Download citation
Download citation
link to html
The first of the title compounds, [Fe(C12H15N6P)2][FeCl4]·4CH4O, is the first homoleptic bis­(ligand)­iron(II) species reported for this phospho­rus bridgehead ligand; interestingly, the complex is isomorphous with its tris(1-methyl-1H-imidazol-2-yl)­methanol counterpart, the second of the title compounds, [Fe(C13H16N6O)2][FeCl4]2Cl. In both compounds, the Fe atom of the cation lies on an inversion centre. The structure determinations presented here allow an interesting comparison of iron(II) and iron(III) species in similar coordination environments.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104010868/ta1445sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104010868/ta1445Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104010868/ta1445IIsup3.hkl
Contains datablock II

CCDC references: 245848; 245849

Comment top

The chemistry of metal complexes of tris(pyrazolyl)-type ligands has been extensively explored in a number of dimensions, homoleptic bis(ligand) complexes, in which the ligand functions as a symmetrical tripod about a six-coordinate metal atom, being of particular interest to us, particularly in respect of the spin-crossover behaviour exhibited by iron-containing species (Anderson et al., 2000; Reger et al., 2000). By contrast, tris(imidazolyl)-type ligands are much less extensively studied and it was our objective to prepare and study homoleptic bis(ligand) complexes of this type with iron for comparative purposes. At the time this work was undertaken, there were no structurally characterized species of this type; a number of complexes were prepared and some initial structural studies were undertaken as a preliminary to further work, which was forestalled by the appearance of similar work in the field (L·P. Wu et al., 1999). Nevertheless, at the structural level, local achievements represent independent results of some significance and interest and we report them here.

The only homoleptic bis[tris(imidazolyl)ligand]iron(III) species previously structurally defined are the second title compound, (II), [Fe((mim)3COH)2](FeCl4)2Cl (mim = 1-methyl-1H-imidazol-2-yl), previously recorded in a room-temperature study (L·P. Wu et al., 1999), and the complex [FeL2](ClO4)3 [L = (mim)2(4-CMe2Priim)COMe], in which the ligand does not have threefold symmetry (Chauvin et al., 2003). Our parallel low-temperature study of (II), recorded here, is of superior precision, enabling meaningful location of H atoms, including that of the methanol hydroxyl H atom of the (mim)3COH ligand, the location of which is at variance with that of the room-temperature study wherein atoms were located from difference maps but not refined. Presented as a connected set, our model is otherwise essentially in agreement with the previous study; one-half of the formula unit, with the Fe and Cl atoms residing on crystallographic inversion centres, composes the asymmetric unit of the structure. The cation is depicted in Fig. 1, with detailed geometries presented in Table 1. The methanol H atom is hydrogen-bonded to the free chloride ion [H0···Cl5(x, y, 1 + z) = 2.49 Å], the nearest neighbours of the latter thus being an inversion-related pair.

Tris(heterocycle)tripod-type ligands with phosphorus as the bridgehead are less well studied than those where the bridgehead is a first-row atom, and we had considered it of significance to examine the possible influence of a second-row atom, itself potentially a `soft' donor, in this role, P(mim)3. A diversity of structurally characterized complexes have been defined for a variety of divalent metal ions, none of these being of the homoleptic bis(ligand) six-coordinate metal form; with iron, a binuclear iron(III) species has been defined, wherein one such ligand binds as a tripod to each six-coordinate metal (F·J. Wu et al., 1990). The present (first) title compound, (I), is isomorphous with its (mim)3COH ligand counterpart (L·P. Wu et al., 1999). In (I), one-half of the formula unit composes the asymmetric unit of the structure, with the Fe atom of the complex cation again on a crystallographic inversion centre, while that of the anion is on a crystallographic 2-axis. Again, the precision of the low-temperature determination permits meaningful location of all H atoms. Both of the solvent hydroxyl H atoms are hydrogen bonded to the same Cl atom of the anion [Cl2···H01(x, 1 − y, 1/2 + z) = 2.22 Å and H02(x − 1/2, 1/2 − y, −z) = 2.25 Å] at unusually short distances, and consequently the associated Fe—Cl distance is considerably elongated compared with its non-hydrogen-bonded counterpart [Fe2—Cl1 = 2 2.2797 (5) and 2.3648 (7) Å].

The two arrays (I) and (II) permit interesting comparisons between parallel arrays of iron(II) and iron(III). In the tetrahaloferrate anions, the Fe—Cl distances in (I), which lie within a narrow range? [mean 2.202 (8) Å], are appreciably shorter than the more divergent values found in (II), in keeping with the increment in electron configuration from d5 to d6. The angular geometry within the d5 species is similarly closely tetrahedral [range 107.97 (2)–110.51 (2)°], whereas within the more distorted d6 array, the angle between the pair of short Fe—Cl1 distances is increased (as might be expected) to 120.50 (3)°; Fe—Cl distances, more generally, for the two species are in agreement with those defined in many similar arrays.

Within the cations, the Fe—N distances lie within a narrow range in both compounds [mean 1.979 (5) Å for (I) and 1.951 (4) Å for (II)], in keeping with low-spin electron distributions for d5 (II) and d6 (I) configurations; angular geometries within the tripod are reasonably regular in each case, but it is interesting to observe the substantial increase in N—Fe—N [mean 86.6 (9)° for (II) and 89.9 (16)° for (I)], concomitant with a minor increase in the Fe—N distance and perhaps contingent upon the substantial increase in size of the bridgehead atom on passing from C to P [mean C—C = 1.530 (6) Å and C—P = 1.817 (1) Å]. In the previously recorded counterpart of (I), with the COH bridgehead, the mean Fe—N distance (at 295 K) is 1.973 (12) Å but the mean N—Fe—N angle is reduced to 86.5 (8)°. Deviations of the Fe atom from the C3N2 heterocycle planes are minimal in (I) [0.010 (3), 0.055 (3) and 0.009 (3) Å] but much more substantial in (II) [0.226 (2), 0.256 (3) and 0.047 (3) Å], suggestive of some strain in the latter system.

Assuming it more likely that any impact on ligand geometries will arise from the change in bridgehead rather than the metal atom electron configuration, it is of interest to compare these factors between the two systems. In (II), at the bridgehead, the mean C—C—C angle is 105.5 (13)°, while in (I), the mean C—P—C angle is 95.13 (13)°; the former is diminished from the tetrahedral angle and the latter is augmented from the orthogonality of pure p bonding. There is little impact on the ring distances, the only significant changes being to either side of atom N3 [mean N3—C2 = 1.355 (3) and 1.345 (3) Å, and mean N3—C4 = 1.369 (4) and 1.382 (4) Å, for (I) and (II), respectively]. Changes in the angles are more pronounced, most notably so exocyclically and, unsurprisingly, at atoms Nn1 [mean Fe—Nn1—Cn2 = 124.0 (5) and 121.5 (10)°, and mean Fe—Nn1—Cn5 = 129.5 (9) and 130.9 (6)°, for (I) and (II), respectively] and Cn2 [mean X—Cn2—Nn1 = 123.7 (4) and 119.1 (19)°, and mean X—Cn2—Nn3 = 125.7 (5) and 130.5 (12)°, for (I) (X = P) and (II) (X = C), respectively], with surprisingly large differences exocyclically at atom N3 [mean Cn31—Nn3—C2 = 126.7 (7) and 129.8 (3)°, and mean Cn31—Nn3—C4 = 125.9 (3) and 122.9 (2)°, for (I) and (II), respectively].

Experimental top

Complex (I) was obtained on addition of a solution of P(mim)3 (0.047 g, 0.19 mmol) in methanol (3.5 ml) to a stirred solution of iron(II) chloride (0.024 g, 0.19 mmol) in methanol (3 ml). The yellow–brown solution rapidly became blood red. Diethyl ether vapour was allowed to diffuse into the solution. After 2 d, the orange–red crystals that had formed were collected, washed with diethyl ether (3 × 1.5 ml) and dried in a stream of nitrogen to give the product (0.077 g, 89%). The preparation of (II) is described by ????.

Refinement top

H atoms were located from difference Fourier maps and placed at idealized positions [C—H = 0.95 Å, and Uiso(H) = 1.25Ueq(CCH) and 1.5Ueq(CCH3)] and not refined.

Computing details top

For both compounds, data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: Xtal3.5 (Hall et al., 1995); program(s) used to refine structure: CRYLSQ in Xtal3.5; molecular graphics: Xtal3.5; software used to prepare material for publication: BONDLA and CIFIO in Xtal3.5.

Figures top
[Figure 1] Fig. 1. A projection of the cation of (I). 50% probability displacement ellipsoids are shown for the non-H atoms, H atoms having arbitrary radii of 0.1 Å.
[Figure 2] Fig. 2. A projection of the cation of (II). 50% probability displacement ellipsoids are shown for the non-H atoms, H atoms having arbitrary radii of 0.1 Å.
(I) top
Crystal data top
[Fe(C12H15N6P)][FeCl4]·4CH4OF(000) = 1920
Mr = 930.21Dx = 1.537 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2n 2abCell parameters from 6152 reflections
a = 16.9011 (10) Åθ = 2.6–37.2°
b = 12.9824 (8) ŵ = 1.12 mm1
c = 18.3248 (11) ÅT = 150 K
V = 4020.8 (4) Å3Prism, red
Z = 40.2 × 0.2 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
10596 independent reflections
Radiation source: sealed tube6611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 37.5°, θmin = 2.0°
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
h = 2828
Tmin = 0.69, Tmax = 0.83k = 2222
82795 measured reflectionsl = 3131
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.04Hydrogen site location: difference Fourier map
wR(F2) = 0.042H-atom parameters not refined
S = 0.89 w = 1/(σ2(F) + 0.0003F2)
6611 reflections(Δ/σ)max = 0.002
237 parametersΔρmax = 0.96 e Å3
0 restraintsΔρmin = 0.63 e Å3
0 constraints
Crystal data top
[Fe(C12H15N6P)][FeCl4]·4CH4OV = 4020.8 (4) Å3
Mr = 930.21Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 16.9011 (10) ŵ = 1.12 mm1
b = 12.9824 (8) ÅT = 150 K
c = 18.3248 (11) Å0.2 × 0.2 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
10596 independent reflections
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
6611 reflections with I > 2σ(I)
Tmin = 0.69, Tmax = 0.83Rint = 0.051
82795 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040 restraints
wR(F2) = 0.042H-atom parameters not refined
S = 0.89Δρmax = 0.96 e Å3
6611 reflectionsΔρmin = 0.63 e Å3
237 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.000000.000000.000000.01308 (11)
Fe20.000000.41731 (3)0.250000.02327 (15)
Cl10.00511 (3)0.33017 (4)0.14210 (3)0.0377 (2)
Cl20.11287 (4)0.52486 (5)0.24682 (3)0.0493 (3)
P0.14545 (2)0.18589 (3)0.01272 (2)0.01742 (16)
N110.01035 (8)0.14697 (10)0.02833 (7)0.0167 (5)
C120.04768 (9)0.21620 (12)0.02228 (8)0.0168 (6)
N130.02354 (9)0.30974 (11)0.04555 (8)0.0207 (6)
C1310.06915 (12)0.40508 (14)0.04378 (11)0.0286 (9)
C140.05379 (11)0.30020 (14)0.06651 (11)0.0265 (8)
C150.07426 (10)0.19997 (14)0.05609 (10)0.0235 (8)
N210.05468 (8)0.04385 (10)0.09007 (7)0.0161 (5)
C220.10981 (9)0.11748 (12)0.09282 (8)0.0168 (6)
N230.13417 (8)0.13183 (11)0.16258 (7)0.0210 (6)
C2310.19012 (12)0.20871 (16)0.18929 (10)0.0306 (9)
C240.09291 (11)0.06488 (15)0.20560 (9)0.0256 (8)
C250.04424 (10)0.01043 (14)0.16064 (8)0.0216 (7)
N310.10427 (7)0.00360 (10)0.04909 (7)0.0158 (5)
C320.15817 (9)0.07123 (12)0.04298 (8)0.0169 (6)
N330.22348 (8)0.04824 (11)0.08291 (7)0.0194 (6)
C3310.29447 (10)0.11209 (16)0.09031 (11)0.0275 (8)
C340.21061 (10)0.04572 (14)0.11506 (9)0.0217 (7)
C350.13703 (10)0.07748 (13)0.09392 (9)0.0192 (7)
O010.15888 (10)0.26858 (12)0.17582 (9)0.0401 (8)
C010.1291 (2)0.1884 (2)0.21877 (15)0.0644 (18)
O020.29817 (10)0.04606 (13)0.09637 (10)0.0460 (9)
C020.26807 (15)0.05456 (18)0.09151 (13)0.0404 (12)
H131a0.065440.435260.003510.04300*
H131b0.048600.451250.079020.04400*
H131c0.122860.389830.054880.03900*
H140.086990.353330.084790.03500*
H150.124770.169000.066180.02600*
H231a0.222210.178920.226300.05900*
H231b0.162070.265540.208920.03600*
H231c0.222800.231330.150250.05100*
H240.097240.057690.256980.03400*
H250.008740.042100.175590.01700*
H331a0.279480.181050.100690.03300*
H331b0.323590.110040.045860.04800*
H331c0.326220.086110.128770.04500*
H340.246050.081890.145970.02700*
H350.112460.140210.107910.01700*
H010.140280.328710.196000.05000*
H01a0.150170.124600.202340.12300*
H01b0.073350.187110.215990.07300*
H01c0.144850.199000.268410.07500*
H020.318020.050660.143370.06900*
H02a0.243040.063620.045610.06700*
H02b0.230320.065550.129440.04400*
H02c0.309920.102760.096540.08000*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01187 (11)0.01490 (11)0.01248 (10)0.00086 (11)0.00039 (10)0.00037 (10)
Fe20.02710 (17)0.02367 (16)0.01905 (14)0.000000.00468 (14)0.00000
Cl10.0422 (3)0.0419 (3)0.0288 (2)0.0138 (2)0.0078 (2)0.01370 (19)
Cl20.0539 (3)0.0536 (3)0.0404 (3)0.0285 (3)0.0041 (3)0.0062 (3)
P0.01611 (16)0.01728 (17)0.01888 (16)0.00292 (14)0.00060 (14)0.00051 (14)
N110.0158 (6)0.0174 (5)0.0167 (5)0.0008 (4)0.0002 (4)0.0001 (4)
C120.0177 (6)0.0162 (6)0.0163 (6)0.0003 (5)0.0020 (5)0.0003 (5)
N130.0236 (6)0.0156 (6)0.0227 (6)0.0016 (5)0.0015 (5)0.0017 (5)
C1310.0328 (9)0.0165 (7)0.0366 (10)0.0015 (7)0.0042 (8)0.0025 (7)
C140.0238 (8)0.0225 (8)0.0333 (9)0.0053 (6)0.0022 (7)0.0043 (7)
C150.0190 (7)0.0245 (8)0.0269 (8)0.0028 (6)0.0026 (6)0.0023 (6)
N210.0156 (5)0.0181 (6)0.0146 (5)0.0009 (5)0.0002 (4)0.0005 (4)
C220.0158 (6)0.0185 (6)0.0160 (6)0.0015 (5)0.0010 (5)0.0007 (5)
N230.0211 (6)0.0241 (7)0.0179 (6)0.0038 (5)0.0042 (5)0.0013 (5)
C2310.0332 (9)0.0318 (10)0.0269 (8)0.0099 (8)0.0103 (7)0.0028 (7)
C240.0294 (9)0.0322 (9)0.0154 (7)0.0049 (7)0.0030 (6)0.0018 (6)
C250.0232 (7)0.0264 (8)0.0154 (6)0.0035 (6)0.0001 (5)0.0018 (6)
N310.0142 (5)0.0178 (6)0.0153 (5)0.0003 (5)0.0005 (4)0.0002 (5)
C320.0146 (6)0.0190 (7)0.0171 (6)0.0004 (5)0.0011 (5)0.0008 (5)
N330.0133 (5)0.0246 (7)0.0202 (6)0.0000 (5)0.0028 (5)0.0006 (5)
C3310.0163 (7)0.0322 (9)0.0340 (9)0.0045 (7)0.0061 (7)0.0005 (8)
C340.0174 (7)0.0273 (8)0.0205 (7)0.0023 (6)0.0024 (6)0.0037 (6)
C350.0190 (7)0.0204 (7)0.0181 (6)0.0019 (6)0.0006 (5)0.0032 (5)
O010.0446 (9)0.0374 (8)0.0383 (8)0.0062 (7)0.0042 (7)0.0071 (7)
C010.105 (3)0.0467 (15)0.0413 (13)0.0368 (16)0.0212 (15)0.0063 (12)
O020.0451 (9)0.0402 (9)0.0528 (10)0.0119 (7)0.0004 (8)0.0073 (8)
C020.0451 (13)0.0324 (11)0.0436 (12)0.0017 (9)0.0018 (10)0.0062 (9)
Geometric parameters (Å, º) top
Fe1—N111.9851 (13)N23—C241.365 (2)
Fe1—N211.9755 (13)C231—H231a0.951
Fe1—N311.9792 (12)C231—H231b0.948
Fe1—N11i1.9851 (13)C231—H231c0.950
Fe1—N21i1.9755 (13)C24—C251.362 (2)
Fe1—N31i1.9792 (12)C24—H240.9490
Fe2—Cl12.2797 (5)C25—H250.9487
Fe2—Cl22.3648 (7)N31—C321.336 (2)
Fe2—Cl1ii2.2797 (5)N31—C351.379 (2)
Fe2—Cl2ii2.3648 (7)C32—N331.358 (2)
P—C121.8158 (16)N33—C3311.465 (2)
P—C221.8182 (16)N33—C341.372 (2)
P—C321.8177 (16)C331—H331a0.950
N11—C121.335 (2)C331—H331b0.952
N11—C151.378 (2)C331—H331c0.9478
C12—N131.350 (2)C34—C351.366 (2)
N13—C1311.459 (2)C34—H340.9487
N13—C141.368 (2)C35—H350.9494
C131—H131a0.953O01—C011.398 (3)
C131—H131b0.947O01—H010.9192
C131—H131c0.951C01—H01a0.950
C14—C151.360 (3)C01—H01b0.944
C14—H140.9501C01—H01c0.958
C15—H150.9616O02—C021.405 (3)
N21—C221.336 (2)O02—H020.9263
N21—C251.375 (2)C02—H02a0.949
C22—N231.356 (2)C02—H02b0.954
N23—C2311.459 (3)C02—H02c0.949
N11—Fe1—N2189.01 (5)C22—N23—C231127.37 (14)
N11—Fe1—N3188.99 (5)C22—N23—C24107.58 (14)
N11—Fe1—N11i180.0000C231—N23—C24124.94 (14)
N11—Fe1—N21i90.99 (5)N23—C231—H231a109.31
N11—Fe1—N31i91.01 (5)N23—C231—H231b109.60
N21—Fe1—N3188.28 (5)N23—C231—H231c109.60
N21—Fe1—N11i90.99 (5)H231a—C231—H231b109.3
N21—Fe1—N21i180.0000H231a—C231—H231c109.3
N21—Fe1—N31i91.72 (5)H231b—C231—H231c109.6
N31—Fe1—N11i91.01 (5)N23—C24—C25106.84 (14)
N31—Fe1—N21i91.72 (5)N23—C24—H24126.61
N31—Fe1—N31i180.0000C25—C24—H24126.56
N11i—Fe1—N21i89.01 (5)N21—C25—C24109.12 (15)
N11i—Fe1—N31i88.99 (5)N21—C25—H25125.41
N21i—Fe1—N31i88.28 (5)C24—C25—H25125.48
Cl1—Fe2—Cl2107.59 (2)Fe1—N31—C32123.48 (11)
Cl1—Fe2—Cl1ii120.49 (2)Fe1—N31—C35130.15 (11)
Cl1—Fe2—Cl2ii106.49 (2)C32—N31—C35106.37 (13)
Cl2—Fe2—Cl1ii106.49 (2)P—C32—N31124.17 (11)
Cl2—Fe2—Cl2ii107.62 (3)P—C32—N33125.38 (12)
Cl1ii—Fe2—Cl2ii107.59 (2)N31—C32—N33110.44 (13)
C12—P—C2295.14 (7)C32—N33—C331126.27 (14)
C12—P—C3294.98 (7)C32—N33—C34107.34 (13)
C22—P—C3295.31 (7)C331—N33—C34126.39 (14)
Fe1—N11—C12124.10 (10)N33—C331—H331a109.49
Fe1—N11—C15130.21 (11)N33—C331—H331b109.17
C12—N11—C15105.68 (13)N33—C331—H331c109.35
P—C12—N11123.51 (12)H331a—C331—H331b109.6
P—C12—N13125.56 (12)H331a—C331—H331c109.7
N11—C12—N13110.94 (14)H331b—C331—H331c109.48
C12—N13—C131126.62 (15)N33—C34—C35106.91 (14)
C12—N13—C14107.22 (14)N33—C34—H34126.61
C131—N13—C14126.02 (15)C35—C34—H34126.48
N13—C131—H131a109.53N31—C35—C34108.94 (14)
N13—C131—H131b109.16N31—C35—H35125.58
N13—C131—H131c108.85C34—C35—H35125.48
H131a—C131—H131b109.61C01—O01—H01106.43
H131a—C131—H131c110.0O01—C01—H01a109.6
H131b—C131—H131c109.6O01—C01—H01b110.0
N13—C14—C15106.87 (16)O01—C01—H01c109.1
N13—C14—H14126.69H01a—C01—H01b109.9
C15—C14—H14126.44H01a—C01—H01c108.8
N11—C15—C14109.29 (15)H01b—C01—H01c109.3
N11—C15—H15123.92C02—O02—H02104.48
C14—C15—H15126.79O02—C02—H02a109.5
Fe1—N21—C22124.34 (10)O02—C02—H02b109.6
Fe1—N21—C25129.39 (11)O02—C02—H02c109.7
C22—N21—C25106.25 (13)H02a—C02—H02b109.2
P—C22—N21123.38 (11)H02a—C02—H02c109.7
P—C22—N23126.40 (12)H02b—C02—H02c109.2
N21—C22—N23110.22 (13)
Symmetry codes: (i) x, y, z; (ii) x, y, z+1/2.
(II) top
Crystal data top
[Fe(C13H16N6O)2][FeCl4]2ClF(000) = 1038
Mr = 1031.24Dx = 1.77 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 7062 reflections
a = 9.7792 (9) Åθ = 2.4–26.8°
b = 14.8534 (10) ŵ = 1.78 mm1
c = 13.3529 (17) ÅT = 150 K
β = 93.835 (2)°Cuboid, dark red
V = 1935.2 (3) Å30.45 × 0.45 × 0.4 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
10066 independent reflections
Radiation source: sealed tube7754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 37.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.68, Tmax = 0.80k = 2525
38960 measured reflectionsl = 2222
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.067H-atom parameters not refined
S = 0.99 w = 1/(σ2(F) + 0.003F2)
7754 reflections(Δ/σ)max = 0.007
238 parametersΔρmax = 1.44 e Å3
0 restraintsΔρmin = 0.78 e Å3
0 constraints
Crystal data top
[Fe(C13H16N6O)2][FeCl4]2ClV = 1935.2 (3) Å3
Mr = 1031.24Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.7792 (9) ŵ = 1.78 mm1
b = 14.8534 (10) ÅT = 150 K
c = 13.3529 (17) Å0.45 × 0.45 × 0.4 mm
β = 93.835 (2)°
Data collection top
Bruker SMART CCD
diffractometer
10066 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7754 reflections with I > 2σ(I)
Tmin = 0.68, Tmax = 0.80Rint = 0.033
38960 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.067H-atom parameters not refined
S = 0.99Δρmax = 1.44 e Å3
7754 reflectionsΔρmin = 0.78 e Å3
238 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.500000.000000.500000.01067 (12)
Fe20.01174 (3)0.243653 (17)0.05474 (2)0.01686 (11)
Cl10.10083 (5)0.11291 (3)0.09375 (4)0.0242 (2)
Cl20.04784 (5)0.26675 (3)0.10715 (3)0.0252 (2)
Cl30.11127 (5)0.34894 (3)0.13991 (3)0.02262 (18)
Cl40.21135 (5)0.24393 (3)0.09358 (4)0.0273 (2)
Cl50.500000.000000.000000.0232 (3)
N110.62699 (13)0.03232 (9)0.61310 (9)0.0133 (5)
C120.62985 (15)0.01385 (10)0.69855 (11)0.0120 (5)
N130.73653 (14)0.01272 (9)0.76064 (10)0.0136 (5)
C1310.78867 (18)0.02546 (13)0.85791 (12)0.0193 (7)
C140.80304 (17)0.08037 (11)0.71146 (12)0.0158 (6)
C150.73508 (16)0.09234 (11)0.62065 (12)0.0155 (6)
N210.36069 (14)0.00358 (9)0.59830 (10)0.0140 (5)
C220.38249 (15)0.04811 (10)0.68493 (11)0.0123 (5)
N230.26671 (14)0.05260 (9)0.73365 (10)0.0151 (5)
C2310.2374 (2)0.10247 (13)0.82517 (14)0.0216 (7)
C240.16680 (17)0.00700 (12)0.67607 (13)0.0184 (7)
C250.22509 (16)0.02286 (11)0.59217 (12)0.0168 (6)
N310.53876 (14)0.12525 (9)0.53419 (9)0.0134 (5)
C320.54526 (15)0.15562 (10)0.62863 (11)0.0121 (5)
N330.56937 (16)0.24470 (9)0.62978 (11)0.0149 (5)
C3310.5831 (2)0.30693 (12)0.71463 (13)0.0233 (8)
C340.5799 (2)0.27209 (11)0.53229 (12)0.0183 (7)
C350.5607 (2)0.19764 (11)0.47343 (12)0.0179 (6)
C00.52416 (15)0.08866 (10)0.71221 (10)0.0119 (5)
O00.53582 (13)0.13007 (8)0.80603 (8)0.0149 (4)
H131a0.874140.002380.877050.02700*
H131b0.800990.088360.851420.04000*
H131c0.724930.012320.906390.03000*
H140.881750.112560.737190.01700*
H150.758270.134180.570760.01400*
H231a0.267720.162830.819930.03000*
H231b0.141580.100730.832800.04400*
H231c0.284470.074360.881450.04000*
H240.074480.002010.691210.03100*
H250.180290.056050.538630.02000*
H331a0.500350.308140.747600.02200*
H331b0.655750.286980.760490.02500*
H331c0.603530.365390.691360.05000*
H340.597440.331440.509660.02200*
H350.562160.196040.402430.02300*
H00.529320.088410.856370.04300*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01301 (13)0.00970 (12)0.00916 (12)0.00101 (9)0.00025 (9)0.00183 (9)
Fe20.01724 (11)0.01515 (11)0.01810 (12)0.00091 (8)0.00055 (8)0.00212 (8)
Cl10.0232 (2)0.01747 (18)0.0315 (2)0.00182 (14)0.00218 (15)0.00608 (15)
Cl20.0322 (2)0.0250 (2)0.01846 (18)0.00205 (17)0.00109 (15)0.00173 (15)
Cl30.02206 (18)0.02168 (19)0.0241 (2)0.00145 (14)0.00162 (14)0.00378 (14)
Cl40.01781 (19)0.0300 (2)0.0339 (2)0.00058 (15)0.00019 (16)0.00878 (18)
Cl50.0251 (3)0.0149 (2)0.0299 (3)0.00374 (19)0.0046 (2)0.0034 (2)
N110.0154 (5)0.0123 (5)0.0119 (5)0.0030 (4)0.0004 (4)0.0023 (4)
C120.0138 (5)0.0112 (5)0.0107 (5)0.0014 (4)0.0005 (4)0.0001 (4)
N130.0154 (5)0.0132 (5)0.0120 (5)0.0013 (4)0.0013 (4)0.0007 (4)
C1310.0189 (7)0.0240 (8)0.0144 (6)0.0019 (6)0.0040 (5)0.0024 (5)
C140.0172 (6)0.0155 (6)0.0147 (6)0.0050 (5)0.0004 (5)0.0010 (5)
C150.0168 (6)0.0135 (6)0.0159 (6)0.0042 (5)0.0007 (5)0.0017 (5)
N210.0139 (5)0.0144 (5)0.0138 (5)0.0006 (4)0.0014 (4)0.0023 (4)
C220.0136 (5)0.0121 (5)0.0112 (5)0.0010 (4)0.0010 (4)0.0007 (4)
N230.0153 (5)0.0165 (5)0.0138 (5)0.0014 (4)0.0040 (4)0.0004 (4)
C2310.0230 (8)0.0247 (8)0.0180 (7)0.0030 (6)0.0073 (6)0.0037 (6)
C240.0150 (6)0.0220 (7)0.0186 (7)0.0012 (5)0.0033 (5)0.0002 (5)
C250.0155 (6)0.0166 (6)0.0182 (7)0.0025 (5)0.0007 (5)0.0019 (5)
N310.0182 (5)0.0114 (5)0.0104 (5)0.0002 (4)0.0001 (4)0.0004 (4)
C320.0149 (6)0.0094 (5)0.0117 (5)0.0009 (4)0.0004 (4)0.0006 (4)
N330.0219 (6)0.0105 (5)0.0123 (5)0.0002 (4)0.0010 (4)0.0012 (4)
C3310.0408 (10)0.0143 (7)0.0151 (7)0.0044 (6)0.0051 (6)0.0063 (5)
C340.0284 (8)0.0128 (6)0.0136 (6)0.0013 (5)0.0009 (5)0.0014 (5)
C350.0292 (8)0.0136 (6)0.0109 (6)0.0018 (5)0.0013 (5)0.0005 (5)
C00.0151 (6)0.0107 (5)0.0099 (5)0.0005 (4)0.0006 (4)0.0014 (4)
O00.0237 (5)0.0127 (4)0.0082 (4)0.0004 (4)0.0007 (4)0.0021 (3)
Geometric parameters (Å, º) top
Fe1—N111.9500 (13)C22—N231.345 (2)
Fe1—N211.9547 (14)C22—C01.532 (2)
Fe1—N311.9468 (13)N23—C2311.474 (2)
Fe1—N111.9500 (13)N23—C241.380 (2)
Fe1—N211.9547 (14)C231—H231a0.949
Fe1—N311.9468 (13)C231—H231b0.9492
Fe2—Cl12.2051 (5)C231—H231c0.9513
Fe2—Cl22.1939 (6)C24—C251.365 (2)
Fe2—Cl32.1987 (5)C24—H240.9478
Fe2—Cl42.2085 (6)C25—H250.9509
N11—C121.330 (2)N31—C321.337 (2)
N11—C151.381 (2)N31—C351.373 (2)
C12—N131.348 (2)C32—N331.344 (2)
C12—C01.537 (2)C32—C01.519 (2)
N13—C1311.477 (2)N33—C3311.461 (2)
N13—C141.386 (2)N33—C341.374 (2)
C131—H131a0.9520C331—H331a0.947
C131—H131b0.9467C331—H331b0.953
C131—H131c0.9485C331—H331c0.9480
C14—C151.355 (2)C34—C351.362 (2)
C14—H140.9506C34—H340.9512
C15—H150.9496C35—H350.9494
N21—C221.337 (2)C0—O01.3935 (18)
N21—C251.380 (2)O0—H00.9189
N11—Fe1—N2185.59 (6)N21—C22—C0119.31 (13)
N11—Fe1—N3187.12 (5)N23—C22—C0129.99 (13)
N11—Fe1—N11180.0000C22—N23—C231130.03 (14)
N11—Fe1—N2194.41 (6)C22—N23—C24107.08 (13)
N11—Fe1—N3192.88 (5)C231—N23—C24122.61 (14)
N21—Fe1—N3187.13 (6)N23—C231—H231a109.55
N21—Fe1—N1194.41 (6)N23—C231—H231b108.89
N21—Fe1—N21180.0000N23—C231—H231c108.88
N21—Fe1—N3192.87 (6)H231a—C231—H231b110.5
N31—Fe1—N1192.88 (5)H231a—C231—H231c109.61
N31—Fe1—N2192.87 (6)H231b—C231—H231c109.42
N31—Fe1—N31180.0000N23—C24—C25107.33 (14)
N11—Fe1—N2185.59 (6)N23—C24—H24126.83
N11—Fe1—N3187.12 (5)C25—C24—H24125.83
N21—Fe1—N3187.13 (6)N21—C25—C24108.14 (14)
Cl1—Fe2—Cl2109.29 (2)N21—C25—H25125.78
Cl1—Fe2—Cl3107.98 (2)C24—C25—H25126.09
Cl1—Fe2—Cl4110.23 (2)Fe1—N31—C32122.68 (10)
Cl2—Fe2—Cl3110.54 (2)Fe1—N31—C35130.22 (11)
Cl2—Fe2—Cl4108.81 (2)C32—N31—C35107.09 (13)
Cl3—Fe2—Cl4109.98 (2)N31—C32—N33109.89 (13)
Fe1—N11—C12120.88 (10)N31—C32—C0118.15 (12)
Fe1—N11—C15131.30 (11)N33—C32—C0131.96 (13)
C12—N11—C15107.34 (12)C32—N33—C331129.68 (14)
N11—C12—N13110.35 (13)C32—N33—C34107.75 (13)
N11—C12—C0119.93 (12)C331—N33—C34122.56 (14)
N13—C12—C0129.65 (13)N33—C331—H331a109.58
C12—N13—C131129.51 (14)N33—C331—H331b109.10
C12—N13—C14106.82 (13)N33—C331—H331c109.61
C131—N13—C14123.36 (13)H331a—C331—H331b109.30
N13—C131—H131a108.33H331a—C331—H331c109.9
N13—C131—H131b109.70H331b—C331—H331c109.3
N13—C131—H131c108.50N33—C34—C35106.86 (14)
H131a—C131—H131b109.78N33—C34—H34127.00
H131a—C131—H131c109.43C35—C34—H34126.14
H131b—C131—H131c111.05N31—C35—C34108.41 (14)
N13—C14—C15107.55 (14)N31—C35—H35125.74
N13—C14—H14125.99C34—C35—H35125.86
C15—C14—H14126.46C12—C0—C22106.99 (12)
N11—C15—C14107.93 (14)C12—C0—C32105.11 (12)
N11—C15—H15126.07C12—C0—O0114.24 (12)
C14—C15—H15126.00C22—C0—C32104.35 (11)
Fe1—N21—C22121.09 (11)C22—C0—O0113.93 (12)
Fe1—N21—C25131.49 (11)C32—C0—O0111.37 (12)
C22—N21—C25106.80 (13)C0—O0—H0110.79
N21—C22—N23110.63 (13)

Experimental details

(I)(II)
Crystal data
Chemical formula[Fe(C12H15N6P)][FeCl4]·4CH4O[Fe(C13H16N6O)2][FeCl4]2Cl
Mr930.211031.24
Crystal system, space groupOrthorhombic, PbcnMonoclinic, P21/c
Temperature (K)150150
a, b, c (Å)16.9011 (10), 12.9824 (8), 18.3248 (11)9.7792 (9), 14.8534 (10), 13.3529 (17)
α, β, γ (°)90, 90, 9090, 93.835 (2), 90
V3)4020.8 (4)1935.2 (3)
Z42
Radiation typeMo KαMo Kα
µ (mm1)1.121.78
Crystal size (mm)0.2 × 0.2 × 0.150.45 × 0.45 × 0.4
Data collection
DiffractometerBruker SMART CCD
diffractometer
Bruker SMART CCD
diffractometer
Absorption correctionMulti-scan
SADABS; Sheldrick, 1996
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.69, 0.830.68, 0.80
No. of measured, independent and
observed [I > 2σ(I)] reflections
82795, 10596, 6611 38960, 10066, 7754
Rint0.0510.033
(sin θ/λ)max1)0.8570.860
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.04, 0.042, 0.89 0.037, 0.067, 0.99
No. of reflections66117754
No. of parameters237238
H-atom treatmentH-atom parameters not refinedH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.96, 0.631.44, 0.78

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT, Xtal3.5 (Hall et al., 1995), CRYLSQ in Xtal3.5, BONDLA and CIFIO in Xtal3.5.

Selected geometric parameters (Å, º) for (I) top
Fe1—N111.9851 (13)Fe1—N311.9792 (12)
Fe1—N211.9755 (13)
N11—Fe1—N2189.01 (5)N21—Fe1—N3188.28 (5)
N11—Fe1—N3188.99 (5)
Selected geometric parameters (Å, º) for (II) top
Fe1—N111.9500 (13)Fe1—N311.9468 (13)
Fe1—N211.9547 (14)
N11—Fe1—N2185.59 (6)N21—Fe1—N3187.13 (6)
N11—Fe1—N3187.12 (5)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds