Download citation
Download citation
link to html
The crystal structures of the title complexes, namely trans-bis­(iso­quinoline-3-carboxyl­ato-[kappa]2N,O)­bis­(methanol-[kappa]O)cobalt(II), [Co(C10H6NO2)2(CH3OH)2], and the corresponding nickel(II) and copper(II) complexes, [Ni(C10H6NO2)2(CH3OH)2] and [Cu(C10H6NO2)2(CH3OH)2], are isomorphous and contain metal ions at centres of inversion. The three compounds have the same distorted octahedral coordination geometry, and each metal ion is bonded by two quinoline N atoms, two carboxyl­ate O atoms and two methanol O atoms. Two iso­quinoline-3-carboxyl­ate ligands lie in trans positions, forming the equatorial plane, and the two methanol ligands occupy the axial positions. The complex mol­ecules are linked together by O-H...O hydrogen bonds between the methanol ligands and neighbouring carboxyl­ate groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104012636/ta1443sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104012636/ta1443Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104012636/ta1443IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104012636/ta1443IIIsup4.hkl
Contains datablock III

CCDC references: 245864; 245865; 245866

Comment top

Transition metal ions are well known to have many important biological functions, mainly as the cofactors of many metalloenzymes. Their complexes have remarkable antimicrobial or fungicidal activity (Okide et al., 2000; Patel et al., 1999), or have redox activity and act as catalysts for metal-induced toxicity or carcinogenesis through processes which are interpreted as Fenton-type reactions (Kasprzak, 2002).

On the other hand, isoquinoline-3-carboxylic acid is a potent non-peptidyl inhibitor of the insulin-like growth factor binding proteins (Zhu et al., 2003). Its transition metal (mainly Fe) complexes act as oxidative catalysts in alkane oxidations (Shul'pin, 2002). In a previous paper, the crystal structure of the FeII complex of isoquinoline-3-carboxylate has been reported (Okabe & Muranishi, 2003c). Here, we report the structures of the corresponding CoII, NiII & CuII complexes, (I), (II) and (III), respectively, and compare their structural features. \sch

The structure of (I) is shown in Fig. 1. The structures of (I), (II) and (III) are isomorphous with the aforementioned FeII analogue and have the same distorted octahedral coordination geometries, with the metal ion at a centre of inversion. The two bidentate ligands lie trans to one another. They are coordinated to the central metal ion, through the isoquinoline N atoms and the carboxylate O atoms, to form a five-membered ring in the equatorial plane. Two O atoms of the methanol ligands complete the octahedron at the axial positions.

As shown in Table 1, the M—N coordination bond distances decrease in the order FeII > (I) > (II) > (III). The reverse of this order coincides well with the Irving-Williams series, which indicates the general stability sequence of octahedral metal complexes in the order Fe < Co < Ni < Cu. The axial coordination bond distances of the CuII complex, (III), are noticeably longer than those in (I) and (II), as well as in the FeII complex. This may be explained by a strong Jahn-Teller effect in (III).

In the heterocyclic ring, the N1—C1 and N1—C9 bonds on both sides of the ring N atom and the C1—C2 bond of (I), (II) and (III) are shorter than the others in the same pyridine ring, C2—C3, C3—C8 and C8—C9 (Table 1). This indicates the delocalization of the π electron over these three bonds, which have double-bond character. This type of delocalization of π electrons is also present in the FeII complex, and it may be a general characteristic of the transition metal complexes of isoquinoline-3-carboxylate. Only the bonds on either side of the N atom have double-bond character in the metal complexes of analogous compounds, such as isoquinoline-1-carboxylate complexes with FeII (Muranishi & Okabe, 2003), CoII and NiII (Okabe & Muranishi, 2002), and ZnII (Okabe & Muranishi, 2003b), and quinoline-2-carboxylate complexes with FeII (Okabe & Makino, 1998), CoII (Okabe & Makino, 1999), NiII (Odoko et al., 2001) and ZnII (Okabe & Muranishi, 2003a).

When the Co (or Ni or Fe)—N coordination bond distances for (I), (II) and analogous complexes of isoquinoline-1-carboxylate and quinoline-2-carboxylate are compared, they are found to decrease in the following order. For quinoline-2-carboxylate complexes with Co [2.226 (3)], Ni [2.182 (2)] or Fe [2.270 (1) Å], the M—N distances are longer than in (I), (II), (III) or Fe [2.167 (2) Å], which are in turn longer than those in isoquinoline-1-carboxylate complexes with Co [2.096 (2)], Ni [2.039 (3)], Cu [1.957 (3) and 1.969 (3)] or [Fe 2.153 (2) Å]. The penta-coordinate CuII complex of quinoline-2-carboxylate (Haendler, 1986) has been excluded from this discussion. This paragraph has been extensively reworded. Please check that the intended meaning has not been affected.

The Co (or Ni)—O bond distances in (I), (II) and analogous complexes are in almost the reverse order of the M—N distances, and decrease in the following order. For isoquinoline-1-carboxylate complexes with Co [2.055 (2)] or Ni [2.036 (2) Å], the M—O distances are longer than in (I) or (II), which are in turn longer than those in quinoline-2-carboxylate complexes with Co [2.027 (3)] or Ni [2.004 (2) Å]. The Fe—O distances decrease in the following order. For the isoquinoline-1-carboxylate complex, the Fe—O distance of 2.091 (2) Å is longer than in the quinoline-2-carboxylate complex [2.087 (1) Å], which is in turn longer than that in the isoquinoline-3-carboxylate complex [2.049 (2) Å]. The Cu—O distances also vary across a range of compounds. In (III), Cu—O is longer than in the isoquinoline-1-carboxylate complex [1.927 (3) and 1.928 (3) Å; Pardo et al., 1999]·This paragraph has been extensively reworded. Please check that the intended meaning has not been affected.

These data indicate that the same order of bond distances is present in the M—N distances of these complexes, but not in the M—O distances. These latter may be changed under the influence of the electronegativity of the carboxylate anion, although the same order for M—O is present in CoII and NiII complexes.

The M—O bond distance is indicative of bond stability and may have an influence on the catalytic activity of isoquinoline-1- and −3-carboxylate complexes. For example, the Fe complex of isoquinoline-3-carboxylate, with a rather short M—O distance compared with the complex with isoquinoline-1-carboxylate, has a more effective catalytic activity in oxygen formation from cyclooctane in Gif oxidation (Shul'pin, 2002) The difference in double-bond character around the N atom of the heterocyclic ring may be one of reasons for the difference in M—N(or O) coordination bond distances between the above analogous complexes.

The hydrogen-bonding parameters of the FeII complex, (I), (II) and (III) are listed in Table 2. A l l structures are stabilized by a similar intermolecular O—H···O hydrogen-bonding pattern between methanol ligands and neighbouring carboxylate groups. The structures are also stabilized by a stacking interaction between the isoquinoline rings, at a mean distance of 3.358 (3) for (I), 3.362 (3) for (II) and 3.362 (3) Å for (III).

Experimental top

Orange plate crystals of (I) were obtained by slow evaporation of a methanol solution of a mixture of isoquinoline-3-carboxylic acid and CoCl2·6H2O (molar ratio 4:1) at room temperature. Light-blue Colourless below? plate crystals of (II) were obtained by slow evaporation of a methanol solution of a mixture of isoquinoline-3-carboxylic acid and NiCl2·6H2O (molar ratio 4:1) at room temperature. Blue prismatic crystals of (III) were obtained by slow evaporation of a methanol solution of a mixture of isoquinoline-3-carboxylic acid and CuCl2·2H2O (molar ratio 4:1) at room temperature.

Refinement top

All H atoms were initially located in difference Fourier maps and were then regenerated in their ideal positions, with C—H = 0.96 (methyl) or 0.93 Å (other H atoms), and Uiso(H) = 1.2Ueq(parent) (methyl) or 1.5Ueq(parent) (other H atoms). The weighting schemes for both all three? structures were optimized.

Computing details top

For all compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999) and DIRDIF94 (Beurskens et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. A drawing of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The corresponding drawings for (II) and (III) are similar.
(I) top
Crystal data top
[Co(C10H6NO2)2(CH4O)2]F(000) = 482.0
Mr = 467.33Dx = 1.562 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.732 (2) Åθ = 13.4–14.5°
b = 6.268 (2) ŵ = 0.91 mm1
c = 15.043 (2) ÅT = 296 K
β = 101.00 (1)°Plate, orange
V = 993.3 (4) Å30.25 × 0.15 × 0.15 mm
Z = 2
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.019
ω/2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 013
Tmin = 0.848, Tmax = 0.873k = 08
2613 measured reflectionsl = 1919
2275 independent reflections3 standard reflections every 150 reflections
1618 reflections with I > 2σ(I) intensity decay: 0.1%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.2358P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.33 e Å3
1618 reflectionsΔρmin = 0.23 e Å3
144 parameters
Crystal data top
[Co(C10H6NO2)2(CH4O)2]V = 993.3 (4) Å3
Mr = 467.33Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.732 (2) ŵ = 0.91 mm1
b = 6.268 (2) ÅT = 296 K
c = 15.043 (2) Å0.25 × 0.15 × 0.15 mm
β = 101.00 (1)°
Data collection top
Rigaku AFC-5R
diffractometer
1618 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.019
Tmin = 0.848, Tmax = 0.8733 standard reflections every 150 reflections
2613 measured reflections intensity decay: 0.1%
2275 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032144 parameters
wR(F2) = 0.092H-atom parameters constrained
S = 1.01Δρmax = 0.33 e Å3
1618 reflectionsΔρmin = 0.23 e Å3
Special details top

Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.00000.00000.00000.0271 (1)
O10.0377 (1)0.2841 (3)0.0571 (1)0.0338 (4)
O1m0.0385 (2)0.1656 (3)0.1169 (1)0.0354 (4)
O20.1927 (2)0.5179 (3)0.0645 (1)0.0419 (4)
N10.1981 (2)0.0164 (3)0.0465 (1)0.0274 (4)
C10.2467 (2)0.2053 (4)0.0212 (1)0.0268 (4)
C20.3715 (2)0.2560 (4)0.0448 (1)0.0291 (5)
C30.4582 (2)0.1105 (4)0.0949 (1)0.0281 (5)
C40.5910 (2)0.1483 (4)0.1189 (2)0.0355 (5)
C50.6683 (2)0.0038 (5)0.1639 (2)0.0407 (6)
C60.6192 (2)0.1996 (5)0.1878 (2)0.0421 (6)
C70.4922 (2)0.2397 (4)0.1668 (2)0.0349 (5)
C80.4088 (2)0.0857 (4)0.1195 (1)0.0278 (4)
C90.2767 (2)0.1209 (4)0.0937 (1)0.0287 (5)
C100.1509 (2)0.3485 (4)0.0379 (2)0.0292 (5)
C110.0531 (3)0.2310 (6)0.1926 (2)0.0574 (8)
H1m0.08460.26540.09820.0424*
H20.40020.38720.02800.0349*
H40.62480.27700.10380.0426*
H50.75510.02170.17930.0488*
H60.67390.30230.21820.0505*
H70.46050.36850.18350.0419*
H90.24360.24810.11110.0344*
H11a0.10230.34640.17530.0861*
H11b0.01100.27760.24010.0861*
H11c0.10810.11340.21380.0861*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0191 (2)0.0245 (2)0.0361 (2)0.0026 (2)0.0007 (2)0.0034 (2)
O10.0253 (8)0.0298 (9)0.0443 (9)0.0025 (7)0.0012 (7)0.0077 (7)
O1m0.0315 (8)0.0314 (9)0.0409 (9)0.0038 (7)0.0008 (7)0.0002 (7)
O20.0319 (9)0.0301 (9)0.064 (1)0.0013 (7)0.0101 (8)0.0162 (9)
N10.0211 (8)0.0260 (9)0.0342 (9)0.0036 (8)0.0033 (7)0.0006 (8)
C10.025 (1)0.024 (1)0.032 (1)0.0017 (9)0.0067 (8)0.0000 (9)
C20.028 (1)0.025 (1)0.035 (1)0.0062 (9)0.0073 (9)0.0006 (10)
C30.023 (1)0.032 (1)0.029 (1)0.0027 (10)0.0041 (9)0.0030 (9)
C40.025 (1)0.044 (1)0.038 (1)0.007 (1)0.0076 (9)0.001 (1)
C50.020 (1)0.061 (2)0.040 (1)0.001 (1)0.0026 (9)0.001 (1)
C60.028 (1)0.055 (2)0.041 (1)0.009 (1)0.002 (1)0.008 (1)
C70.030 (1)0.039 (1)0.035 (1)0.001 (1)0.0043 (10)0.006 (1)
C80.023 (1)0.034 (1)0.027 (1)0.0004 (9)0.0052 (8)0.0006 (9)
C90.026 (1)0.027 (1)0.034 (1)0.0029 (9)0.0061 (9)0.0035 (9)
C100.027 (1)0.026 (1)0.035 (1)0.0005 (9)0.0078 (9)0.0013 (9)
C110.047 (2)0.074 (2)0.045 (2)0.004 (2)0.006 (1)0.014 (2)
Geometric parameters (Å, º) top
Co—O12.050 (2)C3—C41.421 (3)
Co—O1i2.050 (2)C3—C81.416 (3)
Co—O1m2.148 (2)C4—C51.357 (3)
Co—O1mi2.148 (2)C4—H40.930
Co—N12.110 (2)C5—C61.409 (4)
Co—N1i2.110 (2)C5—H50.930
O1—C101.260 (3)C6—C71.362 (3)
O1m—C111.416 (3)C6—H60.930
O1m—H1m0.814C7—C81.413 (3)
O2—C101.248 (3)C7—H70.930
N1—C11.376 (3)C8—C91.414 (3)
N1—C91.314 (3)C9—H90.930
C1—C21.357 (3)C11—H11a0.960
C1—C101.518 (3)C11—H11b0.960
C2—C31.414 (3)C11—H11c0.960
C2—H20.930
O1···O1ii3.385 (3)O2···C11ii3.348 (3)
O1···C10ii3.542 (3)O2···N1iv3.538 (3)
O1···O1mii3.565 (2)O2···C6vi3.596 (3)
O1···O2ii3.566 (3)C1···C5vi3.340 (3)
O1m···O2ii2.607 (2)C2···C5vi3.469 (3)
O1m···C10ii3.405 (3)C2···C6vi3.537 (3)
O1m···C5iii3.518 (3)C3···C3vi3.441 (4)
O2···C9iv3.283 (3)C3···C4vi3.550 (3)
O2···C4v3.341 (3)C4···C7vii3.576 (4)
O1—Co—O1i180.0C2—C3—C8117.3 (2)
O1—Co—O1m90.42 (6)C4—C3—C8119.1 (2)
O1—Co—O1mi89.58 (6)C3—C4—C5119.8 (2)
O1—Co—N180.21 (6)C3—C4—H4120.1
O1—Co—N1i99.79 (6)C5—C4—H4120.1
O1i—Co—O1m89.58 (6)C4—C5—C6121.1 (2)
O1i—Co—O1mi90.42 (6)C4—C5—H5119.4
O1i—Co—N199.79 (6)C6—C5—H5119.4
O1i—Co—N1i80.21 (6)C5—C6—C7120.5 (2)
O1m—Co—O1mi180.0C5—C6—H6119.8
O1m—Co—N192.51 (7)C7—C6—H6119.8
O1m—Co—N1i87.49 (7)C6—C7—C8120.1 (2)
O1mi—Co—N187.49 (7)C6—C7—H7120.0
O1mi—Co—N1i92.51 (7)C8—C7—H7120.0
N1—Co—N1i180.0C3—C8—C7119.4 (2)
Co—O1—C10116.2 (1)C3—C8—C9118.0 (2)
Co—O1m—C11125.9 (2)C7—C8—C9122.5 (2)
Co—O1m—H1m106.7N1—C9—C8123.5 (2)
C11—O1m—H1m109.8N1—C9—H9118.2
Co—N1—C1111.2 (1)C8—C9—H9118.2
Co—N1—C9130.5 (2)O1—C10—O2126.1 (2)
C1—N1—C9118.4 (2)O1—C10—C1117.4 (2)
N1—C1—C2122.4 (2)O2—C10—C1116.5 (2)
N1—C1—C10114.9 (2)O1m—C11—H11a109.5
C2—C1—C10122.6 (2)O1m—C11—H11b109.5
C1—C2—C3120.3 (2)O1m—C11—H11c109.5
C1—C2—H2119.8H11a—C11—H11b109.5
C3—C2—H2119.8H11a—C11—H11c109.5
C2—C3—C4123.6 (2)H11b—C11—H11c109.5
Co—O1—C10—O2178.9 (2)N1—Co—O1—C103.6 (2)
Co—O1—C10—C12.6 (3)N1—Co—O1i—C10i176.4 (2)
Co—O1i—C10i—O2i178.9 (2)N1—Co—O1m—C114.1 (2)
Co—O1i—C10i—C1i2.6 (3)N1—Co—O1mi—C11i175.9 (2)
Co—N1—C1—C2178.5 (2)N1—C1—C2—C32.0 (3)
Co—N1—C1—C103.7 (2)N1—C9—C8—C31.6 (3)
Co—N1—C9—C8179.7 (2)N1—C9—C8—C7177.1 (2)
Co—N1i—C1i—C2i178.5 (2)C1—N1—C9—C80.4 (3)
Co—N1i—C1i—C10i3.7 (2)C1—C2—C3—C4177.3 (2)
Co—N1i—C9i—C8i179.7 (2)C1—C2—C3—C80.7 (3)
O1—Co—O1m—C1184.3 (2)C2—C1—N1—C91.5 (3)
O1—Co—O1mi—C11i95.7 (2)C2—C3—C4—C5177.3 (2)
O1—Co—N1—C13.9 (1)C2—C3—C8—C7177.8 (2)
O1—Co—N1—C9176.2 (2)C2—C3—C8—C91.0 (3)
O1—Co—N1i—C1i176.1 (1)C3—C2—C1—C10175.7 (2)
O1—Co—N1i—C9i3.8 (2)C3—C4—C5—C60.2 (4)
O1—C10—C1—N10.9 (3)C3—C8—C7—C60.4 (3)
O1—C10—C1—C2178.7 (2)C4—C3—C8—C70.4 (3)
O1m—Co—O1—C1088.9 (2)C4—C3—C8—C9179.1 (2)
O1m—Co—O1i—C10i91.1 (2)C4—C5—C6—C70.6 (4)
O1m—Co—N1—C186.1 (1)C5—C4—C3—C80.7 (4)
O1m—Co—N1—C993.8 (2)C5—C6—C7—C80.9 (4)
O1m—Co—N1i—C1i93.9 (1)C6—C7—C8—C9178.2 (2)
O1m—Co—N1i—C9i86.2 (2)C9—N1—C1—C10176.4 (2)
O2—C10—C1—N1177.8 (2)C9—N1—C1—C10176.4 (2)
O2—C10—C1—C20.1 (3)
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y1, z; (vi) x+1, y, z; (vii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1m—H1m···O2ii0.811.802.607 (2)175
Symmetry code: (ii) x, y1, z.
(II) top
Crystal data top
[Ni(C10H6NO2)2(CH4O)2]F(000) = 484
Mr = 467.09Dx = 1.571 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.638 (2) Åθ = 13.5–14.9°
b = 6.277 (2) ŵ = 1.03 mm1
c = 15.068 (2) ÅT = 296 K
β = 101.15 (1)°Plate, colourless
V = 987.2 (4) Å30.30 × 0.20 × 0.15 mm
Z = 2
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.019
ω/2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 013
Tmin = 0.821, Tmax = 0.857k = 08
2602 measured reflectionsl = 1919
2267 independent reflections3 standard reflections every 150 reflections
1590 reflections with I > 2σ(I) intensity decay: 0.03%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0376P)2 + 0.449P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.33 e Å3
1590 reflectionsΔρmin = 0.40 e Å3
144 parameters
Crystal data top
[Ni(C10H6NO2)2(CH4O)2]V = 987.2 (4) Å3
Mr = 467.09Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.638 (2) ŵ = 1.03 mm1
b = 6.277 (2) ÅT = 296 K
c = 15.068 (2) Å0.30 × 0.20 × 0.15 mm
β = 101.15 (1)°
Data collection top
Rigaku AFC-5R
diffractometer
1590 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.019
Tmin = 0.821, Tmax = 0.8573 standard reflections every 150 reflections
2602 measured reflections intensity decay: 0.03%
2267 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035144 parameters
wR(F2) = 0.096H-atom parameters constrained
S = 1.02Δρmax = 0.33 e Å3
1590 reflectionsΔρmin = 0.40 e Å3
Special details top

Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.00000.00000.00000.0263 (1)
O10.0312 (2)0.2834 (3)0.0578 (1)0.0326 (4)
O1m0.0379 (2)0.1588 (3)0.1159 (1)0.0349 (4)
O20.1871 (2)0.5167 (3)0.0668 (1)0.0405 (5)
N10.1942 (2)0.0180 (3)0.0446 (1)0.0267 (4)
C10.2424 (2)0.2062 (4)0.0197 (2)0.0265 (5)
C20.3684 (2)0.2567 (4)0.0437 (2)0.0288 (5)
C30.4559 (2)0.1119 (4)0.0940 (2)0.0279 (5)
C40.5895 (2)0.1499 (5)0.1186 (2)0.0354 (6)
C50.6679 (2)0.0030 (5)0.1634 (2)0.0411 (6)
C60.6182 (3)0.1971 (5)0.1873 (2)0.0424 (7)
C70.4899 (2)0.2385 (5)0.1658 (2)0.0339 (6)
C80.4061 (2)0.0842 (4)0.1183 (2)0.0271 (5)
C90.2726 (2)0.1204 (4)0.0918 (2)0.0287 (5)
C100.1454 (2)0.3487 (4)0.0398 (2)0.0295 (5)
C110.0527 (3)0.2086 (6)0.1945 (2)0.0586 (10)
H1m0.08900.27400.10000.0419*
H20.39740.38770.02690.0346*
H40.62350.27900.10420.0425*
H50.75570.02170.17850.0494*
H60.67340.29910.21810.0509*
H70.45790.36730.18230.0407*
H90.23900.24760.10870.0344*
H11a0.10450.32610.18220.0879*
H11b0.00890.24670.24230.0879*
H11c0.10630.08700.21250.0879*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0175 (2)0.0232 (2)0.0364 (3)0.0024 (2)0.0006 (2)0.0032 (2)
O10.0233 (9)0.0263 (9)0.046 (1)0.0006 (7)0.0004 (8)0.0076 (8)
O1m0.0309 (10)0.0325 (10)0.039 (1)0.0044 (8)0.0004 (8)0.0007 (9)
O20.0306 (9)0.0279 (10)0.063 (1)0.0004 (8)0.0095 (9)0.014 (1)
N10.0196 (9)0.026 (1)0.034 (1)0.0050 (9)0.0022 (7)0.0007 (10)
C10.024 (1)0.023 (1)0.033 (1)0.0008 (10)0.0068 (10)0.001 (1)
C20.024 (1)0.026 (1)0.038 (1)0.005 (1)0.0075 (10)0.001 (1)
C30.023 (1)0.032 (1)0.029 (1)0.004 (1)0.0039 (10)0.001 (1)
C40.024 (1)0.044 (2)0.039 (1)0.008 (1)0.008 (1)0.001 (1)
C50.018 (1)0.063 (2)0.040 (1)0.002 (1)0.0018 (10)0.001 (2)
C60.028 (1)0.054 (2)0.043 (2)0.008 (1)0.002 (1)0.008 (1)
C70.028 (1)0.036 (1)0.037 (1)0.001 (1)0.004 (1)0.005 (1)
C80.023 (1)0.031 (1)0.028 (1)0.001 (1)0.0047 (10)0.001 (1)
C90.024 (1)0.027 (1)0.035 (1)0.002 (1)0.004 (1)0.004 (1)
C100.026 (1)0.026 (1)0.037 (1)0.002 (1)0.007 (1)0.002 (1)
C110.045 (2)0.077 (3)0.047 (2)0.006 (2)0.007 (1)0.013 (2)
Geometric parameters (Å, º) top
Ni—O12.036 (2)C3—C41.418 (3)
Ni—O1i2.036 (2)C3—C81.416 (4)
Ni—O1m2.116 (2)C4—C51.362 (4)
Ni—O1mi2.116 (2)C4—H40.930
Ni—N12.049 (2)C5—C61.403 (5)
Ni—N1i2.049 (2)C5—H50.930
O1—C101.261 (3)C6—C71.365 (4)
O1m—C111.410 (3)C6—H60.930
O1m—H1m0.908C7—C81.413 (4)
O2—C101.243 (3)C7—H70.930
N1—C11.368 (3)C8—C91.417 (3)
N1—C91.314 (3)C9—H90.930
C1—C21.357 (3)C11—H11a0.960
C1—C101.521 (3)C11—H11b0.960
C2—C31.412 (3)C11—H11c0.960
C2—H20.930
O1···O1ii3.364 (4)C3···C3vi3.450 (5)
O1···C10ii3.478 (3)C3···C4vi3.549 (4)
O1···O2ii3.491 (3)C4···C7vii3.580 (4)
O1m···O2ii2.600 (3)O1···O1mi2.915 (3)
O1m···C10ii3.416 (3)O1···O1m2.957 (3)
O1m···C5iii3.494 (3)O1···O1ii3.364 (4)
O2···C9iv3.300 (3)O1···O2ii3.491 (3)
O2···C11ii3.359 (4)O1m···O2ii2.600 (3)
O2···C4v3.369 (4)O1m···O1i2.915 (3)
O2···N1iv3.560 (3)O1m···O12.957 (3)
C1···C5vi3.343 (4)O2···O1mii2.600 (3)
C2···C5vi3.459 (4)O2···O1ii3.491 (3)
C2···C6vi3.531 (4)
O1—Ni—O1i180.0C6—C7—C8119.6 (3)
O1—Ni—O1m90.81 (7)C6—C7—H7120.2
O1—Ni—O1mi89.19 (7)C8—C7—H7120.2
O1—Ni—N181.63 (7)C3—C8—C7119.7 (2)
O1—Ni—N1i98.37 (7)C3—C8—C9118.1 (2)
O1i—Ni—O1m89.19 (7)C7—C8—C9122.2 (2)
O1i—Ni—O1mi90.81 (7)N1—C9—C8122.9 (2)
O1i—Ni—N198.37 (7)N1—C9—H9118.6
O1i—Ni—N1i81.63 (7)C8—C9—H9118.6
O1m—Ni—O1mi180.0O1—C10—O2126.6 (2)
O1m—Ni—N192.55 (7)O1—C10—C1116.8 (2)
O1m—Ni—N1i87.45 (7)O2—C10—C1116.6 (2)
O1mi—Ni—N187.45 (7)O1m—C11—H11a109.5
O1mi—Ni—N1i92.55 (7)O1m—C11—H11b109.5
N1—Ni—N1i180.0O1m—C11—H11c109.5
Ni—O1—C10115.0 (2)H11a—C11—H11b109.5
Ni—O1m—C11126.1 (2)H11a—C11—H11c109.5
Ni—O1m—H1m111.0H11b—C11—H11c109.5
C11—O1m—H1m108.8O2—O1—O1mi122.95 (10)
Ni—N1—C1111.4 (1)O2—O1—O1m122.79 (9)
Ni—N1—C9129.4 (2)O2—O1—O1ii74.06 (8)
C1—N1—C9119.2 (2)O2—O1—O2ii112.08 (8)
N1—C1—C2122.1 (2)O2—O1—O1mii45.66 (6)
N1—C1—C10115.0 (2)O1mi—O1—O1m92.21 (7)
C2—C1—C10122.8 (2)O1mi—O1—O1ii160.7 (1)
C1—C2—C3120.4 (2)O1mi—O1—O2ii124.13 (7)
C1—C2—H2119.8O1mi—O1—O1mii147.90 (9)
C3—C2—H2119.8O1m—O1—O1ii69.38 (7)
C2—C3—C4123.7 (2)O1m—O1—O2ii46.66 (5)
C2—C3—C8117.3 (2)O1m—O1—O1mii119.38 (7)
C4—C3—C8119.0 (2)O1ii—O1—O1mii49.99 (6)
C3—C4—C5119.9 (3)O2ii—O1—O1mii80.11 (6)
C3—C4—H4120.1O2ii—O1m—O1i135.19 (8)
C5—C4—H4120.1O2ii—O1m—O177.53 (8)
C4—C5—C6120.9 (2)O1i—O1m—O187.79 (7)
C4—C5—H5119.5O1i—O1m—O1ii147.90 (9)
C6—C5—H5119.5O1—O1m—O1ii60.62 (7)
C5—C6—C7120.9 (3)O1—O2—O1mii96.38 (9)
C5—C6—H6119.5O1—O2—O1ii67.92 (8)
C7—C6—H6119.6O1mii—O2—O1ii55.80 (6)
Ni—O1—C10—O2179.7 (2)N1—Ni—O1—C102.9 (2)
Ni—O1—C10—C11.3 (3)N1—Ni—O1i—C10i177.1 (2)
Ni—O1i—C10i—O2i179.7 (2)N1—Ni—O1m—C119.5 (2)
Ni—O1i—C10i—C1i1.3 (3)N1—Ni—O1mi—C11i170.5 (2)
Ni—N1—C1—C2178.2 (2)N1—C1—C2—C31.7 (4)
Ni—N1—C1—C104.3 (3)N1—C9—C8—C31.3 (4)
Ni—N1—C9—C8179.6 (2)N1—C9—C8—C7177.2 (2)
Ni—N1i—C1i—C2i178.2 (2)C1—N1—C9—C80.3 (4)
Ni—N1i—C1i—C10i4.3 (3)C1—C2—C3—C4177.6 (3)
Ni—N1i—C9i—C8i179.6 (2)C1—C2—C3—C80.6 (4)
O1—Ni—O1m—C1191.1 (2)C2—C1—N1—C91.2 (4)
O1—Ni—O1mi—C11i88.9 (2)C2—C3—C4—C5176.8 (3)
O1—Ni—N1—C13.9 (2)C2—C3—C8—C7177.7 (2)
O1—Ni—N1—C9176.7 (2)C2—C3—C8—C90.9 (4)
O1—Ni—N1i—C1i176.1 (2)C3—C2—C1—C10175.6 (2)
O1—Ni—N1i—C9i3.3 (2)C3—C4—C5—C61.2 (4)
O1—C10—C1—N12.1 (3)C3—C8—C7—C60.4 (4)
O1—C10—C1—C2179.6 (2)C4—C3—C8—C70.5 (4)
O1m—Ni—O1—C1089.6 (2)C4—C3—C8—C9179.1 (2)
O1m—Ni—O1i—C10i90.4 (2)C4—C5—C6—C70.3 (5)
O1m—Ni—N1—C186.5 (2)C5—C4—C3—C81.3 (4)
O1m—Ni—N1—C992.8 (2)C5—C6—C7—C80.5 (4)
O1m—Ni—N1i—C1i93.5 (2)C6—C7—C8—C9178.1 (3)
O1m—Ni—N1i—C9i87.2 (2)C9—N1—C1—C10176.2 (2)
O2—C10—C1—N1177.0 (2)C9—N1—C1—C10176.2 (2)
O2—C10—C1—C20.5 (4)
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y1, z; (vi) x+1, y, z; (vii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1m—H1m···O2ii0.911.692.600 (3)178
Symmetry code: (ii) x, y1, z.
(III) top
Crystal data top
[Cu(C10H6NO2)2(CH4O)2]F(000) = 486.0
Mr = 471.95Dx = 1.541 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.265 (2) Åθ = 14.7–15.0°
b = 6.332 (2) ŵ = 1.12 mm1
c = 15.764 (1) ÅT = 296 K
β = 96.879 (9)°Plate, blue
V = 1017.3 (4) Å30.30 × 0.30 × 0.20 mm
Z = 2
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.012
ω/2θ scansθmax = 27.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 013
Tmin = 0.720, Tmax = 0.800k = 08
2692 measured reflectionsl = 2020
2339 independent reflections3 standard reflections every 150 reflections
1665 reflections with I > 2σ(I) intensity decay: 14.8%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.4271P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.26 e Å3
2239 reflectionsΔρmin = 0.27 e Å3
143 parameters
Crystal data top
[Cu(C10H6NO2)2(CH4O)2]V = 1017.3 (4) Å3
Mr = 471.95Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.265 (2) ŵ = 1.12 mm1
b = 6.332 (2) ÅT = 296 K
c = 15.764 (1) Å0.30 × 0.30 × 0.20 mm
β = 96.879 (9)°
Data collection top
Rigaku AFC-5R
diffractometer
1665 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.012
Tmin = 0.720, Tmax = 0.8003 standard reflections every 150 reflections
2692 measured reflections intensity decay: 14.8%
2339 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032143 parameters
wR(F2) = 0.094H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
2239 reflectionsΔρmin = 0.27 e Å3
Special details top

Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.00000.00000.00000.0403 (1)
O10.0358 (2)0.2700 (3)0.0538 (1)0.0436 (4)
O1m0.0418 (2)0.1899 (3)0.1343 (1)0.0551 (5)
O20.1970 (2)0.5029 (3)0.0623 (1)0.0535 (5)
N10.1896 (2)0.0088 (3)0.0416 (1)0.0352 (4)
C10.2447 (2)0.1953 (3)0.0196 (2)0.0351 (5)
C20.3729 (2)0.2423 (4)0.0449 (2)0.0380 (5)
C30.4540 (2)0.0958 (4)0.0937 (1)0.0357 (5)
C40.5893 (2)0.1302 (4)0.1196 (2)0.0435 (6)
C50.6627 (2)0.0223 (5)0.1634 (2)0.0496 (6)
C60.6059 (3)0.2147 (5)0.1848 (2)0.0511 (7)
C70.4753 (2)0.2517 (4)0.1615 (2)0.0441 (6)
C80.3969 (2)0.0980 (4)0.1151 (1)0.0364 (5)
C90.2623 (2)0.1308 (4)0.0874 (1)0.0377 (5)
C100.1528 (2)0.3365 (4)0.0362 (2)0.0389 (5)
C110.0543 (3)0.2684 (6)0.1968 (2)0.0755 (10)
H1m0.08940.28690.11510.0826*
H20.40710.37130.03000.0456*
H40.62800.25710.10660.0522*
H50.75170.00080.17950.0595*
H60.65750.31700.21480.0613*
H70.43820.37840.17630.0529*
H90.22360.25620.10210.0453*
H11a0.11690.15920.21390.1133*
H11b0.09810.38560.17410.1133*
H11c0.01370.31400.24550.1133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0277 (2)0.0325 (2)0.0597 (3)0.0067 (2)0.0009 (2)0.0079 (2)
O10.0341 (8)0.0351 (9)0.061 (1)0.0052 (7)0.0010 (8)0.0079 (8)
O1m0.051 (1)0.045 (1)0.067 (1)0.0024 (9)0.0048 (9)0.0005 (9)
O20.0394 (9)0.0364 (9)0.085 (1)0.0051 (8)0.0094 (9)0.0189 (10)
N10.0294 (8)0.0305 (9)0.0459 (10)0.0069 (8)0.0056 (7)0.0025 (9)
C10.032 (1)0.029 (1)0.045 (1)0.0043 (9)0.0091 (9)0.0017 (9)
C20.034 (1)0.034 (1)0.047 (1)0.0083 (10)0.0095 (10)0.001 (1)
C30.030 (1)0.041 (1)0.037 (1)0.005 (1)0.0066 (9)0.005 (1)
C40.032 (1)0.052 (1)0.046 (1)0.011 (1)0.005 (1)0.004 (1)
C50.031 (1)0.070 (2)0.047 (1)0.003 (1)0.0009 (10)0.002 (1)
C60.040 (1)0.065 (2)0.046 (1)0.006 (1)0.002 (1)0.006 (1)
C70.041 (1)0.047 (1)0.045 (1)0.002 (1)0.006 (1)0.008 (1)
C80.033 (1)0.039 (1)0.037 (1)0.004 (1)0.0063 (9)0.001 (1)
C90.035 (1)0.033 (1)0.045 (1)0.0080 (10)0.0059 (10)0.003 (1)
C100.035 (1)0.032 (1)0.051 (1)0.0024 (10)0.010 (1)0.002 (1)
C110.068 (2)0.084 (2)0.070 (2)0.002 (2)0.011 (2)0.017 (2)
Geometric parameters (Å, º) top
Cu—O11.963 (2)C3—C41.417 (3)
Cu—O1i1.963 (2)C3—C81.418 (3)
Cu—O1m2.516 (2)C4—C51.361 (4)
Cu—O1mi2.516 (2)C4—H40.930
Cu—N11.979 (2)C5—C61.408 (4)
Cu—N1i1.979 (2)C5—H50.930
O1—C101.272 (3)C6—C71.367 (3)
O1m—C111.399 (4)C6—H60.930
O1m—H1m0.820C7—C81.410 (3)
O2—C101.236 (3)C7—H70.930
N1—C11.372 (3)C8—C91.414 (3)
N1—C91.315 (3)C9—H90.930
C1—C21.361 (3)C11—H11a0.960
C1—C101.504 (3)C11—H11b0.960
C2—C31.412 (3)C11—H11c0.960
C2—H20.930
Cu···O1m2.516 (2)O2···C4v3.391 (3)
Cu···O1mi2.516 (2)O2···C11ii3.455 (4)
O1···O2ii3.489 (3)O2···C6vi3.476 (3)
O1···O1ii3.494 (3)C1···C5vi3.328 (4)
O1···C10ii3.554 (3)C1···C4vi3.586 (4)
O1m···O2ii2.679 (2)C2···C5vi3.545 (4)
O1m···C5iii3.399 (3)C2···C4vi3.560 (4)
O1m···C10ii3.502 (3)C3···C3vi3.428 (5)
O2···C9iv3.319 (3)C5···C10vi3.531 (4)
O1—Cu—O1i180.0C2—C3—C8117.7 (2)
O1—Cu—O1m90.41 (7)C4—C3—C8118.9 (2)
O1—Cu—O1mi89.59 (7)C3—C4—C5120.1 (2)
O1—Cu—N183.77 (7)C3—C4—H4120.0
O1—Cu—N1i96.23 (7)C5—C4—H4120.0
O1i—Cu—O1m89.59 (7)C4—C5—C6121.0 (2)
O1i—Cu—O1mi90.41 (7)C4—C5—H5119.5
O1i—Cu—N196.23 (7)C6—C5—H5119.5
O1i—Cu—N1i83.77 (7)C5—C6—C7120.3 (2)
O1m—Cu—O1mi180.0C5—C6—H6119.8
O1m—Cu—N188.14 (7)C7—C6—H6119.8
O1m—Cu—N1i91.86 (7)C6—C7—C8120.1 (2)
O1mi—Cu—N191.86 (7)C6—C7—H7120.0
O1mi—Cu—N1i88.14 (7)C8—C7—H7120.0
N1—Cu—N1i180.0C3—C8—C7119.6 (2)
Cu—O1—C10114.5 (1)C3—C8—C9118.0 (2)
Cu—O1m—C11125.9 (2)C7—C8—C9122.3 (2)
Cu—O1m—H1m101.6N1—C9—C8122.7 (2)
C11—O1m—H1m109.4N1—C9—H9118.6
Cu—N1—C1111.0 (1)C8—C9—H9118.7
Cu—N1—C9129.3 (2)O1—C10—O2125.7 (2)
C1—N1—C9119.6 (2)O1—C10—C1116.1 (2)
N1—C1—C2121.8 (2)O2—C10—C1118.1 (2)
N1—C1—C10114.3 (2)O1m—C11—H11a109.5
C2—C1—C10123.9 (2)O1m—C11—H11b109.5
C1—C2—C3120.2 (2)O1m—C11—H11c109.5
C1—C2—H2119.9H11a—C11—H11b109.5
C3—C2—H2119.9H11a—C11—H11c109.5
C2—C3—C4123.4 (2)H11b—C11—H11c109.5
Cu—O1—C10—O2179.4 (2)N1—Cu—O1—C104.0 (2)
Cu—O1—C10—C12.2 (3)N1—Cu—O1i—C10i176.0 (2)
Cu—O1i—C10i—O2i179.4 (2)N1—Cu—O1m—C115.2 (2)
Cu—O1i—C10i—C1i2.2 (3)N1—Cu—O1mi—C11i174.8 (2)
Cu—N1—C1—C2176.7 (2)N1—C1—C2—C31.3 (4)
Cu—N1—C1—C105.1 (2)N1—C9—C8—C31.2 (3)
Cu—N1—C9—C8177.5 (2)N1—C9—C8—C7177.6 (2)
Cu—N1i—C1i—C2i176.7 (2)C1—N1—C9—C80.3 (3)
Cu—N1i—C1i—C10i5.1 (2)C1—C2—C3—C4177.5 (2)
Cu—N1i—C9i—C8i177.5 (2)C1—C2—C3—C80.4 (3)
O1—Cu—O1m—C1178.5 (2)C2—C1—N1—C91.0 (3)
O1—Cu—O1mi—C11i101.5 (2)C2—C3—C4—C5177.1 (2)
O1—Cu—N1—C14.9 (2)C2—C3—C8—C7178.0 (2)
O1—Cu—N1—C9177.7 (2)C2—C3—C8—C90.8 (3)
O1—Cu—N1i—C1i175.1 (2)C3—C2—C1—C10176.7 (2)
O1—Cu—N1i—C9i2.3 (2)C3—C4—C5—C60.8 (4)
O1—C10—C1—N12.1 (3)C3—C8—C7—C60.7 (4)
O1—C10—C1—C2179.7 (2)C4—C3—C8—C70.0 (3)
O1m—Cu—O1—C1084.1 (2)C4—C3—C8—C9178.9 (2)
O1m—Cu—O1i—C10i95.9 (2)C4—C5—C6—C70.1 (4)
O1m—Cu—N1—C185.7 (2)C5—C4—C3—C80.8 (4)
O1m—Cu—N1—C991.7 (2)C5—C6—C7—C80.7 (4)
O1m—Cu—N1i—C1i94.3 (2)C6—C7—C8—C9178.1 (2)
O1m—Cu—N1i—C9i88.3 (2)C9—N1—C1—C10177.2 (2)
O2—C10—C1—N1176.5 (2)C9—N1—C1—C10177.2 (2)
O2—C10—C1—C21.7 (4)
Symmetry codes: (i) x, y, z; (ii) x, y1, z; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y1, z; (vi) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1m—H1m···O2ii0.821.862.679 (2)175
Symmetry code: (ii) x, y1, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Co(C10H6NO2)2(CH4O)2][Ni(C10H6NO2)2(CH4O)2][Cu(C10H6NO2)2(CH4O)2]
Mr467.33467.09471.95
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)296296296
a, b, c (Å)10.732 (2), 6.268 (2), 15.043 (2)10.638 (2), 6.277 (2), 15.068 (2)10.265 (2), 6.332 (2), 15.764 (1)
β (°) 101.00 (1) 101.15 (1) 96.879 (9)
V3)993.3 (4)987.2 (4)1017.3 (4)
Z222
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.911.031.12
Crystal size (mm)0.25 × 0.15 × 0.150.30 × 0.20 × 0.150.30 × 0.30 × 0.20
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Rigaku AFC-5R
diffractometer
Rigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.848, 0.8730.821, 0.8570.720, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
2613, 2275, 1618 2602, 2267, 1590 2692, 2339, 1665
Rint0.0190.0190.012
(sin θ/λ)max1)0.6500.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 1.01 0.035, 0.096, 1.02 0.032, 0.094, 1.04
No. of reflections161815902239
No. of parameters144144143
No. of restraints???
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.230.33, 0.400.26, 0.27

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation & Rigaku, 2000), SIR97 (Altomare et al., 1999) and DIRDIF94 (Beurskens et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), TEXSAN.

Comparative selected geometric parameters (Å, °) top
MFea(I) (M = Co)(II) (M = Ni)(III) (M = Cu)
M-O12.050 (2)2.050 (2)2.036 (2)1.963 (2)
M-O1m2.196 (2)2.148 (2)2.116 (2)2.516 (2)
M-N12.167 (2)2.110 (2)2.049 (2)1.979 (2)
N1-C11.372 (4)1.376 (3)1.368 (3)1.372 (3)
N1-C91.315 (4)1.314 (3)1.314 (3)1.315 (3)
C1-C21.366 (4)1.357 (3)1.357 (3)1.361 (3)
C2-C31.414 (4)1.414 (3)1.412 (3)1.412 (3)
C3-C81.415 (5)1.416 (3)1.416 (4)1.418 (3)
C8-C91.416 (4)1.414 (3)1.417 (3)1.414 (3)
O1-M-O1m89.97 (9)90.42 (6)90.81 (7)90.41 (7)
O1-M-N178.86 (9)80.21 (6)81.63 (7)83.77 (7)
O1m-M-N192.43 (9)92.51 (7)92.55 (7)88.14 (7)
(a) Okabe & Muranishi (2003c).
Hydrogen-bonding geometry (Å, °) top
D-H···AD-HH···AD···AD-H···A
FeaO1m-H1m···O2i0.971.662.617 (3)170
I (Co)O1m-H1m···O2i0.811.652.607 (2)172
II (Ni)O1m-H1m···O2i0.911.702.600 (3)178
III (Cu)O1m-H1m···O2i0.821.862.679 (2)175
Symmetry code: (i) −x, −1 − y, −z. (a) Okabe & Muranishi (2003c).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds