1) ring systems superimpose down the b direction, with significant ππ interaction [Cgm···Cgn, α m,n of 3.827 (3) Å, 1.5 (1) °; 3.787 (3) Å, 3.4 (1) °; 3.678 (3) Å, 4.8 (1) °; 3.661 (3) Å, 2.2 (1) ° for (m, n) = (1,2), (1,3), (2,3) and (3,4) respectively [codes are for the six-membered rings defined by: (1) = N11–C91; (2) = N12–C92; (3) = C1–C6; (4) = C51–C101]. This gives a sheet structure which is linked only by these ππ interactions down b. (Fig. 5).

An usual intramolecular hydrogen bond is found, as expected, between the phenol OH group and a carboxylate group in the 5-SSA anions in all structures [O2—H2···O72 = 2.610 (2), 2.602 (3), 2.606 (2) and 2.605 (2) Å for (I), (II), (III) and (IV), respectively]. This hydrogen bond maintains coplanarity of the carboxylic acid group with the benzene ring [C2–C1–C7–O71 = −178.9 (2), 179.3 (2), 178.0 (2) and 178.8 (2) °, respectively] and is similar to but significantly shorter than that found in the structure of the parent salicylic acid [O···O = 2.640 Å] (Sundaralingam & Jensen, 1965) and in substituted salicylic acids generally. The carboxylic acid groups in all structures are involved in strong hydrogen- bonding interactions with either sulfonate or water O-atom acceptors [O···O = 2.530–2.607 Å]. In (I) and (III), the second (carbonyl) O atom is also involved in interaction with a water O atom, while in none of the structures is there any intermolecular phenol O-atom participation. The rotational disorder in the sulfonate group, which is present to almost an identical degree in both (I) and (III), has not been reported previously for 5-SSA compounds but is not an unexpected phenomenon. However, it appears unusual in these types of structures, where self-assembly through strong hydrogen-bonding interactions involving the sulfonate group is a feature. Furthermore, there is the presence in all four structures of significant intramolecular aromatic CH···O(sulfonate) hydrogen-bonding interactions, which maintain near coplanarity of the plane of the aromatic ring and one of the S5—O53 bond vectors. This configuration is reflected in the C6···O53 contacts [ranging from 2.733 (3) Å in (II) to 2.928 (8) Å in (III)] and in the corresponding C6–C5–S5 –O53 torsion angle [1.6 (2) ° in (II) to −28.6 (4) ° in (III)]. The maximum deviation from coplanarity occurs for the two disordered compounds [(I) and (III)].

Experimental top

Compounds (I)–(IV) were synthesized by heating, under reflux, 1 mmol quantities of 3-carboxy-4-hydroxybenzene- sulfonic acid (5-sulfosalicylic acid, 5-SSA) and, respectively, quinoline (QUIN), 8-hydroxyquinoline [quinolin- 8-ol (oxine), 8-HQ], 8-aminoquinoline (8-AQ) and quinoline-2- carboxylic acid (quinaldic acid, QA) in 50% ethanol/water (50 ml) for 10 min. After concentration to ca 30 ml, partial room-temperature evaporation of the hot-filtered solutions gave pale pink prisms of (I) (m.p. 501.7–503.3 K), large yellow prisms of (II) (m.p. 505.2–506.9 K), brown needle-shaped prisms of (III) (m.p. 504.8–507.4 K) and yellow plates of (IV) (m.p. 484.5–488.1 K).

Refinement top

The sulfonate groups of both (I) and (III) were found to be rotationally disordered, so the O atoms of these groups were modelled over six sites (O51A–O53A and O51B–O53B), with site occupancies [0.76:0.24 (1) for (I) and 0.74:0.26 (2) for (III)], determined by least-squares refinement. H atoms involved in hydrogen-bonding interactions were located from a difference map, and their positional and isotropic displacement parameters were refined. Other H atoms were included in the refinements at calculated positions (C—H = 0.95 Å) and treated as riding, with Uiso(H) fixed at 1.2Ueq(parent atom). For refined water H atoms, the mean O—H distances are 0.81 (5) Å for (I), 0.85 (5) Å for (II) and 0.86 (5) Å for (III).

Computing details top

For all compounds, data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON for Windows (Spek, 1999); software used to prepare material for publication: PLATON for Windows.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for (a) (I), (b) (II), (c) (III) and (d) (IV). Non-H atoms are shown as 30% probability displacement ellipsoids
[Figure 2] Fig. 2. Homomolecular stacks of QUIN cations and 5-SSA anions in (I), viewed in the unit cell along the b axis, showing interstack hydrogen- bonding associations (broken lines) involving the water molecules.
[Figure 3] Fig. 3. The hydrogen-bonding associations between 8-HQ cations, 5-SSA anions and the water molecule in (II), in a perspective view of the packing in the unit cell viewed perpendicular to b.
[Figure 4] Fig. 4. The hydrogen-bonding associations between 8-AQ cations, 5-SSA anions and water molecules in (III), in a partial section of the unit cell viewed along b.
[Figure 5] Fig. 5. A view of the partial packing of the QA cations, 5-SSA anions and QA adduct molecules in (IV), in the unit cell viewed down b, showing the heteromolecular stacks and inter-species hydrogen-bonding associations.
(I) Quinolinium 3-carboxy-4-hydroxybenzenesulfonate trihydrate top
Crystal data top
C9H8N+·C7H5O6S·3H2OF(000) = 1680
Mr = 401.38Dx = 1.477 Mg m3
Monoclinic, C2/cMelting point = 501.7–503.3 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 29.194 (2) ÅCell parameters from 3896 reflections
b = 7.2253 (5) Åθ = 2.2–26.9°
c = 18.2715 (13) ŵ = 0.23 mm1
β = 110.524 (1)°T = 295 K
V = 3609.5 (4) Å3Block, pink
Z = 80.50 × 0.40 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3180 independent reflections
Radiation source: sealed tube2770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 3034
Tmin = 0.889, Tmax = 0.933k = 58
9200 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0645P)2 + 2.2682P]
where P = (Fo2 + 2Fc2)/3
3180 reflections(Δ/σ)max = 0.009
308 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H8N+·C7H5O6S·3H2OV = 3609.5 (4) Å3
Mr = 401.38Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.194 (2) ŵ = 0.23 mm1
b = 7.2253 (5) ÅT = 295 K
c = 18.2715 (13) Å0.50 × 0.40 × 0.30 mm
β = 110.524 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3180 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2770 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.933Rint = 0.017
9200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
3180 reflectionsΔρmin = 0.23 e Å3
308 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S50.111225 (18)0.65953 (7)0.21642 (3)0.0499 (2)
O20.07719 (5)0.7527 (3)0.04187 (10)0.0661 (6)
O51A0.10198 (19)0.7219 (9)0.28532 (16)0.0766 (13)0.749 (14)
O52A0.12254 (18)0.4707 (6)0.2173 (4)0.0917 (14)0.749 (14)
O53A0.14623 (12)0.7742 (10)0.1975 (2)0.0759 (15)0.749 (14)
O710.05408 (5)0.8255 (2)0.08156 (9)0.0563 (5)
O720.02738 (5)0.8263 (2)0.13252 (8)0.0574 (5)
C10.01102 (6)0.7604 (2)0.00218 (10)0.0392 (5)
C20.03315 (7)0.7339 (3)0.01475 (11)0.0456 (6)
C30.03219 (7)0.6871 (3)0.08927 (12)0.0560 (7)
C40.01154 (8)0.6643 (3)0.14924 (12)0.0527 (7)
C50.05553 (7)0.6910 (3)0.13750 (10)0.0422 (6)
C60.05511 (6)0.7397 (2)0.06451 (10)0.0393 (5)
C70.01075 (7)0.8073 (3)0.07677 (11)0.0431 (6)
O53B0.1512 (3)0.654 (3)0.1850 (5)0.078 (4)0.251 (14)
O51B0.1174 (5)0.804 (2)0.2691 (9)0.073 (4)0.251 (14)
O52B0.1090 (6)0.477 (2)0.2507 (9)0.092 (4)0.251 (14)
N110.27564 (6)0.0473 (2)0.41465 (11)0.0513 (6)
C210.32288 (8)0.0131 (3)0.43891 (16)0.0663 (9)
C310.34720 (9)0.0479 (4)0.51308 (18)0.0748 (10)
C410.32269 (10)0.0705 (3)0.56290 (15)0.0714 (8)
C510.24347 (12)0.0508 (3)0.58629 (14)0.0736 (9)
C610.19577 (13)0.0125 (4)0.55897 (18)0.0821 (11)
C710.17232 (9)0.0463 (3)0.48148 (17)0.0708 (10)
C810.19794 (8)0.0675 (3)0.43234 (13)0.0542 (7)
C910.24814 (7)0.0269 (2)0.46108 (11)0.0429 (6)
C1010.27154 (8)0.0333 (3)0.53877 (11)0.0523 (7)
O1W0.24612 (8)0.8066 (3)0.27136 (10)0.0729 (7)
O2W0.06478 (11)0.9222 (4)0.79205 (12)0.0958 (10)
O3W0.17387 (11)0.1481 (4)0.2447 (2)0.1091 (13)
H30.0614000.6714000.0983000.0670*
H70.0526 (10)0.858 (4)0.1234 (17)0.074 (8)*
H40.0117000.6305000.1985000.0630*
H60.0845000.7590000.0566000.0470*
H20.0724 (12)0.770 (5)0.0793 (19)0.096 (11)*
H110.2628 (9)0.097 (4)0.3648 (17)0.078 (8)*
H210.3399000.0308000.4050000.0800*
H310.3805000.0738000.5293000.0900*
H410.3394000.1109000.6136000.0860*
H510.2582000.0898000.6378000.0880*
H610.1777000.0249000.5917000.0990*
H710.1389000.0710000.4635000.0850*
H810.1826000.1078000.3812000.0650*
H1A0.2207 (12)0.752 (5)0.2561 (19)0.096 (12)*
H1B0.2665 (10)0.738 (4)0.2645 (15)0.067 (8)*
H2A0.0678 (7)1.042 (3)0.7900 (12)0.109 (6)*
H2B0.0522 (13)0.890 (5)0.738 (2)0.120 (11)*
H3A0.1650 (8)0.025 (3)0.2294 (12)0.132 (6)*
H3B0.1527 (18)0.227 (7)0.239 (3)0.149 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S50.0513 (3)0.0543 (3)0.0380 (3)0.0071 (2)0.0079 (2)0.0015 (2)
O20.0383 (8)0.1000 (14)0.0555 (10)0.0016 (8)0.0109 (7)0.0008 (9)
O51A0.076 (2)0.111 (3)0.0384 (12)0.018 (2)0.0145 (12)0.0025 (15)
O52A0.090 (2)0.0594 (19)0.095 (3)0.0288 (17)0.006 (2)0.000 (2)
O53A0.0493 (14)0.103 (4)0.0630 (16)0.0162 (17)0.0041 (12)0.0100 (19)
O710.0497 (8)0.0789 (11)0.0425 (8)0.0006 (7)0.0188 (7)0.0122 (7)
O720.0507 (8)0.0738 (10)0.0407 (7)0.0006 (7)0.0072 (7)0.0081 (6)
C10.0414 (10)0.0370 (9)0.0391 (9)0.0006 (7)0.0141 (8)0.0020 (8)
C20.0391 (10)0.0500 (11)0.0455 (10)0.0003 (8)0.0122 (8)0.0044 (8)
C30.0452 (11)0.0751 (15)0.0539 (12)0.0050 (10)0.0253 (10)0.0048 (10)
C40.0561 (12)0.0673 (14)0.0398 (10)0.0026 (10)0.0232 (9)0.0002 (9)
C50.0469 (10)0.0412 (10)0.0372 (9)0.0012 (8)0.0133 (8)0.0039 (7)
C60.0398 (9)0.0400 (10)0.0392 (9)0.0010 (7)0.0153 (8)0.0014 (8)
C70.0465 (11)0.0406 (10)0.0400 (10)0.0023 (8)0.0125 (9)0.0008 (7)
O53B0.050 (4)0.109 (12)0.062 (4)0.017 (5)0.004 (3)0.015 (5)
O51B0.061 (5)0.087 (8)0.052 (6)0.013 (5)0.003 (4)0.032 (5)
O52B0.088 (8)0.090 (7)0.069 (7)0.013 (5)0.008 (5)0.037 (6)
N110.0564 (11)0.0464 (10)0.0513 (10)0.0018 (8)0.0190 (9)0.0024 (8)
C210.0566 (14)0.0592 (14)0.0866 (17)0.0017 (11)0.0294 (13)0.0144 (12)
C310.0547 (13)0.0646 (16)0.093 (2)0.0087 (11)0.0107 (14)0.0143 (14)
C410.0805 (17)0.0453 (12)0.0598 (13)0.0078 (11)0.0110 (13)0.0042 (10)
C510.115 (2)0.0558 (14)0.0514 (13)0.0136 (14)0.0309 (14)0.0041 (11)
C610.116 (2)0.0691 (16)0.088 (2)0.0284 (16)0.0691 (19)0.0209 (14)
C710.0592 (14)0.0603 (15)0.100 (2)0.0122 (11)0.0368 (14)0.0223 (13)
C810.0529 (12)0.0473 (11)0.0572 (12)0.0019 (9)0.0127 (10)0.0038 (9)
C910.0519 (11)0.0337 (9)0.0424 (10)0.0035 (8)0.0158 (8)0.0038 (7)
C1010.0720 (14)0.0355 (10)0.0425 (10)0.0046 (9)0.0114 (10)0.0025 (8)
O1W0.0624 (12)0.0962 (15)0.0596 (10)0.0084 (11)0.0206 (9)0.0095 (9)
O2W0.109 (2)0.133 (2)0.0495 (11)0.0368 (18)0.0331 (13)0.0088 (12)
O3W0.0943 (18)0.0878 (17)0.162 (3)0.0069 (14)0.066 (2)0.0103 (17)
Geometric parameters (Å, º) top
S5—O51A1.449 (4)C2—C31.394 (3)
S5—O52A1.403 (4)C3—C41.370 (3)
S5—O53A1.448 (5)C4—C51.388 (3)
S5—C51.769 (2)C5—C61.375 (2)
S5—O51B1.388 (15)C3—H30.9306
S5—O52B1.471 (15)C4—H40.9310
S5—O53B1.471 (9)C6—H60.9292
O2—C21.345 (3)C21—C311.364 (4)
O71—C71.305 (3)C31—C411.351 (4)
O72—C71.225 (2)C41—C1011.426 (4)
O2—H20.75 (3)C51—C611.333 (5)
O71—H70.79 (3)C51—C1011.393 (4)
O1W—H1B0.82 (3)C61—C711.405 (4)
O1W—H1A0.80 (4)C71—C811.364 (4)
O2W—H2B0.95 (3)C81—C911.404 (3)
O2W—H2A0.87 (2)C91—C1011.411 (3)
O3W—H3A0.94 (2)C21—H210.9290
O3W—H3B0.82 (5)C31—H310.9305
N11—C911.365 (3)C41—H410.9298
N11—C211.316 (3)C51—H510.9308
N11—H110.93 (3)C61—H610.9301
C1—C61.396 (3)C71—H710.9311
C1—C71.479 (3)C81—H810.9301
C1—C21.400 (3)
O51A—S5—O52A114.0 (4)O71—C7—O72123.55 (18)
O51A—S5—O53A113.0 (3)C4—C3—H3119.90
O51A—S5—C5105.7 (2)C2—C3—H3119.80
O52A—S5—O53A112.1 (3)C5—C4—H4119.65
O52A—S5—C5106.2 (3)C3—C4—H4119.48
O53A—S5—C5104.81 (17)C5—C6—H6119.63
O51B—S5—C5109.1 (6)C1—C6—H6119.65
O52B—S5—C5107.3 (7)N11—C21—C31121.0 (2)
O53B—S5—C5108.3 (4)C21—C31—C41119.6 (3)
O51B—S5—O52B113.2 (9)C31—C41—C101120.9 (2)
O51B—S5—O53B111.3 (10)C61—C51—C101120.9 (2)
O52B—S5—O53B107.5 (11)C51—C61—C71121.1 (3)
C2—O2—H2106 (3)C61—C71—C81120.8 (3)
C7—O71—H7112 (2)C71—C81—C91118.2 (2)
H1A—O1W—H1B106 (3)N11—C91—C81120.62 (18)
H2A—O2W—H2B102 (3)C81—C91—C101121.0 (2)
H3A—O3W—H3B120 (4)N11—C91—C101118.4 (2)
C21—N11—C91123.1 (2)C41—C101—C91117.0 (2)
C21—N11—H11114.8 (18)C51—C101—C91118.2 (2)
C91—N11—H11121.9 (18)C41—C101—C51124.8 (2)
C2—C1—C7120.07 (17)C31—C21—H21119.56
C2—C1—C6119.37 (16)N11—C21—H21119.48
C6—C1—C7120.55 (17)C41—C31—H31120.15
C1—C2—C3119.29 (18)C21—C31—H31120.21
O2—C2—C3117.54 (19)C31—C41—H41119.51
O2—C2—C1123.17 (17)C101—C41—H41119.59
C2—C3—C4120.3 (2)C61—C51—H51119.54
C3—C4—C5120.87 (19)C101—C51—H51119.57
S5—C5—C6121.09 (16)C71—C61—H61119.42
C4—C5—C6119.43 (18)C51—C61—H61119.52
S5—C5—C4119.47 (14)C61—C71—H71119.58
C1—C6—C5120.72 (18)C81—C71—H71119.66
O71—C7—C1114.50 (17)C71—C81—H81120.97
O72—C7—C1121.95 (19)C91—C81—H81120.87
O51A—S5—C5—C434.8 (3)C2—C3—C4—C51.4 (3)
O51A—S5—C5—C6145.9 (3)C3—C4—C5—C60.5 (3)
O52A—S5—C5—C486.7 (3)C3—C4—C5—S5179.82 (17)
O52A—S5—C5—C692.6 (3)C4—C5—C6—C10.7 (3)
O53A—S5—C5—C4154.4 (3)S5—C5—C6—C1178.63 (13)
O53A—S5—C5—C626.2 (3)N11—C21—C31—C411.2 (4)
C21—N11—C91—C81179.26 (19)C21—C31—C41—C1010.7 (4)
C91—N11—C21—C310.8 (3)C31—C41—C101—C910.2 (3)
C21—N11—C91—C1010.1 (3)C31—C41—C101—C51179.3 (2)
C6—C1—C7—O710.3 (3)C61—C51—C101—C910.3 (3)
C2—C1—C6—C51.0 (2)C61—C51—C101—C41179.8 (2)
C6—C1—C2—O2179.40 (19)C101—C51—C61—C710.1 (4)
C2—C1—C7—O71178.88 (17)C51—C61—C71—C810.7 (4)
C6—C1—C7—O72180.0 (16)C61—C71—C81—C910.7 (3)
C7—C1—C2—O21.4 (3)C71—C81—C91—N11179.40 (18)
C7—C1—C2—C3179.06 (18)C71—C81—C91—C1010.3 (3)
C6—C1—C2—C30.1 (3)C81—C91—C101—C41179.73 (18)
C7—C1—C6—C5178.16 (17)N11—C91—C101—C410.6 (3)
C2—C1—C7—O720.9 (3)C81—C91—C101—C510.2 (3)
C1—C2—C3—C41.1 (3)N11—C91—C101—C51178.91 (18)
O2—C2—C3—C4179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O720.75 (3)1.93 (4)2.613 (2)150 (4)
O1W—H1A···O53A0.80 (4)2.07 (4)2.761 (4)145 (3)
O1W—H1B···O3Wi0.82 (3)1.92 (3)2.708 (4)162 (3)
O2W—H2A···O51Aii0.87 (2)1.99 (2)2.811 (7)156 (2)
O2W—H2B···O72iii0.95 (3)1.86 (3)2.817 (3)180 (4)
O3W—H3A···O53Aiv0.94 (2)1.92 (2)2.864 (8)179 (2)
O3W—H3B···O52A0.82 (5)1.95 (5)2.721 (6)157 (5)
O71—H7···O2Wv0.79 (3)1.76 (3)2.535 (3)166 (3)
N11—H11···O1Wiv0.93 (3)1.75 (3)2.670 (3)173 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+2, z+1/2; (iii) x, y, z+1/2; (iv) x, y1, z; (v) x, y, z1.
(II) 8-hydroxyquinolinium 3-carboxy-4-hydroxybenzenesulfonate monohydrate top
Crystal data top
C9H8NO+·C7H5O6S·H2OF(000) = 792
Mr = 381.35Dx = 1.518 Mg m3
Monoclinic, P21/nMelting point = 505.2–506.9 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71069 Å
a = 13.236 (2) ÅCell parameters from 2706 reflections
b = 10.6515 (18) Åθ = 2.6–25.5°
c = 13.549 (2) ŵ = 0.24 mm1
β = 119.135 (3)°T = 295 K
V = 1668.4 (5) Å3Block, yellow
Z = 40.45 × 0.30 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2934 independent reflections
Radiation source: sealed tube2255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SABABS; Bruker, 1999)
h = 1415
Tmin = 0.917, Tmax = 0.953k = 1012
8547 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0576P)2]
where P = (Fo2 + 2Fc2)/3
2934 reflections(Δ/σ)max = 0.033
257 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C9H8NO+·C7H5O6S·H2OV = 1668.4 (5) Å3
Mr = 381.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.236 (2) ŵ = 0.24 mm1
b = 10.6515 (18) ÅT = 295 K
c = 13.549 (2) Å0.45 × 0.30 × 0.20 mm
β = 119.135 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2934 independent reflections
Absorption correction: multi-scan
(SABABS; Bruker, 1999)
2255 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.953Rint = 0.063
8547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.36 e Å3
2934 reflectionsΔρmin = 0.27 e Å3
257 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S50.95889 (5)0.66597 (5)0.18113 (4)0.0426 (2)
O20.97427 (14)0.11288 (15)0.18449 (14)0.0597 (6)
O510.83597 (13)0.69749 (14)0.11061 (12)0.0554 (6)
O521.00069 (14)0.70787 (15)0.29553 (12)0.0584 (6)
O531.02544 (15)0.70846 (15)0.13028 (15)0.0667 (7)
O710.78838 (16)0.30418 (16)0.31163 (15)0.0610 (7)
O720.84180 (14)0.11781 (15)0.27666 (14)0.0625 (7)
C10.90702 (17)0.30383 (19)0.22885 (16)0.0405 (7)
C20.97068 (18)0.2395 (2)0.18707 (17)0.0440 (7)
C31.0312 (2)0.3073 (2)0.14563 (18)0.0516 (8)
C41.02856 (19)0.4358 (2)0.14376 (17)0.0467 (8)
C50.96481 (16)0.5005 (2)0.18384 (15)0.0374 (7)
C60.90423 (17)0.43424 (19)0.22551 (16)0.0396 (7)
C70.84321 (18)0.2316 (2)0.27417 (18)0.0468 (8)
O810.25177 (14)0.58779 (14)0.12072 (15)0.0578 (6)
N110.19588 (15)0.82914 (18)0.10873 (14)0.0427 (6)
C210.1670 (2)0.9475 (2)0.10960 (19)0.0544 (9)
C310.2107 (2)1.0399 (2)0.0707 (2)0.0651 (10)
C410.2811 (2)1.0085 (2)0.0279 (2)0.0592 (9)
C510.3823 (2)0.8425 (3)0.02032 (19)0.0596 (10)
C610.4055 (2)0.7180 (3)0.02032 (19)0.0611 (10)
C710.3631 (2)0.6291 (2)0.02635 (19)0.0542 (8)
C810.29610 (18)0.6647 (2)0.07149 (17)0.0438 (7)
C910.26810 (17)0.7918 (2)0.06919 (16)0.0385 (7)
C1010.31232 (18)0.8838 (2)0.02482 (17)0.0444 (7)
O1W0.2934 (2)0.35132 (18)0.1167 (2)0.0720 (8)
H20.934 (2)0.083 (2)0.210 (7)0.090 (7)*
H31.0743000.2649000.1187000.0620*
H41.0696000.4800000.1155000.0560*
H60.8609000.4774000.2517000.0480*
H70.747 (3)0.263 (3)0.330 (2)0.096 (11)*
H710.3812000.5447000.0264000.0650*
H110.169 (2)0.764 (2)0.1309 (19)0.065 (8)*
H210.1168000.9683000.1368000.0650*
H310.1922001.1236000.0735000.0780*
H410.3092001.0713000.0001000.0710*
H510.4127000.9003000.0502000.0720*
H610.4504000.6916000.0520000.0730*
H810.273 (2)0.516 (2)0.120 (2)0.087 (10)*
H1A0.251 (3)0.335 (3)0.043 (3)0.116 (15)*
H1B0.359 (3)0.321 (3)0.142 (2)0.081 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S50.0417 (3)0.0464 (4)0.0496 (3)0.0007 (2)0.0301 (3)0.0001 (2)
O20.0591 (11)0.0485 (10)0.0704 (11)0.0021 (8)0.0307 (9)0.0075 (8)
O510.0494 (10)0.0604 (10)0.0595 (9)0.0117 (8)0.0290 (8)0.0028 (8)
O520.0663 (11)0.0582 (10)0.0545 (9)0.0083 (8)0.0325 (9)0.0111 (8)
O530.0775 (12)0.0602 (10)0.0983 (13)0.0014 (9)0.0709 (11)0.0054 (9)
O710.0673 (12)0.0566 (11)0.0823 (12)0.0160 (9)0.0546 (11)0.0072 (9)
O720.0646 (12)0.0451 (10)0.0800 (12)0.0107 (8)0.0369 (10)0.0013 (8)
C10.0340 (11)0.0470 (13)0.0365 (11)0.0035 (9)0.0141 (10)0.0032 (9)
C20.0388 (12)0.0460 (14)0.0408 (12)0.0038 (10)0.0143 (10)0.0053 (10)
C30.0483 (14)0.0611 (16)0.0528 (13)0.0098 (12)0.0305 (12)0.0058 (11)
C40.0412 (13)0.0578 (15)0.0482 (13)0.0039 (11)0.0273 (11)0.0027 (10)
C50.0301 (11)0.0497 (13)0.0333 (10)0.0001 (9)0.0161 (9)0.0010 (9)
C60.0339 (11)0.0481 (13)0.0391 (11)0.0011 (9)0.0195 (10)0.0061 (9)
C70.0384 (13)0.0530 (15)0.0459 (12)0.0091 (11)0.0181 (11)0.0059 (11)
O810.0622 (11)0.0412 (9)0.0839 (11)0.0056 (8)0.0465 (10)0.0076 (9)
N110.0428 (11)0.0430 (11)0.0470 (11)0.0021 (9)0.0255 (9)0.0007 (8)
C210.0555 (15)0.0474 (15)0.0672 (15)0.0011 (12)0.0352 (13)0.0041 (11)
C310.0757 (19)0.0381 (14)0.0907 (19)0.0036 (12)0.0478 (17)0.0003 (13)
C410.0609 (16)0.0505 (15)0.0677 (15)0.0095 (13)0.0324 (14)0.0091 (12)
C510.0491 (15)0.085 (2)0.0474 (14)0.0064 (13)0.0257 (12)0.0120 (13)
C610.0487 (15)0.092 (2)0.0494 (14)0.0082 (14)0.0292 (12)0.0008 (13)
C710.0490 (14)0.0599 (15)0.0517 (14)0.0068 (12)0.0230 (12)0.0020 (11)
C810.0376 (12)0.0513 (14)0.0415 (12)0.0017 (10)0.0184 (10)0.0003 (10)
C910.0338 (11)0.0448 (12)0.0339 (11)0.0024 (9)0.0142 (10)0.0014 (9)
C1010.0384 (12)0.0541 (14)0.0382 (12)0.0066 (10)0.0166 (10)0.0033 (10)
O1W0.0760 (15)0.0543 (11)0.0708 (14)0.0174 (10)0.0240 (12)0.0019 (9)
Geometric parameters (Å, º) top
S5—O511.4693 (19)C4—C51.389 (3)
S5—O521.4397 (16)C5—C61.379 (3)
S5—O531.431 (2)C3—H30.9302
S5—C51.764 (2)C4—H40.9305
O2—C21.351 (3)C6—H60.9297
O71—C71.319 (3)C21—C311.370 (4)
O72—C71.213 (3)C31—C411.357 (4)
O2—H20.83 (6)C41—C1011.398 (3)
O71—H70.83 (4)C51—C611.361 (5)
O81—C811.357 (3)C51—C1011.406 (4)
O81—H810.82 (3)C61—C711.399 (4)
O1W—H1B0.83 (4)C71—C811.354 (4)
O1W—H1A0.89 (4)C81—C911.400 (3)
N11—C911.363 (3)C91—C1011.417 (3)
N11—C211.319 (3)C21—H210.9300
N11—H110.90 (2)C31—H310.9302
C1—C71.479 (3)C41—H410.9296
C1—C21.402 (3)C51—H510.9292
C1—C61.390 (3)C61—H610.9300
C2—C31.384 (4)C71—H710.9303
C3—C41.369 (3)
O51—S5—O52110.65 (11)C3—C4—H4119.91
O51—S5—O53111.16 (10)C1—C6—H6119.56
O51—S5—C5105.41 (10)C5—C6—H6119.54
O52—S5—O53114.61 (11)N11—C21—C31120.3 (3)
O52—S5—C5107.30 (9)C21—C31—C41119.6 (2)
O53—S5—C5107.14 (11)C31—C41—C101121.4 (2)
C2—O2—H2110 (2)C61—C51—C101120.1 (3)
C7—O71—H7112 (2)C51—C61—C71121.3 (3)
C81—O81—H81110 (3)C61—C71—C81120.7 (2)
H1A—O1W—H1B110 (3)O81—C81—C71126.0 (2)
C21—N11—C91123.0 (2)C71—C81—C91119.0 (2)
C21—N11—H11125.0 (17)O81—C81—C91114.9 (2)
C91—N11—H11112.0 (17)C81—C91—C101121.3 (2)
C6—C1—C7121.5 (2)N11—C91—C101118.6 (2)
C2—C1—C7119.37 (19)N11—C91—C81120.1 (2)
C2—C1—C6119.2 (2)C41—C101—C51125.3 (2)
O2—C2—C3118.4 (2)C41—C101—C91117.1 (2)
C1—C2—C3119.3 (2)C51—C101—C91117.6 (2)
O2—C2—C1122.3 (2)N11—C21—H21119.82
C2—C3—C4121.0 (2)C31—C21—H21119.88
C3—C4—C5120.3 (2)C41—C31—H31120.18
S5—C5—C6119.42 (17)C21—C31—H31120.26
S5—C5—C4121.14 (17)C31—C41—H41119.28
C4—C5—C6119.4 (2)C101—C41—H41119.30
C1—C6—C5120.9 (2)C101—C51—H51119.93
O71—C7—C1112.78 (19)C61—C51—H51120.00
O72—C7—C1123.4 (2)C51—C61—H61119.30
O71—C7—O72123.8 (2)C71—C61—H61119.41
C2—C3—H3119.49C61—C71—H71119.64
C4—C3—H3119.55C81—C71—H71119.70
C5—C4—H4119.83
O51—S5—C5—C4120.03 (18)C3—C4—C5—S5179.39 (17)
O52—S5—C5—C4121.99 (18)C3—C4—C5—C60.0 (3)
O53—S5—C5—C41.6 (2)C4—C5—C6—C10.6 (3)
O51—S5—C5—C659.36 (18)S5—C5—C6—C1180.0 (11)
O52—S5—C5—C658.62 (19)N11—C21—C31—C412.1 (4)
O53—S5—C5—C6177.84 (16)C21—C31—C41—C1011.4 (4)
C21—N11—C91—C81179.5 (2)C31—C41—C101—C910.5 (3)
C21—N11—C91—C1011.4 (3)C31—C41—C101—C51178.4 (2)
C91—N11—C21—C310.7 (3)C61—C51—C101—C910.0 (3)
C6—C1—C2—C31.3 (3)C101—C51—C61—C711.5 (4)
C6—C1—C7—O72178.6 (2)C61—C51—C101—C41178.9 (2)
C7—C1—C2—C3179.4 (2)C51—C61—C71—C811.0 (4)
C2—C1—C7—O720.6 (3)C61—C71—C81—O81178.8 (2)
C2—C1—C6—C51.3 (3)C61—C71—C81—C911.0 (3)
C6—C1—C7—O711.5 (3)O81—C81—C91—C101177.27 (19)
C2—C1—C7—O71179.28 (19)C71—C81—C91—N11176.6 (2)
C6—C1—C2—O2177.92 (19)C71—C81—C91—C1012.6 (3)
C7—C1—C2—O21.3 (3)O81—C81—C91—N113.6 (3)
C7—C1—C6—C5179.50 (19)C81—C91—C101—C512.1 (3)
C1—C2—C3—C40.8 (3)C81—C91—C101—C41178.9 (2)
O2—C2—C3—C4178.5 (2)N11—C91—C101—C51177.1 (2)
C2—C3—C4—C50.1 (3)N11—C91—C101—C411.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O720.83 (6)1.88 (6)2.602 (3)146 (2)
O81—H81···O1W0.82 (3)1.77 (4)2.585 (3)169 (3)
O1W—H1A···O51i0.89 (4)1.86 (4)2.748 (3)179 (4)
O1W—H1B···O52ii0.83 (4)2.02 (4)2.832 (3)166 (3)
O71—H7···O51ii0.83 (4)1.79 (4)2.607 (3)169 (3)
N11—H11···O810.90 (2)2.21 (2)2.658 (3)110 (2)
N11—H11···O53iii0.90 (2)1.99 (3)2.733 (3)140 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y1/2, z+1/2; (iii) x1, y, z.
(III) 8-aminoquinolinium 3-carboxy-4-hydroxybenzenesulfonate dihydrate top
Crystal data top
C9H9N2+·C7H5O6S·2H2OZ = 2
Mr = 398.39F(000) = 416
Triclinic, P1Dx = 1.510 Mg m3
Hall symbol: -P 1Melting point = 504.8–507.4 K
a = 6.9047 (9) ÅMo Kα radiation, λ = 0.71069 Å
b = 9.2914 (12) ÅCell parameters from 1719 reflections
c = 14.5106 (19) Åθ = 2.3–26.2°
α = 73.240 (2)°µ = 0.23 mm1
β = 84.138 (3)°T = 295 K
γ = 79.889 (2)°Block, brown
V = 876.2 (2) Å30.45 × 0.40 × 0.35 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3050 independent reflections
Radiation source: sealed tube2364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 87
Tmin = 0.900, Tmax = 0.921k = 1011
4662 measured reflectionsl = 917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0502P)2]
where P = (Fo2 + 2Fc2)/3
3050 reflections(Δ/σ)max = 0.008
308 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C9H9N2+·C7H5O6S·2H2Oγ = 79.889 (2)°
Mr = 398.39V = 876.2 (2) Å3
Triclinic, P1Z = 2
a = 6.9047 (9) ÅMo Kα radiation
b = 9.2914 (12) ŵ = 0.23 mm1
c = 14.5106 (19) ÅT = 295 K
α = 73.240 (2)°0.45 × 0.40 × 0.35 mm
β = 84.138 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3050 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2364 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.921Rint = 0.027
4662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.33 e Å3
3050 reflectionsΔρmin = 0.31 e Å3
308 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S50.41756 (8)0.59198 (6)0.21867 (4)0.0465 (2)
O20.2601 (2)1.06282 (19)0.14910 (11)0.0540 (6)
O51A0.2608 (7)0.6193 (7)0.2911 (4)0.0649 (11)0.743 (18)
O52A0.6055 (10)0.6076 (8)0.2492 (5)0.0643 (17)0.743 (18)
O53A0.4170 (13)0.4511 (5)0.1978 (5)0.0725 (17)0.743 (18)
O710.1161 (2)1.17200 (16)0.11162 (11)0.0468 (5)
O720.12406 (19)1.25428 (15)0.04879 (10)0.0482 (5)
C10.2377 (2)0.9945 (2)0.02500 (14)0.0344 (6)
C20.2897 (3)0.9599 (2)0.06316 (14)0.0388 (7)
C30.3785 (3)0.8136 (2)0.06288 (16)0.0473 (8)
C40.4163 (3)0.7040 (2)0.02193 (16)0.0461 (7)
C50.3636 (3)0.7360 (2)0.11011 (15)0.0384 (7)
C60.2743 (3)0.8805 (2)0.11077 (14)0.0351 (6)
C70.1539 (3)1.1510 (2)0.02560 (15)0.0364 (7)
O53B0.517 (3)0.4587 (15)0.1842 (10)0.057 (4)0.257 (18)
O51B0.2268 (13)0.5593 (19)0.2594 (11)0.056 (3)0.257 (18)
O52B0.536 (3)0.6453 (19)0.2638 (12)0.053 (4)0.257 (18)
N110.8266 (2)0.0405 (2)0.39387 (13)0.0438 (6)
N810.7896 (3)0.2952 (3)0.5563 (2)0.0655 (8)
C210.8499 (3)0.0743 (3)0.31707 (16)0.0514 (8)
C310.8095 (3)0.2225 (3)0.32312 (18)0.0568 (8)
C410.7457 (3)0.2485 (3)0.40891 (18)0.0551 (9)
C510.6533 (3)0.1501 (3)0.58193 (18)0.0583 (9)
C610.6297 (3)0.0266 (3)0.65844 (17)0.0624 (9)
C710.6743 (3)0.1203 (3)0.65028 (16)0.0591 (9)
C810.7425 (3)0.1503 (2)0.56372 (16)0.0465 (8)
C910.7637 (2)0.0219 (2)0.48327 (14)0.0378 (6)
C1010.7207 (3)0.1270 (2)0.49246 (16)0.0447 (7)
O1W0.0539 (4)0.4422 (2)0.12466 (16)0.0767 (8)
O2W0.8752 (4)0.6827 (2)0.35171 (14)0.0673 (7)
H30.4125000.7898000.1211000.0570*
H710.080 (3)1.269 (3)0.1079 (16)0.058 (7)*
H40.4779000.6071000.0208000.0550*
H60.2377000.9023000.1693000.0420*
H20.224 (4)1.143 (3)0.136 (2)0.085 (10)*
H70.6580000.2011000.7044000.0710*
H110.852 (3)0.136 (3)0.3827 (16)0.061 (7)*
H210.8939000.0553000.2583000.0620*
H310.8261000.3031000.2689000.0680*
H410.7176000.3480000.4132000.0660*
H510.6250000.2478000.5894000.0700*
H610.5822000.0419000.7177000.0750*
H81A0.819 (4)0.318 (3)0.500 (2)0.074 (9)*
H81B0.768 (4)0.365 (3)0.608 (2)0.101 (11)*
H1A0.154 (7)0.469 (5)0.154 (3)0.20 (2)*
H1B0.037 (5)0.512 (4)0.098 (3)0.121 (13)*
H2A0.786 (5)0.660 (3)0.325 (2)0.110 (13)*
H2B0.984 (5)0.662 (4)0.327 (3)0.120 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S50.0495 (3)0.0300 (3)0.0549 (4)0.0022 (2)0.0097 (3)0.0039 (2)
O20.0720 (11)0.0501 (10)0.0370 (9)0.0090 (8)0.0004 (8)0.0086 (8)
O51A0.0687 (18)0.059 (2)0.052 (2)0.0020 (16)0.0039 (16)0.0012 (18)
O52A0.054 (3)0.057 (3)0.076 (3)0.007 (2)0.024 (2)0.0030 (19)
O53A0.097 (4)0.0313 (14)0.091 (3)0.007 (2)0.039 (3)0.0097 (14)
O710.0638 (9)0.0284 (8)0.0446 (9)0.0009 (7)0.0035 (7)0.0102 (7)
O720.0565 (9)0.0341 (8)0.0458 (9)0.0009 (6)0.0037 (7)0.0016 (7)
C10.0331 (10)0.0313 (10)0.0387 (11)0.0057 (8)0.0009 (9)0.0095 (9)
C20.0373 (11)0.0393 (11)0.0388 (12)0.0088 (9)0.0008 (9)0.0078 (10)
C30.0530 (13)0.0474 (13)0.0461 (13)0.0081 (10)0.0053 (11)0.0225 (11)
C40.0472 (12)0.0337 (11)0.0595 (15)0.0019 (9)0.0013 (11)0.0200 (11)
C50.0364 (10)0.0308 (11)0.0469 (13)0.0042 (8)0.0053 (9)0.0086 (9)
C60.0362 (10)0.0333 (10)0.0364 (11)0.0056 (8)0.0014 (9)0.0105 (9)
C70.0338 (10)0.0315 (11)0.0419 (13)0.0062 (8)0.0012 (9)0.0065 (10)
O53B0.085 (9)0.025 (4)0.059 (5)0.018 (6)0.027 (6)0.017 (4)
O51B0.054 (4)0.055 (6)0.049 (6)0.013 (4)0.002 (3)0.001 (5)
O52B0.058 (9)0.050 (7)0.056 (6)0.001 (5)0.037 (6)0.014 (4)
N110.0388 (9)0.0470 (11)0.0440 (11)0.0036 (8)0.0032 (8)0.0117 (9)
N810.0794 (15)0.0512 (14)0.0550 (15)0.0076 (11)0.0041 (13)0.0013 (12)
C210.0438 (12)0.0657 (16)0.0395 (13)0.0117 (11)0.0020 (10)0.0057 (12)
C310.0515 (13)0.0510 (14)0.0582 (16)0.0119 (11)0.0004 (12)0.0016 (12)
C410.0440 (13)0.0443 (13)0.0754 (18)0.0054 (10)0.0073 (12)0.0134 (13)
C510.0441 (13)0.0732 (17)0.0671 (17)0.0029 (11)0.0083 (12)0.0360 (15)
C610.0464 (13)0.103 (2)0.0439 (15)0.0107 (13)0.0021 (11)0.0305 (15)
C710.0472 (13)0.0857 (19)0.0383 (14)0.0124 (12)0.0052 (11)0.0052 (13)
C810.0355 (11)0.0537 (14)0.0464 (14)0.0057 (10)0.0093 (10)0.0059 (11)
C910.0284 (10)0.0489 (12)0.0343 (11)0.0039 (9)0.0027 (9)0.0093 (10)
C1010.0322 (11)0.0526 (13)0.0513 (14)0.0028 (9)0.0054 (10)0.0184 (11)
O1W0.1008 (15)0.0379 (10)0.0925 (15)0.0009 (10)0.0320 (13)0.0175 (10)
O2W0.0624 (12)0.0686 (12)0.0764 (13)0.0006 (10)0.0088 (11)0.0333 (10)
Geometric parameters (Å, º) top
S5—O51A1.472 (6)C1—C71.470 (3)
S5—O52A1.457 (7)C2—C31.389 (3)
S5—O53A1.427 (5)C3—C41.367 (3)
S5—C51.772 (2)C4—C51.394 (3)
S5—O51B1.433 (11)C5—C61.378 (3)
S5—O52B1.335 (19)C3—H30.9310
S5—O53B1.498 (15)C4—H40.9297
O2—C21.344 (3)C6—H60.9293
O71—C71.312 (3)C21—C311.383 (4)
O72—C71.228 (2)C31—C411.351 (4)
O2—H20.81 (3)C41—C1011.418 (3)
O71—H710.88 (3)C51—C611.367 (4)
O1W—H1A0.95 (5)C51—C1011.397 (3)
O1W—H1B0.85 (4)C61—C711.382 (4)
O2W—H2A0.85 (3)C71—C811.383 (3)
O2W—H2B0.81 (4)C81—C911.425 (3)
N11—C911.374 (3)C91—C1011.405 (3)
N11—C211.320 (3)C21—H210.9305
N81—C811.361 (3)C31—H310.9300
N11—H110.93 (3)C41—H410.9295
N81—H81B0.86 (3)C51—H510.9296
N81—H81A0.90 (3)C61—H610.9294
C1—C61.395 (3)C71—H70.9298
C1—C21.404 (3)
O51A—S5—O52A109.2 (3)O71—C7—C1114.82 (17)
O51A—S5—O53A111.9 (4)O72—C7—C1122.46 (18)
O51A—S5—C5106.9 (2)C4—C3—H3119.60
O52A—S5—O53A114.1 (5)C2—C3—H3119.64
O52A—S5—C5108.3 (3)C5—C4—H4119.64
O53A—S5—C5106.0 (3)C3—C4—H4119.64
O51B—S5—C5103.2 (6)C5—C6—H6119.48
O52B—S5—C5105.8 (7)C1—C6—H6119.48
O53B—S5—C5103.2 (5)N11—C21—C31120.6 (2)
O51B—S5—O52B121.9 (10)C21—C31—C41119.1 (2)
O51B—S5—O53B107.1 (10)C31—C41—C101121.3 (2)
O52B—S5—O53B113.5 (11)C61—C51—C101118.9 (2)
C2—O2—H2104 (2)C51—C61—C71122.0 (2)
C7—O71—H71111.1 (15)C61—C71—C81121.7 (2)
H1A—O1W—H1B119 (4)N81—C81—C91121.9 (2)
H2A—O2W—H2B112 (3)N81—C81—C71121.6 (2)
C21—N11—C91123.2 (2)C71—C81—C91116.56 (19)
C91—N11—H11121.9 (14)N11—C91—C101117.96 (18)
C21—N11—H11114.9 (14)N11—C91—C81120.67 (18)
H81A—N81—H81B120 (3)C81—C91—C101121.37 (18)
C81—N81—H81B115.2 (19)C51—C101—C91119.4 (2)
C81—N81—H81A123.5 (18)C41—C101—C51122.7 (2)
C6—C1—C7121.06 (18)C41—C101—C91117.9 (2)
C2—C1—C6119.15 (17)C31—C21—H21119.66
C2—C1—C7119.73 (17)N11—C21—H21119.70
O2—C2—C1123.08 (18)C21—C31—H31120.43
C1—C2—C3119.25 (18)C41—C31—H31120.51
O2—C2—C3117.67 (18)C31—C41—H41119.33
C2—C3—C4120.76 (19)C101—C41—H41119.37
C3—C4—C5120.72 (18)C101—C51—H51120.58
S5—C5—C4119.55 (15)C61—C51—H51120.51
C4—C5—C6119.06 (19)C51—C61—H61119.02
S5—C5—C6121.38 (16)C71—C61—H61119.01
C1—C6—C5121.05 (18)C81—C71—H7119.12
O71—C7—O72122.71 (18)C61—C71—H7119.15
O51A—S5—C5—C4148.1 (3)C3—C4—C5—C60.6 (3)
O51A—S5—C5—C633.4 (3)C3—C4—C5—S5179.21 (17)
O52A—S5—C5—C494.3 (3)S5—C5—C6—C1178.04 (15)
O52A—S5—C5—C684.2 (4)C4—C5—C6—C10.5 (3)
O53A—S5—C5—C428.6 (4)N11—C21—C31—C410.0 (3)
O53A—S5—C5—C6152.9 (4)C21—C31—C41—C1010.4 (3)
C21—N11—C91—C1010.6 (3)C31—C41—C101—C910.2 (3)
C91—N11—C21—C310.5 (3)C31—C41—C101—C51179.4 (2)
C21—N11—C91—C81179.59 (18)C101—C51—C61—C711.3 (3)
C2—C1—C7—O71178.01 (17)C61—C51—C101—C910.4 (3)
C6—C1—C2—O2179.87 (18)C61—C51—C101—C41178.7 (2)
C7—C1—C2—C3176.56 (18)C51—C61—C71—C811.0 (3)
C2—C1—C6—C51.2 (3)C61—C71—C81—N81178.8 (2)
C7—C1—C6—C5176.11 (19)C61—C71—C81—C910.2 (3)
C7—C1—C2—O22.5 (3)C71—C81—C91—N11178.63 (17)
C6—C1—C7—O710.7 (3)N81—C81—C91—C101177.9 (2)
C6—C1—C7—O72178.41 (18)N81—C81—C91—N112.3 (3)
C2—C1—C7—O721.1 (3)C71—C81—C91—C1011.1 (3)
C6—C1—C2—C30.8 (3)N11—C91—C101—C51178.94 (17)
C1—C2—C3—C40.3 (3)C81—C91—C101—C510.8 (3)
O2—C2—C3—C4178.80 (19)C81—C91—C101—C41180.0 (10)
C2—C3—C4—C51.1 (3)N11—C91—C101—C410.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O720.81 (3)1.86 (3)2.606 (2)151 (3)
O1W—H1A···O53A0.95 (5)1.95 (5)2.844 (9)156 (4)
O1W—H1B···O72i0.85 (4)2.08 (4)2.819 (3)145 (3)
O2W—H2A···O52A0.85 (3)1.95 (3)2.791 (8)172 (3)
O2W—H2B···O51Aii0.81 (4)1.93 (4)2.735 (6)168 (4)
N11—H11···O2Wiii0.93 (3)1.84 (3)2.768 (3)173 (2)
O71—H71···O1Wiv0.88 (3)1.67 (3)2.530 (2)164 (2)
N81—H81A···O2Wiii0.90 (3)2.15 (3)3.026 (3)167 (3)
N81—H81B···O51Av0.86 (3)2.42 (3)3.234 (7)158 (3)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1, y, z+1.
(IV) Quinolinium-2-carboxylic acid 3-carboxy-4-hydroxybenzenesulfonate 2-carboxylatoquinolinium top
Crystal data top
C10H8NO2+·C7H5O6S·C10H7NO2F(000) = 1168
Mr = 564.52Dx = 1.529 Mg m3
Monoclinic, P21/nMelting point = 484.5–488.1 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.3173 (10) ÅCell parameters from 4705 reflections
b = 11.2674 (14) Åθ = 2.4–27.4°
c = 26.245 (3) ŵ = 0.20 mm1
β = 94.284 (2)°T = 295 K
V = 2452.6 (5) Å3Block, yellow
Z = 40.45 × 0.30 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3671 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
ϕ and ω scansh = 99
12592 measured reflectionsk = 1113
4316 independent reflectionsl = 2631
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.819P]
where P = (Fo2 + 2Fc2)/3
4316 reflections(Δ/σ)max = 0.001
381 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C10H8NO2+·C7H5O6S·C10H7NO2V = 2452.6 (5) Å3
Mr = 564.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3173 (10) ŵ = 0.20 mm1
b = 11.2674 (14) ÅT = 295 K
c = 26.245 (3) Å0.45 × 0.30 × 0.30 mm
β = 94.284 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3671 reflections with I > 2σ(I)
12592 measured reflectionsRint = 0.021
4316 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.27 e Å3
4316 reflectionsΔρmin = 0.27 e Å3
381 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1110.71567 (16)0.86272 (13)0.99290 (5)0.0469 (5)
O1210.93706 (16)0.79585 (16)0.95900 (6)0.0616 (6)
N110.53381 (18)0.73187 (14)0.92321 (6)0.0345 (4)*
C210.6881 (2)0.75221 (16)0.91637 (7)0.0336 (6)
C310.7478 (2)0.72466 (17)0.86988 (7)0.0384 (6)
C410.6469 (2)0.67856 (17)0.83113 (7)0.0396 (6)
C510.3728 (3)0.61320 (18)0.79961 (8)0.0465 (7)
C610.2180 (3)0.5933 (2)0.80978 (9)0.0541 (8)
C710.1662 (2)0.61412 (19)0.85842 (9)0.0513 (8)
C810.2672 (2)0.66019 (18)0.89686 (8)0.0441 (6)
C910.4271 (2)0.68347 (16)0.88680 (7)0.0339 (6)
C1010.4843 (2)0.65757 (16)0.83838 (7)0.0351 (6)
C1110.7873 (2)0.80930 (18)0.96076 (7)0.0375 (6)
O1120.11108 (15)0.86705 (14)1.03354 (6)0.0520 (5)
O1220.33351 (16)0.83393 (13)0.99252 (5)0.0482 (5)
N120.51543 (17)0.92904 (14)1.07195 (6)0.0327 (5)
C220.3592 (2)0.91029 (16)1.07631 (7)0.0322 (5)
C320.2922 (2)0.93438 (17)1.12215 (7)0.0381 (6)
C420.3863 (2)0.98362 (18)1.16165 (7)0.0395 (6)
C520.6512 (2)1.06521 (18)1.19472 (7)0.0417 (6)
C620.8087 (3)1.08419 (18)1.18764 (8)0.0456 (7)
C720.8728 (2)1.04937 (18)1.14186 (8)0.0459 (7)
C820.7801 (2)0.99647 (18)1.10322 (7)0.0400 (6)
C920.6165 (2)0.97762 (15)1.11013 (7)0.0322 (5)
C1020.5494 (2)1.00952 (16)1.15627 (6)0.0344 (6)
C1120.2632 (2)0.86491 (17)1.02930 (7)0.0363 (6)
S50.22558 (5)0.65152 (5)1.210470 (18)0.0393 (2)
O20.6306 (2)0.60526 (17)1.03599 (6)0.0597 (6)
O510.12877 (15)0.75942 (12)1.20158 (5)0.0448 (5)
O520.12588 (18)0.54654 (14)1.20871 (6)0.0576 (5)
O530.33467 (17)0.66062 (16)1.25547 (5)0.0620 (6)
O720.87263 (17)0.67475 (16)1.09751 (6)0.0617 (6)
O710.82618 (17)0.72758 (15)1.17707 (6)0.0528 (5)
C10.6069 (2)0.65963 (16)1.12388 (7)0.0365 (6)
C20.5408 (2)0.61874 (18)1.07661 (7)0.0411 (6)
C30.3776 (2)0.59064 (18)1.07032 (7)0.0435 (6)
C40.2816 (2)0.60193 (18)1.11038 (7)0.0404 (6)
C50.3475 (2)0.64058 (16)1.15786 (7)0.0346 (6)
C60.5077 (2)0.67018 (16)1.16414 (7)0.0347 (6)
C70.7809 (2)0.68828 (19)1.13150 (8)0.0431 (7)
H110.502 (3)0.751 (2)0.9520 (9)0.054 (7)*
H310.8560000.7374000.8650000.0460*
H410.6867000.6611000.7998000.0480*
H510.4059000.5977000.7672000.0560*
H610.1450000.5654000.7840000.0650*
H710.0604000.5962000.8648000.0620*
H810.2307000.6757000.9288000.0530*
H1120.044 (3)0.839 (2)1.0050 (10)0.101 (10)*
H120.555 (3)0.911 (2)1.0419 (8)0.052 (6)*
H320.1844000.9172001.1260000.0460*
H420.3418001.0001001.1923000.0470*
H520.6097001.0889001.2250000.0500*
H620.8749001.1205001.2132000.0550*
H720.9815001.0628001.1378000.0550*
H820.8240000.9736001.0732000.0480*
H70.938 (3)0.739 (2)1.1827 (10)0.082 (8)*
H20.726 (3)0.624 (2)1.0475 (9)0.063 (8)*
H30.3333000.5641001.0388000.0520*
H40.1724000.5837001.1058000.0490*
H60.5507000.6977001.1957000.0420*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1110.0380 (7)0.0620 (10)0.0410 (8)0.0043 (7)0.0043 (6)0.0150 (7)
O1210.0286 (8)0.0975 (13)0.0576 (10)0.0015 (8)0.0034 (7)0.0298 (9)
C210.0294 (9)0.0348 (10)0.0363 (10)0.0013 (8)0.0006 (8)0.0009 (7)
C310.0327 (10)0.0419 (11)0.0413 (11)0.0013 (8)0.0071 (8)0.0028 (8)
C410.0494 (11)0.0371 (11)0.0330 (10)0.0005 (9)0.0079 (9)0.0024 (8)
C510.0547 (13)0.0432 (12)0.0402 (11)0.0004 (10)0.0067 (9)0.0091 (9)
C610.0509 (13)0.0470 (13)0.0611 (14)0.0027 (10)0.0180 (11)0.0149 (10)
C710.0341 (11)0.0438 (12)0.0747 (16)0.0015 (9)0.0042 (10)0.0140 (11)
C810.0352 (10)0.0441 (11)0.0532 (12)0.0016 (9)0.0048 (9)0.0097 (9)
C910.0307 (9)0.0326 (10)0.0376 (10)0.0005 (8)0.0031 (8)0.0031 (8)
C1010.0405 (10)0.0298 (9)0.0344 (10)0.0010 (8)0.0011 (8)0.0012 (7)
C1110.0323 (10)0.0432 (11)0.0365 (10)0.0040 (8)0.0002 (8)0.0014 (8)
O1120.0276 (7)0.0787 (11)0.0495 (9)0.0060 (7)0.0018 (6)0.0146 (7)
O1220.0361 (7)0.0697 (10)0.0386 (8)0.0020 (7)0.0014 (6)0.0151 (7)
N110.0320 (8)0.0421 (9)0.0297 (8)0.0021 (7)0.0030 (7)0.0042 (7)
N120.0305 (8)0.0392 (9)0.0283 (8)0.0009 (7)0.0025 (6)0.0021 (6)
C220.0295 (9)0.0332 (10)0.0339 (9)0.0019 (8)0.0016 (7)0.0024 (7)
C320.0333 (10)0.0438 (11)0.0376 (10)0.0004 (8)0.0063 (8)0.0022 (8)
C420.0446 (11)0.0445 (11)0.0299 (10)0.0049 (9)0.0068 (8)0.0011 (8)
C520.0519 (12)0.0417 (11)0.0305 (10)0.0030 (9)0.0035 (8)0.0009 (8)
C620.0499 (12)0.0417 (11)0.0425 (11)0.0014 (10)0.0144 (9)0.0037 (9)
C720.0346 (10)0.0464 (12)0.0553 (13)0.0027 (9)0.0059 (9)0.0019 (10)
C820.0344 (10)0.0448 (11)0.0408 (10)0.0005 (9)0.0026 (8)0.0025 (9)
C920.0328 (9)0.0308 (9)0.0322 (9)0.0018 (7)0.0038 (7)0.0013 (7)
C1020.0384 (10)0.0341 (10)0.0303 (9)0.0045 (8)0.0006 (8)0.0032 (7)
C1120.0322 (10)0.0391 (11)0.0373 (10)0.0007 (8)0.0003 (8)0.0013 (8)
S50.0283 (2)0.0534 (3)0.0366 (3)0.0015 (2)0.0053 (2)0.0027 (2)
O20.0564 (10)0.0839 (12)0.0409 (9)0.0041 (9)0.0170 (8)0.0048 (8)
O510.0307 (7)0.0510 (9)0.0532 (8)0.0016 (6)0.0067 (6)0.0029 (6)
O520.0534 (9)0.0553 (9)0.0667 (10)0.0094 (7)0.0221 (8)0.0083 (7)
O530.0385 (8)0.1120 (14)0.0353 (8)0.0113 (8)0.0008 (6)0.0010 (8)
O710.0397 (8)0.0906 (13)0.0570 (10)0.0010 (8)0.0181 (7)0.0063 (8)
O720.0283 (8)0.0763 (11)0.0538 (9)0.0017 (7)0.0021 (6)0.0027 (8)
C10.0316 (9)0.0390 (10)0.0391 (10)0.0047 (8)0.0045 (8)0.0058 (8)
C20.0470 (11)0.0417 (11)0.0358 (10)0.0042 (9)0.0104 (9)0.0047 (8)
C30.0464 (11)0.0478 (12)0.0355 (10)0.0031 (9)0.0020 (9)0.0022 (9)
C40.0342 (10)0.0444 (11)0.0421 (11)0.0027 (9)0.0012 (8)0.0014 (9)
C50.0307 (9)0.0366 (10)0.0368 (10)0.0031 (8)0.0038 (8)0.0043 (8)
C60.0308 (9)0.0393 (10)0.0339 (10)0.0034 (8)0.0013 (7)0.0031 (8)
C70.0351 (10)0.0466 (12)0.0483 (12)0.0044 (9)0.0076 (9)0.0116 (9)
Geometric parameters (Å, º) top
S5—O531.4382 (14)C41—H410.9301
S5—C51.7774 (18)C51—H510.9299
S5—O511.4672 (14)C61—H610.9294
S5—O521.4433 (16)C71—H710.9301
O111—C1111.226 (2)C81—H810.9292
O121—C1111.259 (2)C22—C321.390 (3)
O112—C1121.279 (2)C22—C1121.508 (3)
O122—C1121.217 (2)C32—C421.369 (3)
O2—C21.355 (2)C42—C1021.405 (2)
O112—H1120.95 (3)C52—C1021.415 (2)
O72—C71.226 (2)C52—C621.354 (3)
O71—C71.304 (3)C62—C721.406 (3)
O2—H20.85 (2)C72—C821.364 (3)
O71—H70.94 (3)C82—C921.402 (2)
N11—C211.329 (2)C92—C1021.417 (2)
N11—C911.368 (2)C32—H320.9301
N11—H110.85 (2)C42—H420.9290
N12—C221.330 (2)C52—H520.9289
N12—C921.373 (2)C62—H620.9303
N12—H120.90 (2)C72—H720.9306
C21—C311.386 (3)C82—H820.9292
C21—C1111.519 (3)C1—C71.482 (2)
C31—C411.371 (3)C1—C21.397 (3)
C41—C1011.400 (2)C1—C61.393 (3)
C51—C611.353 (4)C2—C31.392 (2)
C51—C1011.416 (3)C3—C41.373 (3)
C61—C711.397 (3)C4—C51.393 (3)
C71—C811.366 (3)C5—C61.371 (2)
C81—C911.400 (2)C3—H30.9295
C91—C1011.420 (3)C4—H40.9302
C31—H310.9296C6—H60.9305
O51—S5—C5105.79 (8)C22—C32—C42119.42 (16)
O52—S5—O53114.23 (10)C32—C42—C102120.65 (16)
O52—S5—C5106.14 (9)C62—C52—C102120.39 (17)
O53—S5—C5106.34 (8)C52—C62—C72120.38 (19)
O51—S5—O52111.52 (8)C62—C72—C82121.85 (17)
O51—S5—O53112.12 (9)C72—C82—C92118.03 (17)
C112—O112—H112116.7 (15)N12—C92—C102117.78 (15)
C2—O2—H2104.2 (16)C82—C92—C102121.33 (16)
C7—O71—H7113.9 (16)N12—C92—C82120.88 (16)
C21—N11—C91123.85 (16)C52—C102—C92117.98 (15)
C21—N11—H11116.5 (17)C42—C102—C52123.46 (15)
C91—N11—H11119.7 (17)C42—C102—C92118.56 (15)
C22—N12—C92123.34 (16)O112—C112—O122127.73 (17)
C22—N12—H12117.6 (16)O112—C112—C22112.91 (16)
C92—N12—H12119.0 (16)O122—C112—C22119.34 (15)
N11—C21—C31119.55 (16)C22—C32—H32120.36
N11—C21—C111116.36 (15)C42—C32—H32120.22
C31—C21—C111124.05 (15)C102—C42—H42119.71
C21—C31—C41119.86 (16)C32—C42—H42119.64
C31—C41—C101120.47 (17)C102—C52—H52119.79
C61—C51—C101119.9 (2)C62—C52—H52119.82
C51—C61—C71121.0 (2)C72—C62—H62119.81
C61—C71—C81121.59 (18)C52—C62—H62119.81
C71—C81—C91118.19 (18)C62—C72—H72119.08
N11—C91—C81121.26 (17)C82—C72—H72119.07
N11—C91—C101117.63 (15)C72—C82—H82121.02
C81—C91—C101121.12 (17)C92—C82—H82120.94
C51—C101—C91118.06 (16)C6—C1—C7120.45 (17)
C41—C101—C51123.34 (18)C2—C1—C7120.49 (16)
C41—C101—C91118.59 (16)C2—C1—C6119.04 (16)
O111—C111—O121128.11 (18)O2—C2—C3118.11 (17)
O121—C111—C21113.77 (16)O2—C2—C1122.15 (16)
O111—C111—C21118.12 (15)C1—C2—C3119.74 (16)
C41—C31—H31120.09C2—C3—C4120.40 (17)
C21—C31—H31120.05C3—C4—C5120.10 (16)
C101—C41—H41119.72C4—C5—C6119.82 (16)
C31—C41—H41119.82S5—C5—C4120.49 (13)
C61—C51—H51120.03S5—C5—C6119.69 (14)
C101—C51—H51120.06C1—C6—C5120.87 (17)
C51—C61—H61119.47O71—C7—C1114.20 (16)
C71—C61—H61119.51O71—C7—O72123.83 (17)
C81—C71—H71119.17O72—C7—C1121.96 (18)
C61—C71—H71119.24C2—C3—H3119.81
C71—C81—H81120.89C4—C3—H3119.79
C91—C81—H81120.93C3—C4—H4119.92
N12—C22—C32120.07 (16)C5—C4—H4119.98
N12—C22—C112116.39 (15)C1—C6—H6119.57
C32—C22—C112123.53 (15)C5—C6—H6119.56
O52—S5—C5—C442.26 (18)C112—C22—C32—C42175.20 (18)
O53—S5—C5—C4164.27 (16)N12—C22—C32—C423.6 (3)
O51—S5—C5—C6103.81 (16)N12—C22—C112—O112169.42 (17)
O52—S5—C5—C6137.59 (15)C32—C22—C112—O122172.11 (18)
O53—S5—C5—C615.58 (18)C22—C32—C42—C1020.2 (3)
O51—S5—C5—C476.34 (17)C32—C42—C102—C52177.06 (19)
C91—N11—C21—C111178.57 (17)C32—C42—C102—C923.4 (3)
C21—N11—C91—C81177.69 (18)C62—C52—C102—C42177.90 (19)
C21—N11—C91—C1012.3 (3)C62—C52—C102—C921.6 (3)
C91—N11—C21—C310.6 (3)C102—C52—C62—C720.4 (3)
C92—N12—C22—C112175.49 (16)C52—C62—C72—C820.4 (3)
C22—N12—C92—C82179.36 (18)C62—C72—C82—C920.3 (3)
C22—N12—C92—C1020.3 (3)C72—C82—C92—C1021.6 (3)
C92—N12—C22—C323.4 (3)C72—C82—C92—N12177.45 (18)
C31—C21—C111—O111157.61 (19)C82—C92—C102—C522.3 (3)
C111—C21—C31—C41176.78 (18)N12—C92—C102—C423.6 (3)
N11—C21—C31—C411.1 (3)N12—C92—C102—C52176.80 (16)
N11—C21—C111—O121160.55 (18)C82—C92—C102—C42177.28 (18)
N11—C21—C111—O11120.3 (3)C6—C1—C7—O712.9 (3)
C31—C21—C111—O12121.6 (3)C6—C1—C7—O72176.6 (2)
C21—C31—C41—C1010.9 (3)C2—C1—C6—C50.3 (3)
C31—C41—C101—C910.9 (3)C2—C1—C7—O71178.79 (18)
C31—C41—C101—C51178.24 (18)C7—C1—C6—C5178.09 (18)
C101—C51—C61—C711.0 (3)C6—C1—C2—O2179.35 (18)
C61—C51—C101—C912.0 (3)C6—C1—C2—C30.7 (3)
C61—C51—C101—C41178.9 (2)C7—C1—C2—O21.0 (3)
C51—C61—C71—C813.0 (3)C7—C1—C2—C3179.09 (18)
C61—C71—C81—C911.7 (3)C2—C1—C7—O721.7 (3)
C71—C81—C91—C1011.4 (3)C1—C2—C3—C40.5 (3)
C71—C81—C91—N11178.64 (18)O2—C2—C3—C4179.5 (2)
N11—C91—C101—C51176.80 (17)C2—C3—C4—C50.6 (3)
C81—C91—C101—C513.2 (3)C3—C4—C5—C61.6 (3)
C81—C91—C101—C41177.61 (18)C3—C4—C5—S5178.22 (15)
N11—C91—C101—C412.4 (3)C4—C5—C6—C11.5 (3)
N12—C22—C112—O1229.0 (3)S5—C5—C6—C1178.40 (14)
C32—C22—C112—O1129.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O720.85 (2)1.82 (2)2.605 (2)153 (2)
N11—H11···O1110.85 (2)2.37 (2)2.719 (2)105.4 (19)
N11—H11···O1220.85 (2)2.05 (2)2.803 (2)148 (2)
N12—H12···O1110.90 (2)2.00 (2)2.855 (2)159 (2)
N12—H12···O1220.90 (2)2.34 (2)2.704 (2)104.2 (18)
O71—H7···O51i0.94 (3)1.64 (3)2.5758 (19)172 (3)
O112—H112···O121ii0.95 (3)1.52 (3)2.478 (2)179 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC9H8N+·C7H5O6S·3H2OC9H8NO+·C7H5O6S·H2OC9H9N2+·C7H5O6S·2H2OC10H8NO2+·C7H5O6S·C10H7NO2
Mr401.38381.35398.39564.52
Crystal system, space groupMonoclinic, C2/cMonoclinic, P21/nTriclinic, P1Monoclinic, P21/n
Temperature (K)295295295295
a, b, c (Å)29.194 (2), 7.2253 (5), 18.2715 (13)13.236 (2), 10.6515 (18), 13.549 (2)6.9047 (9), 9.2914 (12), 14.5106 (19)8.3173 (10), 11.2674 (14), 26.245 (3)
α, β, γ (°)90, 110.524 (1), 9090, 119.135 (3), 9073.240 (2), 84.138 (3), 79.889 (2)90, 94.284 (2), 90
V3)3609.5 (4)1668.4 (5)876.2 (2)2452.6 (5)
Z8424
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.230.240.230.20
Crystal size (mm)0.50 × 0.40 × 0.300.45 × 0.30 × 0.200.45 × 0.40 × 0.350.45 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Multi-scan
(SABABS; Bruker, 1999)
Multi-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.889, 0.9330.917, 0.9530.900, 0.921
No. of measured, independent and
observed [I > 2σ(I)] reflections
9200, 3180, 2770 8547, 2934, 2255 4662, 3050, 2364 12592, 4316, 3671
Rint0.0170.0630.0270.021
(sin θ/λ)max1)0.5950.5950.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.03 0.041, 0.111, 1.01 0.041, 0.098, 0.96 0.038, 0.102, 1.06
No. of reflections3180293430504316
No. of parameters308257308381
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.230.36, 0.270.33, 0.310.27, 0.27

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 1999), SHELXTL (Bruker, 1997), SHELXTL, PLATON for Windows (Spek, 1999), PLATON for Windows.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O720.75 (3)1.93 (4)2.613 (2)150 (4)
O1W—H1A···O53A0.80 (4)2.07 (4)2.761 (4)145 (3)
O1W—H1B···O3Wi0.82 (3)1.92 (3)2.708 (4)162 (3)
O2W—H2A···O51Aii0.87 (2)1.99 (2)2.811 (7)156 (2)
O2W—H2B···O72iii0.95 (3)1.86 (3)2.817 (3)180 (4)
O3W—H3A···O53Aiv0.94 (2)1.92 (2)2.864 (8)179 (2)
O3W—H3B···O52A0.82 (5)1.95 (5)2.721 (6)157 (5)
O71—H7···O2Wv0.79 (3)1.76 (3)2.535 (3)166 (3)
N11—H11···O1Wiv0.93 (3)1.75 (3)2.670 (3)173 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y+2, z+1/2; (iii) x, y, z+1/2; (iv) x, y1, z; (v) x, y, z1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O720.83 (6)1.88 (6)2.602 (3)146 (2)
O81—H81···O1W0.82 (3)1.77 (4)2.585 (3)169 (3)
O1W—H1A···O51i0.89 (4)1.86 (4)2.748 (3)179 (4)
O1W—H1B···O52ii0.83 (4)2.02 (4)2.832 (3)166 (3)
O71—H7···O51ii0.83 (4)1.79 (4)2.607 (3)169 (3)
N11—H11···O810.90 (2)2.21 (2)2.658 (3)110 (2)
N11—H11···O53iii0.90 (2)1.99 (3)2.733 (3)140 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y1/2, z+1/2; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O720.81 (3)1.86 (3)2.606 (2)151 (3)
O1W—H1A···O53A0.95 (5)1.95 (5)2.844 (9)156 (4)
O1W—H1B···O72i0.85 (4)2.08 (4)2.819 (3)145 (3)
O2W—H2A···O52A0.85 (3)1.95 (3)2.791 (8)172 (3)
O2W—H2B···O51Aii0.81 (4)1.93 (4)2.735 (6)168 (4)
N11—H11···O2Wiii0.93 (3)1.84 (3)2.768 (3)173 (2)
O71—H71···O1Wiv0.88 (3)1.67 (3)2.530 (2)164 (2)
N81—H81A···O2Wiii0.90 (3)2.15 (3)3.026 (3)167 (3)
N81—H81B···O51Av0.86 (3)2.42 (3)3.234 (7)158 (3)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O720.85 (2)1.82 (2)2.605 (2)153 (2)
N11—H11···O1110.85 (2)2.37 (2)2.719 (2)105.4 (19)
N11—H11···O1220.85 (2)2.05 (2)2.803 (2)148 (2)
N12—H12···O1110.90 (2)2.00 (2)2.855 (2)159 (2)
N12—H12···O1220.90 (2)2.34 (2)2.704 (2)104.2 (18)
O71—H7···O51i0.94 (3)1.64 (3)2.5758 (19)172 (3)
O112—H112···O121ii0.95 (3)1.52 (3)2.478 (2)179 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds