Download citation
Download citation
link to html
In title an­hydro­us catena-poly­[[trans-bis­(ethane-1,2-di­amine-[kappa]2N,N')copper(II)]-[mu]-di­thionato-[kappa]2O:O'], [Cu(S2O6)(C2H8N2)2]n or [{H2N(CH2)2NH2}2Cu(O·O2SSO2·O)][infinity], successive Cu atoms are bridged by a single doubly charged di­thionate group, forming a one-dimensional polymer with inversion centres at the metal atoms and the mid-point of the S-S bond [Cu-O = 2.5744 (15) Å]. In title (hydrated) trans-di­aqua­bis­(propane-1,3-di­amine-[kappa]2N,N')copper(II) di­thionate, [Cu(C3H10N2)2(H2O)2](S2O6) or [{H2N(CH2)3NH2}2Cu(OH2)2](S2O6), both ions have imposed 2/m symmetry. The `axial' anion components are displaced by a pair of water ligands [Cu-O = 2.439 (3) Å], the shorter Cu-O distance being compensated by the lengthened Cu-N distance [2.0443 (18), cf. 2.0100 (13) and 2.0122 (16) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103025447/ta1422sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103025447/ta1422Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103025447/ta1422IIsup3.hkl
Contains datablock II

CCDC references: 229083; 229084

Comment top

Copper(II) in the presence of the dithionate counterion crystallizes from an aqueous solution of ethane-1,2-diamine to yield an anhydrous complex, catena-trans-(O-dithionato-O')bis(ethane-1,2-diamine)copper(II), (I), the propane-1,3-diamine counterpart is a dihydrate, trans-diaquabis(propane-1,3-diamine)copper(II) dithionate, (II). In both cases, the Cu atom lies on a crystallographic inversion centre [actual symmetry in (II), is 2/m] in a typical (Melnik et al., 1998) trans six-coordinate Cu(II)(N2)2O2 environment.

In (I), the trans O-donors form successive ends of the doubly charged dithionate anion as O·O2SSO2·O, linking successive translation-related Cu atoms into a single-stranded polymer parallel to c, with inversion centres, also now lying at the centres of the S—S bonds (Fig. 1). The Cu—N distances are 2.010 (1) and 2.012 (2) Å, the Cu—O distance is 2.574 (1) Å, and the Cu—O—S angle is 125.84 (7)°, the coordinated O—S distance being comparable to the uncoordinated distance (Table 1). Both ligand conformations are necessarily the same and of the δλ form, with quasi-twofold? symmetry about the line through the C—C bonds, the angles in the chelating rings (outwardly from the Cu atom) being 12.7 (4), 15.7 (2), −38.1 (2), −40.5 (2) and 52.2 (3)°.

Compound (II), by contrast, is a dihydrate in which a pair of aqua ligands now coordinate in the trans monodentate sites, supplanting the anionic moieties so that the complex is now ionic rather than polymeric [trans-diaquabis(propane-1,3-diamine)copper(II) dithionate], with both the anion and the cation centrosymmetric. In (II), Cu—N increases to 2.044 (2), compensating the shorter Cu—O distance [2.439 (3) Å] associated with the stronger oxygen donor; this distance is appreciably shorter than those recorded for other examples of this cation that are also centrosymmetric [2.637 (6) (Emsley et al., 1988), 2.587 (8) and 2.555 (7) (Sundberg & Klinga, 1994), and 2.618 (2) Å (Sundberg & Uggla, 1997)]. The water molecule H atoms are hydrogen bonded to the anion O atoms, as shown in Fig. 2 [H···O = 2.08 (3) Å]. The O-atom environment is (obligate) planar, but in the present circumstances, the elongated displacement envelope of the O atom may be a foil for the unresolved disorder or off-axis displacement. The chelate rings are of the low-energy C3-chair form (Niketic et al., 1976); the torsion angles (outward from the Cu atom) are −22.5 (2), 47.7 (3) and −72.8 (3)°.

Experimental top

The title complexes (which appear to be new) were prepared from aqueous solutions of copper(II) chloride with two equivalents of the appropriate diamine, by the addition of lithium dithionate solutions. Crystals were deposited after slow evaporation in the ambience (ambient conditions)?. Bulk materials giving satisfactory analyses were as follows (Kosin University Microanalytical Service): CuS2O6: ethane-1,2-diamine (1:2). For (I), analysis found: C 14.3, H 5.2, N 16.1; C4H16CuN4O6S2 requires: C 13.97, H 4.69, N 16.29%. CuS2O6: propane-1,2-diamine (1:2) dihydrate: For (II), analysis found: C 18.2, H 6.1, N 13.5; C6H24CuN4O8S2 requires: C 17.67, H 5.93, N 13.7%.

Refinement top

H atoms were located from difference Fourier maps and placed at idealized positions (C—H = 0.95 Å), and then their positional and Uiso values were refined.

Computing details top

For both compounds, data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995). Data reduction: Xtal3.5 (Hall et al., 1995) for (I); Xtal3.5 (Hall, King, and Stewart, 1995) for (II). For both compounds, program(s) used to solve structure: Xtal3.5; program(s) used to refine structure: CRYLSQ in Xtal3.5; molecular graphics: Xtal3.5; software used to prepare material for publication: BONDLA and CIFIO in Xtal3.5.

Figures top
[Figure 1] Fig. 1. A projection of a section of the polymer of (I). Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as circles of arbitrary radii (0.1 Å).
[Figure 2] Fig. 2. Projection of the cation of (II). Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as circles of arbitrary radii (0.1 Å).
(I) top
Crystal data top
[Cu(S2O6)(C2H8N2)2]F(000) = 354
Mr = 343.87Dx = 1.812 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 3259 reflections
a = 8.4727 (10) Åθ = 2.5–28.2°
b = 10.2699 (10) ŵ = 2.09 mm1
c = 8.0696 (10) ÅT = 150 K
β = 116.170 (2)°Prism, purple
V = 630.19 (12) Å30.1 × 0.05 × 0.04 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1608 independent reflections
Radiation source: sealed tube1441 reflections with I > 2σ(I )
Graphite monochromatorRint = 0.023
ω scansθmax = 29.2°, θmin = 2.7°
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
h = 1110
Tmin = 0.809, Tmax = 0.928k = 1414
6260 measured reflectionsl = 1010
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: difference Fourier map
wR(F2) = 0.031All H-atom parameters refined
S = 1.07 w = 1/(σ2(F) + 0.0004F2)
1441 reflections(Δ/σ)max = 0.014
111 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.41 e Å3
0 constraints
Crystal data top
[Cu(S2O6)(C2H8N2)2]V = 630.19 (12) Å3
Mr = 343.87Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.4727 (10) ŵ = 2.09 mm1
b = 10.2699 (10) ÅT = 150 K
c = 8.0696 (10) Å0.1 × 0.05 × 0.04 mm
β = 116.170 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1608 independent reflections
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
1441 reflections with I > 2σ(I )
Tmin = 0.809, Tmax = 0.928Rint = 0.023
6260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.031All H-atom parameters refined
S = 1.07Δρmax = 0.57 e Å3
1441 reflectionsΔρmin = 0.41 e Å3
111 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.000000.000000.500000.01700 (14)
N10.2037 (2)0.10832 (14)0.6731 (2)0.0207 (6)
C20.3689 (2)0.0416 (2)0.7052 (3)0.0297 (8)
C30.3417 (3)0.1030 (2)0.7164 (3)0.0317 (9)
N40.1808 (2)0.14058 (15)0.5501 (2)0.0225 (6)
S10.11475 (5)0.03080 (4)0.11883 (5)0.01731 (18)
O10.04766 (16)0.09940 (11)0.23267 (16)0.0221 (5)
O20.20804 (17)0.08904 (11)0.20022 (17)0.0236 (5)
O30.20700 (16)0.11519 (12)0.04533 (16)0.0234 (5)
H1a0.198 (3)0.114 (2)0.775 (3)0.034 (6)*
H1b0.201 (2)0.188 (2)0.625 (3)0.025 (5)*
H2a0.461 (3)0.076 (2)0.818 (3)0.036 (6)*
H2b0.391 (3)0.065 (2)0.593 (3)0.029 (5)*
H3a0.327 (3)0.122 (2)0.824 (3)0.039 (6)*
H3b0.447 (3)0.149 (2)0.728 (3)0.042 (7)*
H4a0.147 (2)0.218 (2)0.567 (3)0.028 (5)*
H4b0.203 (3)0.141 (2)0.449 (3)0.039 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.01888 (16)0.01545 (16)0.01644 (16)0.00023 (10)0.00759 (12)0.00063 (9)
N10.0243 (8)0.0202 (7)0.0183 (7)0.0025 (5)0.0100 (6)0.0010 (5)
C20.0210 (9)0.0288 (10)0.0348 (10)0.0035 (7)0.0083 (8)0.0017 (8)
C30.0239 (10)0.0269 (10)0.0348 (11)0.0052 (7)0.0044 (8)0.0047 (8)
N40.0257 (8)0.0184 (7)0.0225 (8)0.0020 (6)0.0100 (6)0.0029 (5)
S10.0210 (2)0.0166 (2)0.0156 (2)0.00119 (14)0.00918 (16)0.00099 (13)
O10.0304 (7)0.0198 (6)0.0196 (6)0.0004 (5)0.0143 (5)0.0031 (4)
O20.0276 (7)0.0193 (6)0.0231 (6)0.0039 (5)0.0106 (5)0.0015 (4)
O30.0290 (7)0.0221 (6)0.0228 (6)0.0075 (5)0.0146 (6)0.0020 (5)
Geometric parameters (Å, º) top
Cu—N12.0100 (13)C2—H2b1.03 (3)
Cu—N42.0122 (16)C3—N41.481 (2)
Cu—O12.5744 (15)C3—H3a0.95 (3)
Cu—N12.0100 (13)C3—H3b0.98 (3)
Cu—N42.0122 (16)N4—H4a0.88 (2)
Cu—O12.5744 (15)N4—H4b0.92 (3)
N1—C21.476 (3)S1—O11.4573 (16)
N1—H1a0.85 (3)S1—O21.4536 (12)
N1—H1b0.90 (2)S1—O31.4569 (16)
C2—C31.511 (3)S1—S1i2.1378 (5)
C2—H2a0.97 (2)
N1—Cu—N485.02 (6)N1—C2—H2b105.1 (11)
N1—Cu—O187.64 (6)C3—C2—H2a112.5 (14)
N1—Cu—N1180.0000C3—C2—H2b112.0 (12)
N1—Cu—N494.98 (6)H2a—C2—H2b111 (2)
N1—Cu—O192.36 (6)C2—C3—N4107.83 (15)
N4—Cu—O193.78 (6)C2—C3—H3a110.0 (13)
N4—Cu—N194.98 (6)C2—C3—H3b109.1 (15)
N4—Cu—N4180.0000N4—C3—H3a109.5 (13)
N4—Cu—O186.22 (6)N4—C3—H3b113.1 (13)
O1—Cu—N192.36 (6)H3a—C3—H3b107 (2)
O1—Cu—N486.22 (6)Cu—N4—C3108.05 (12)
O1—Cu—O1180.0000Cu—N4—H4a114.2 (14)
N1—Cu—N485.02 (6)Cu—N4—H4b105.2 (14)
N1—Cu—O187.64 (6)C3—N4—H4a109.2 (10)
N4—Cu—O193.78 (6)C3—N4—H4b109.9 (13)
Cu—N1—C2108.81 (11)H4a—N4—H4b110 (2)
Cu—N1—H1a108.2 (15)O1—S1—O2114.21 (8)
Cu—N1—H1b110.6 (10)O1—S1—O3113.42 (8)
C2—N1—H1a108.5 (14)O1—S1—S1i104.79 (5)
C2—N1—H1b109.9 (14)O2—S1—O3113.90 (9)
H1a—N1—H1b111 (2)O2—S1—S1i104.65 (5)
N1—C2—C3107.98 (17)O3—S1—S1i104.47 (5)
N1—C2—H2a107.9 (16)Cu—O1—S1125.84 (7)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4b···O20.92 (2)2.09 (3)2.980 (2)162 (2)
N1—H1a···O3ii0.85 (3)2.15 (3)2.993 (2)174 (2)
N1—H1b···O3iii0.90 (2)2.13 (2)3.025 (2)173 (2)
N4—H4a···O2iv0.88 (2)2.20 (2)2.997 (2)152 (2)
Symmetry codes: (ii) x, y, z+1; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+1/2.
(II) top
Crystal data top
[Cu(C3H10N2)2(H2O)2](S2O6)F(000) = 426
Mr = 407.96Dx = 1.705 Mg m3
Orthorhombic, PnnmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2 2nCell parameters from 3669 reflections
a = 15.500 (2) Åθ = 2.4–28.2°
b = 7.098 (1) ŵ = 1.68 mm1
c = 7.224 (1) ÅT = 150 K
V = 794.78 (19) Å3Plate, blue
Z = 20.4 × 0.4 × 0.09 mm
Data collection top
Bruker SMART CCD
diffractometer
1104 independent reflections
Radiation source: sealed tube1002 reflections with I > 2σ(I )
Graphite monochromatorRint = 0.040
ω scansθmax = 29.0°, θmin = 2.6°
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
h = 2020
Tmin = 0.605, Tmax = 0.894k = 99
7799 measured reflectionsl = 99
Refinement top
Refinement on F0 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.035All H-atom parameters refined
wR(F2) = 0.041 w = 1/(σ2(F) + 0.0003F2)
S = 1.18(Δ/σ)max = 0.017
1002 reflectionsΔρmax = 1.14 e Å3
82 parametersΔρmin = 0.88 e Å3
Crystal data top
[Cu(C3H10N2)2(H2O)2](S2O6)V = 794.78 (19) Å3
Mr = 407.96Z = 2
Orthorhombic, PnnmMo Kα radiation
a = 15.500 (2) ŵ = 1.68 mm1
b = 7.098 (1) ÅT = 150 K
c = 7.224 (1) Å0.4 × 0.4 × 0.09 mm
Data collection top
Bruker SMART CCD
diffractometer
1104 independent reflections
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
1002 reflections with I > 2σ(I )
Tmin = 0.605, Tmax = 0.894Rint = 0.040
7799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.041All H-atom parameters refined
S = 1.18Δρmax = 1.14 e Å3
1002 reflectionsΔρmin = 0.88 e Å3
82 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.000001.000000.500000.0169 (3)
O0.0688 (2)1.3091 (4)0.500000.0363 (14)
N10.08427 (12)0.9287 (3)0.2939 (3)0.0200 (9)
C20.17888 (14)0.9215 (3)0.3248 (3)0.0242 (11)
C30.2007 (2)0.8131 (5)0.500000.0237 (16)
S10.06388 (5)0.55611 (10)0.000000.0160 (3)
O10.10257 (10)0.4842 (2)0.1690 (2)0.0206 (7)
O20.05117 (14)0.7598 (3)0.000000.0200 (10)
H1a0.0691 (17)0.821 (4)0.255 (4)0.027 (7)*
H1b0.0740 (17)1.010 (4)0.209 (4)0.028 (7)*
H2a0.1997 (15)1.055 (4)0.333 (4)0.015 (6)*
H2b0.2068 (16)0.864 (4)0.219 (4)0.023 (7)*
H3a0.261 (3)0.789 (5)0.500000.022 (9)*
H3b0.173 (2)0.690 (5)0.500000.019 (9)*
H0.083 (2)1.376 (5)0.419 (5)0.059 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0237 (3)0.0151 (3)0.0118 (2)0.00060 (18)0.000000.00000
O0.073 (2)0.0180 (12)0.0180 (12)0.0134 (12)0.000000.00000
N10.0282 (10)0.0164 (8)0.0155 (9)0.0006 (7)0.0000 (7)0.0005 (7)
C20.0252 (11)0.0260 (11)0.0214 (10)0.0031 (9)0.0046 (9)0.0012 (9)
C30.0230 (15)0.0249 (16)0.0231 (15)0.0001 (12)0.000000.00000
S10.0223 (4)0.0137 (3)0.0119 (3)0.0001 (3)0.000000.00000
O10.0270 (8)0.0199 (7)0.0150 (7)0.0012 (6)0.0040 (6)0.0030 (6)
O20.0295 (11)0.0118 (10)0.0186 (10)0.0003 (8)0.000000.00000
Geometric parameters (Å, º) top
Cu—O2.439 (3)N1—H1b0.86 (3)
Cu—N12.0443 (18)C2—C31.520 (3)
Cu—O2.439 (3)C2—H2a1.00 (2)
Cu—N12.0443 (18)C2—H2b0.97 (3)
Cu—N12.0443 (18)C3—H3a0.95 (4)
Cu—N12.0443 (18)C3—H3b0.97 (4)
O—H0.79 (3)S1—O11.4530 (16)
O—H0.79 (3)S1—O21.459 (2)
N1—C21.484 (3)S1—S12.1346 (11)
N1—H1a0.85 (3)S1—O1i1.4530 (16)
O—Cu—N186.75 (8)C2—N1—H1a107.1 (18)
O—Cu—O180.0000C2—N1—H1b108.3 (18)
O—Cu—N193.25 (8)H1a—N1—H1b108 (3)
O—Cu—N193.25 (8)N1—C2—C3111.3 (2)
O—Cu—N186.75 (7)N1—C2—H2a107.1 (13)
N1—Cu—O93.25 (8)N1—C2—H2b109.8 (15)
N1—Cu—N186.50 (7)C3—C2—H2a110.9 (15)
N1—Cu—N1180.0000C3—C2—H2b110.0 (16)
N1—Cu—N193.50 (7)H2a—C2—H2b108 (2)
O—Cu—N186.75 (7)C2—C3—H3a108.0 (11)
O—Cu—N186.75 (7)C2—C3—H3b110.9 (10)
O—Cu—N193.25 (7)C2—C3—C2112.8 (2)
N1—Cu—N193.50 (7)H3a—C3—H3b106 (3)
N1—Cu—N1180.0000H3a—C3—C2108.0 (11)
N1—Cu—N186.50 (7)H3b—C3—C2110.9 (10)
Cu—O—H132 (2)O1—S1—O2113.82 (7)
Cu—O—H132 (2)O1—S1—S1104.58 (7)
H—O—H96 (4)O1—S1—O1i114.36 (10)
Cu—N1—C2122.03 (14)O2—S1—S1104.15 (10)
Cu—N1—H1a106.8 (18)O2—S1—O1i113.82 (7)
Cu—N1—H1b103.9 (19)S1—S1—O1i104.58 (7)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O—H···O1ii0.79 (4)2.08 (4)2.854 (2)167 (3)
N1—H1b···O2ii0.86 (3)2.25 (3)3.108 (2)176 (3)
N1—H1a···O1iii0.85 (3)2.31 (3)3.080 (3)151 (2)
N1—H1b···O2iv0.86 (3)2.25 (3)3.108 (3)176 (3)
Symmetry codes: (ii) x, y+2, z; (iii) x, y+1, z; (iv) x, y+2, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(S2O6)(C2H8N2)2][Cu(C3H10N2)2(H2O)2](S2O6)
Mr343.87407.96
Crystal system, space groupMonoclinic, P21/cOrthorhombic, Pnnm
Temperature (K)150150
a, b, c (Å)8.4727 (10), 10.2699 (10), 8.0696 (10)15.500 (2), 7.098 (1), 7.224 (1)
α, β, γ (°)90, 116.170 (2), 9090, 90, 90
V3)630.19 (12)794.78 (19)
Z22
Radiation typeMo KαMo Kα
µ (mm1)2.091.68
Crystal size (mm)0.1 × 0.05 × 0.040.4 × 0.4 × 0.09
Data collection
DiffractometerBruker SMART CCD
diffractometer
Bruker SMART CCD
diffractometer
Absorption correctionMulti-scan
SADABS; Sheldrick, 1996
Multi-scan
SADABS; Sheldrick, 1996
Tmin, Tmax0.809, 0.9280.605, 0.894
No. of measured, independent and
observed [I > 2σ(I )] reflections
6260, 1608, 1441 7799, 1104, 1002
Rint0.0230.040
(sin θ/λ)max1)0.6860.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.031, 1.07 0.035, 0.041, 1.18
No. of reflections14411002
No. of parameters11182
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.57, 0.411.14, 0.88

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), Xtal3.5 (Hall et al., 1995), Xtal3.5 (Hall, King, and Stewart, 1995), CRYLSQ in Xtal3.5, BONDLA and CIFIO in Xtal3.5.

Selected geometric parameters (Å, º) for (I) top
Cu—N12.0100 (13)Cu—O12.5744 (15)
Cu—N42.0122 (16)
N1—Cu—N485.02 (6)Cu—N1—C2108.81 (11)
N1—Cu—O187.64 (6)Cu—N4—C3108.05 (12)
N4—Cu—O193.78 (6)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N4—H4b···O20.92 (2)2.09 (3)2.980 (2)162 (2)
N1—H1a···O3i0.85 (3)2.15 (3)2.993 (2)174 (2)
N1—H1b···O3ii0.90 (2)2.13 (2)3.025 (2)173 (2)
N4—H4a···O2iii0.88 (2)2.20 (2)2.997 (2)152 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
Cu—O2.439 (3)Cu—N12.0443 (18)
O—Cu—N186.75 (8)Cu—N1—C2122.03 (14)
N1—Cu—N193.50 (7)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O—H···O1i0.79 (4)2.08 (4)2.854 (2)167 (3)
N1—H1b···O2i0.86 (3)2.25 (3)3.108 (2)176 (3)
N1—H1a···O1ii0.85 (3)2.31 (3)3.080 (3)151 (2)
N1—H1b···O2iii0.86 (3)2.25 (3)3.108 (3)176 (3)
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z; (iii) x, y+2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds