Download citation
Download citation
link to html
In the crystal structure of di­hydroxy­diphthalatotricobalt(II), [Co3(C8H4O4)2(OH)2]n, two of the four independent Co atoms lie at special positions of site symmetry 2. The hydroxy groups link three Co atoms to form a pyramidal Co3O unit, and adjacent Co3O units are linked through the Co base atoms into a honeycomb layer motif. Each of the phthalate dianions uses the O atoms of one carboxyl group to bind to three Co atoms, the bonding mode giving rise to six-coordinate Co atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103021425/ta1414sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103021425/ta1414Isup2.hkl
Contains datablock I

CCDC reference: 226102

Comment top

Hydrothermally synthesized cobalt(II) derivatives of benzene polycarboxylic acids exist as hydroxides. The tetracarboxylate compound adopts a framework architecture that constitutes roughly only half the volume of the unit cell (Gutschke et al., 2001a). Cobalt hydroxide 1,4-dicarboxylate, on the other hand, packs in such a manner that the π systems of adjacent carboxylate anions interact magnetically (Huang et al., 2000). Other than a tricarboxylate derivative (Gutschke et al., 2001b), there are no further reports to date of such cobalt hydroxide derivatives of benzene polycarboxylic acids.

Unlike the reaction of cobalt(II) carbonate with phthalic acid in water, which affords hexaaquacobalt hydrogen phthalate (Karuiki & Jones, 1993), the reaction of cobalt(II) nitrate and potassium hydrogen phthalate under hydrothermal conditions yielded the title cobalt(II) hydroxide derivative, (I), and its structure is presented here. \sch

The crystal structure of (I) is built up of a layer motif consisting of corner-sharing pyramidal Co3O units. These units are linked through the Co corners to form a hexagonal unit, which also shares its Co corners to give rise to a honeycomb motif (Fig. 1). The layers that make up the structure feature a Co3O core, and the aromatic groups protrude from the top and bottom of each layer. Where the layers come together, aromatic-aromatic edge-face interactions exist. The Co3O unit is also documented in the other compounds mentioned above Added text OK?. For example, in the terephthalate derivative, [Co2(OH)2(C8H4O4)], the Co3O units form layer structures by edge- and corner-sharing (Huang et al., 2000). This layer motif is not adopted by the tri- and tetracarboxylates.

The four independent Co atoms in (I) exist in an octahedral environment (Fig. 2), and each is coordinated by four O atoms from carboxyl groups and two O atoms from hydroxyl groups. Each hydroxyl group bridges three Co atoms. For both independent phthalate dianions, each carboxyl –CO2 group is linked to three Co atoms.

Experimental top

Cobalt(II) nitrate hexahydrate (0.17 g, 0.6 mmol) and potassium hydrogen phthalate (0.37 g, 1.8 mmol) were dissolved in water (15 ml). The solution was placed in a Teflon-lined stainless-steel vessel, which was then heated to 473 K for 60 h. The vessel was then allowed to cool to room temperature and needle-shaped crystals of (I) deposited from the solution in about 10% yield. Analysis calculated for C16H10O10Co3: C 35.65, H 1.87%; found: C 35.51, H 1.86%. FT—IR (KBr, ν, cm−1): 3596 s, 3422 br, 3070 w, 2930 w, 1625 s, 1599 versus, 1581 s, 1568 s, 1494, 1448, 1425, 1389 s, 1280 w, 1156, 1093, 1040, 947 w, 868, 842, 806, 788, 767, 738, 699, 658, 588 w, 469, 452.

Refinement top

The aromatic and hydroxyl H atoms were generated geometrically (C—H = 0.93 Å and O—H = 0.98 Å) and were allowed to ride on their parent atoms in riding model approximations, with Uiso(H) set to 1.2Ueq(parent). The final difference map had peaks of more than 1 e Å−3 near the four Co atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A plot of the layer structure of (I), illustrating the honeycomb motif that is built from Co3O pyramids.
[Figure 2] Fig. 2. (a)-(d). Views of the coordination environments of the four independent Co atoms in (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) 1/2 − x, 1/2 − y, z; (ii) x, 1/2 − y, z − 1/2; (iii) 3/2 − x, y, z − 1/2; (iv) 3/2 − x, 1/2 − y, z; (v) x, 1/2 − y, 1/2 + z; (vi) 1/2 − x, y, 1/2 + z.]
Dihydroxydiphthalatotricobalt(II) top
Crystal data top
[Co3(C8H4O4)2(OH)2]Dx = 2.195 Mg m3
Mr = 539.03Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 8115 reflections
a = 12.1121 (5) Åθ = 1.8–28.3°
b = 22.6847 (9) ŵ = 3.08 mm1
c = 11.8730 (5) ÅT = 298 K
V = 3262.2 (2) Å3Needle, pink
Z = 80.45 × 0.13 × 0.03 mm
F(000) = 2136
Data collection top
Bruker Model CCD area-detector
diffractometer
3904 independent reflections
Radiation source: fine-focus sealed tube2518 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1615
Tmin = 0.692, Tmax = 0.912k = 3030
26490 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0664P)2]
where P = (Fo2 + 2Fc2)/3
3904 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 1.71 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
[Co3(C8H4O4)2(OH)2]V = 3262.2 (2) Å3
Mr = 539.03Z = 8
Orthorhombic, PccnMo Kα radiation
a = 12.1121 (5) ŵ = 3.08 mm1
b = 22.6847 (9) ÅT = 298 K
c = 11.8730 (5) Å0.45 × 0.13 × 0.03 mm
Data collection top
Bruker Model CCD area-detector
diffractometer
3904 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2518 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.912Rint = 0.057
26490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.89Δρmax = 1.71 e Å3
3904 reflectionsΔρmin = 0.82 e Å3
263 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50050 (3)0.25133 (2)0.38816 (3)0.0155 (1)
Co20.50056 (3)0.20705 (2)0.63811 (3)0.0146 (1)
Co30.25000.25000.76830 (5)0.0169 (2)
Co40.75000.25000.50924 (5)0.0177 (2)
O10.4047 (2)0.14511 (1)0.5490 (2)0.0213 (5)
O20.3586 (2)0.1968 (1)0.3958 (2)0.0220 (5)
O30.1953 (2)0.1872 (1)0.6556 (2)0.0274 (6)
O40.0606 (2)0.2204 (1)0.5451 (2)0.0207 (5)
O50.6963 (2)0.3129 (1)0.6212 (2)0.0277 (6)
O60.5637 (2)0.2779 (1)0.7336 (2)0.0191 (5)
O70.9045 (2)0.3565 (1)0.7254 (2)0.0224 (5)
O80.8587 (2)0.3064 (1)0.8818 (2)0.0233 (5)
O90.6057 (2)0.2066 (1)0.4989 (2)0.0155 (5)
O100.3943 (2)0.2057 (1)0.7764 (2)0.0152 (5)
C10.3439 (2)0.1557 (1)0.4670 (3)0.0172 (7)
C20.2451 (2)0.1173 (1)0.4470 (2)0.0158 (6)
C30.2518 (3)0.0701 (2)0.3725 (3)0.0273 (8)
C40.1616 (3)0.0350 (2)0.3524 (3)0.035 (1)
C50.0617 (3)0.0471 (2)0.4041 (3)0.0320 (9)
C60.0521 (3)0.0946 (1)0.4754 (3)0.0248 (8)
C70.1445 (2)0.1296 (1)0.4989 (2)0.0159 (7)
C80.1341 (2)0.1831 (1)0.5729 (3)0.0164 (7)
C90.6354 (2)0.3167 (1)0.7048 (3)0.0172 (7)
C100.6433 (3)0.3700 (1)0.7780 (3)0.0169 (7)
C110.5492 (3)0.4036 (1)0.8010 (3)0.0223 (7)
C120.5561 (3)0.4518 (2)0.8692 (3)0.0306 (9)
C130.6558 (3)0.4665 (2)0.9192 (3)0.0350 (9)
C140.7484 (3)0.4331 (2)0.8983 (3)0.0298 (9)
C150.7445 (3)0.3850 (1)0.8263 (3)0.0184 (7)
C160.8443 (3)0.3467 (1)0.8083 (3)0.0180 (7)
H90.61790.16610.47280.019*
H100.38160.16510.80100.018*
H30.31810.06220.33600.033*
H40.16760.00300.30380.041*
H50.00100.02300.39070.038*
H60.01570.10340.50800.030*
H110.48160.39300.76960.027*
H120.49390.47490.88230.037*
H130.66010.49890.96690.042*
H140.81470.44290.93300.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0066 (2)0.0281 (3)0.0118 (2)0.0011 (2)0.0008 (2)0.0011 (2)
Co20.0086 (2)0.0245 (2)0.0105 (2)0.0000 (2)0.0000 (2)0.0000 (2)
Co30.0064 (3)0.0280 (4)0.0164 (3)0.0023 (3)0.0000.000
Co40.0072 (3)0.0292 (4)0.0166 (3)0.0029 (2)0.0000.000
O10.016 (1)0.029 (1)0.018 (1)0.003 (1)0.004 (1)0.000 (1)
O20.013 (1)0.035 (1)0.019 (1)0.007 (1)0.003 (1)0.005 (1)
O30.018 (1)0.040 (2)0.025 (1)0.006 (1)0.010 (1)0.011 (1)
O40.023 (1)0.025 (1)0.014 (1)0.009 (1)0.001 (1)0.0017 (9)
O50.020 (1)0.039 (2)0.025 (1)0.007 (1)0.010 (1)0.010 (1)
O60.016 (1)0.028 (1)0.014 (1)0.004 (1)0.002 (1)0.0000 (9)
O70.017 (1)0.031 (1)0.019 (1)0.003 (1)0.003 (1)0.000 (1)
O80.014 (1)0.037 (1)0.019 (1)0.009 (1)0.002 (1)0.004 (1)
O90.009 (1)0.025 (1)0.013 (1)0.001 (1)0.001 (1)0.0023 (9)
O100.008 (1)0.022 (1)0.015 (1)0.000 (1)0.000 (1)0.0003 (9)
C10.009 (2)0.027 (2)0.015 (2)0.001 (1)0.002 (1)0.005 (1)
C20.011 (2)0.022 (2)0.015 (1)0.001 (1)0.001 (1)0.001 (1)
C30.016 (2)0.035 (2)0.031 (2)0.002 (2)0.003 (2)0.011 (2)
C40.029 (2)0.035 (2)0.040 (2)0.005 (2)0.001 (2)0.019 (2)
C50.019 (2)0.037 (2)0.041 (2)0.010 (2)0.002 (2)0.008 (2)
C60.011 (2)0.033 (2)0.031 (2)0.003 (1)0.001 (2)0.003 (2)
C70.012 (2)0.019 (2)0.017 (2)0.001 (1)0.003 (1)0.001 (1)
C80.010 (2)0.024 (2)0.015 (2)0.001 (1)0.001 (1)0.001 (1)
C90.010 (2)0.027 (2)0.015 (2)0.002 (1)0.002 (1)0.003 (1)
C100.013 (2)0.023 (2)0.015 (2)0.001 (1)0.003 (1)0.001 (1)
C110.009 (2)0.032 (2)0.025 (2)0.000 (1)0.002 (1)0.001 (2)
C120.015 (2)0.037 (2)0.040 (2)0.007 (2)0.005 (2)0.007 (2)
C130.027 (2)0.039 (2)0.040 (2)0.002 (2)0.000 (2)0.021 (2)
C140.016 (2)0.039 (2)0.034 (2)0.000 (2)0.004 (2)0.016 (2)
C150.015 (2)0.026 (2)0.015 (2)0.002 (1)0.000 (1)0.000 (1)
C160.011 (2)0.027 (2)0.016 (2)0.001 (1)0.006 (1)0.008 (1)
Geometric parameters (Å, º) top
Co1—O22.119 (2)O6—C91.282 (4)
Co1—O4i2.105 (2)O7—C161.245 (4)
Co1—O6ii2.097 (2)O8—C161.276 (4)
Co1—O8iii2.115 (2)C1—C21.498 (4)
Co1—O92.094 (2)C2—C31.392 (4)
Co1—O10ii2.089 (2)C2—C71.393 (4)
Co2—O12.108 (2)C3—C41.373 (5)
Co2—O4i2.116 (2)C4—C51.384 (5)
Co2—O62.110 (2)C5—C61.375 (5)
Co2—O7iv2.115 (2)C6—C71.401 (4)
Co2—O92.087 (2)C7—C81.504 (4)
Co2—O102.086 (2)C9—C101.493 (4)
Co3—O2v2.340 (2)C10—C151.395 (4)
Co3—O2vi2.340 (2)C10—C111.398 (4)
Co3—O32.063 (2)C11—C121.364 (5)
Co3—O3i2.063 (2)C12—C131.386 (5)
Co3—O102.018 (2)C13—C141.375 (5)
Co3—O10i2.018 (2)C14—C151.386 (5)
Co4—O52.056 (2)C15—C161.504 (4)
Co4—O5iv2.056 (2)O9—H90.98
Co4—O8ii2.379 (2)O10—H100.98
Co4—O8iii2.379 (2)C3—H30.93
Co4—O92.010 (2)C4—H40.93
Co4—O9iv2.010 (2)C5—H50.93
O1—C11.244 (4)C6—H60.93
O2—C11.272 (4)C11—H110.93
O3—C81.234 (4)C12—H120.93
O4—C81.272 (4)C13—H130.93
O5—C91.239 (4)C14—H140.93
O2—Co1—O4i81.7 (1)C9—O5—Co4139.0 (2)
O2—Co1—O6ii98.5 (1)C9—O6—Co1v134.2 (2)
O2—Co1—O8iii179.4 (1)C9—O6—Co2128.7 (2)
O2—Co1—O9100.6 (1)Co1v—O6—Co295.6 (1)
O2—Co1—O10ii78.5 (1)C16—O8—Co1vii123.9 (2)
O4i—Co1—O6ii178.8 (1)C16—O8—Co4v138.1 (2)
O4i—Co1—O8iii97.8 (1)Co1vii—O8—Co4v96.1 (1)
O4i—Co1—O978.8 (1)C16—O7—Co2iv125.8 (2)
O4i—Co1—O10ii101.8 (1)Co4—O9—Co2118.6 (1)
O6ii—Co1—O8iii82.0 (1)Co4—O9—Co1109.3 (1)
O6ii—Co1—O9100.0 (1)Co2—O9—Co197.1 (1)
O6ii—Co1—O10ii79.4 (1)Co3—O10—Co2119.3 (1)
O8iii—Co1—O979.5 (1)Co3—O10—Co1v109.4 (1)
O8iii—Co1—O10ii101.4 (1)Co2—O10—Co1v96.5 (1)
O9—Co1—O10ii178.8 (1)O1—C1—O2125.4 (3)
O1—Co2—O4i93.7 (1)O1—C1—C2119.0 (3)
O1—Co2—O6167.7 (1)O2—C1—C2115.6 (3)
O1—Co2—O7iv95.2 (1)C3—C2—C7119.1 (3)
O1—Co2—O986.3 (1)C3—C2—C1120.1 (3)
O1—Co2—O1092.6 (1)C7—C2—C1120.8 (3)
O4i—Co2—O679.3 (1)C4—C3—C2120.7 (3)
O4i—Co2—O7iv167.5 (1)C3—C4—C5120.3 (3)
O4i—Co2—O978.7 (1)C6—C5—C4120.1 (3)
O4i—Co2—O10101.9 (1)C5—C6—C7120.0 (3)
O6—Co2—O7iv93.4 (1)C2—C7—C6119.8 (3)
O6—Co2—O9102.0 (1)C2—C7—C8119.5 (3)
O6—Co2—O1079.2 (1)C6—C7—C8120.5 (3)
O7iv—Co2—O993.0 (1)O3—C8—O4125.2 (3)
O7iv—Co2—O1086.6 (1)O3—C8—C7118.4 (3)
O9—Co2—O10178.8 (1)O4—C8—C7116.4 (3)
O2v—Co3—O2vi99.4 (1)O5—C9—O6124.6 (3)
O2v—Co3—O3162.9 (1)O5—C9—C10119.0 (3)
O2v—Co3—O3i83.3 (1)O6—C9—C10116.4 (3)
O2v—Co3—O1074.9 (1)C15—C10—C11120.3 (3)
O2v—Co3—O10i101.5 (1)C15—C10—C9119.5 (3)
O2vi—Co3—O383.3 (1)C11—C10—C9120.2 (3)
O2vi—Co3—O3i162.9 (1)C12—C11—C10120.1 (3)
O2vi—Co3—O10101.5 (1)C11—C12—C13120.0 (3)
O2vi—Co3—O10i74.9 (1)C14—C13—C12120.0 (3)
O3—Co3—O3i99.1 (1)C13—C14—C15121.1 (3)
O3—Co3—O1088.0 (1)C14—C15—C10118.3 (3)
O3—Co3—O10i95.5 (1)C14—C15—C16121.0 (3)
O3i—Co3—O1095.5 (1)C10—C15—C16120.5 (3)
O3i—Co3—O10i88.0 (1)O7—C16—O8126.0 (3)
O10—Co3—O10i174.6 (1)O7—C16—C15118.7 (3)
O5—Co4—O5iv99.4 (1)O8—C16—C15115.2 (3)
O5—Co4—O8ii163.7 (1)Co4—O9—H9110.3
O5—Co4—O8iii82.1 (1)Co2—O9—H9110.3
O5—Co4—O996.0 (1)Co1—O9—H9110.3
O5—Co4—O9iv88.5 (1)Co3—O10—H10110.2
O5iv—Co4—O9iv96.0 (1)Co2—O10—H10110.2
O5iv—Co4—O988.5 (1)Co1v—O10—H10110.2
O5iv—Co4—O8ii82.1 (1)C4—C3—H3119.6
O5iv—Co4—O8iii163.7 (1)C2—C3—H3119.6
O8ii—Co4—O8iii101.0 (1)C3—C4—H4119.9
O8ii—Co4—O9iv75.1 (1)C5—C4—H4119.9
O8ii—Co4—O9100.3 (1)C6—C5—H5119.9
O8iii—Co4—O975.1 (1)C4—C5—H5119.9
O8iii—Co4—O9iv100.3 (1)C5—C6—H6120.0
O9—Co4—O9iv173.0 (1)C7—C6—H6120.0
C1—O1—Co2126.1 (2)C12—C11—H11119.9
C1—O2—Co1124.7 (2)C10—C11—H11119.9
C1—O2—Co3ii136.8 (2)C11—C12—H12120.0
Co1—O2—Co3ii97.3 (1)C13—C12—H12120.0
C8—O3—Co3139.6 (2)C14—C13—H13120.0
C8—O4—Co1i132.7 (2)C12—C13—H13120.0
C8—O4—Co2i128.8 (2)C13—C14—H14119.4
Co1i—O4—Co2i95.9 (1)C15—C14—H14119.4
O10—Co2—O1—C1106.4 (3)O4i—Co2—O10—Co317.0 (1)
O9—Co2—O1—C174.2 (3)O1—Co2—O10—Co1v166.2 (1)
O6—Co2—O1—C158.9 (5)O6—Co2—O10—Co1v23.0 (1)
O7iv—Co2—O1—C1166.9 (3)O7iv—Co2—O10—Co1v71.1 (1)
O4i—Co2—O1—C14.3 (3)O4i—Co2—O10—Co1v99.5 (1)
O10ii—Co1—O2—C1169.8 (3)Co2—O1—C1—O229.2 (5)
O9—Co1—O2—C111.0 (3)Co2—O1—C1—C2151.5 (2)
O6ii—Co1—O2—C1112.9 (3)Co1—O2—C1—O17.5 (5)
O4i—Co1—O2—C165.9 (3)Co3ii—O2—C1—O1157.7 (2)
O10ii—Co1—O2—Co3ii0.0 (1)Co1—O2—C1—C2171.8 (2)
O9—Co1—O2—Co3ii179.2 (1)Co3ii—O2—C1—C223.0 (4)
O6ii—Co1—O2—Co3ii77.2 (1)O1—C1—C2—C395.4 (4)
O4i—Co1—O2—Co3ii103.93 (9)O2—C1—C2—C383.9 (4)
O10i—Co3—O3—C836.7 (4)O1—C1—C2—C787.1 (4)
O10—Co3—O3—C8147.5 (3)O2—C1—C2—C793.6 (4)
O3i—Co3—O3—C852.2 (3)C7—C2—C3—C41.7 (5)
O2v—Co3—O3—C8149.1 (3)C1—C2—C3—C4179.2 (3)
O2vi—Co3—O3—C8110.7 (3)C2—C3—C4—C51.5 (6)
O9—Co4—O5—C938.2 (4)C3—C4—C5—C60.5 (6)
O9iv—Co4—O5—C9147.1 (3)C4—C5—C6—C72.3 (6)
O5iv—Co4—O5—C951.3 (3)C3—C2—C7—C60.1 (5)
O8iii—Co4—O5—C9112.3 (3)C1—C2—C7—C6177.4 (3)
O8ii—Co4—O5—C9145.4 (3)C3—C2—C7—C8175.5 (3)
O10—Co2—O6—C9169.9 (3)C1—C2—C7—C82.0 (4)
O9—Co2—O6—C910.4 (3)C5—C6—C7—C22.1 (5)
O1—Co2—O6—C9121.4 (4)C5—C6—C7—C8177.5 (3)
O7iv—Co2—O6—C9104.3 (3)Co3—O3—C8—O417.6 (6)
O4i—Co2—O6—C965.5 (3)Co3—O3—C8—C7163.5 (2)
O10—Co2—O6—Co1v22.9 (1)Co1i—O4—C8—O3146.7 (3)
O9—Co2—O6—Co1v156.8 (1)Co2i—O4—C8—O310.5 (5)
O1—Co2—O6—Co1v71.5 (4)Co1i—O4—C8—C734.4 (4)
O7iv—Co2—O6—Co1v62.9 (1)Co2i—O4—C8—C7168.4 (2)
O4i—Co2—O6—Co1v127.4 (1)C2—C7—C8—O359.2 (4)
O5—Co4—O9—Co229.5 (1)C6—C7—C8—O3125.5 (3)
O5iv—Co4—O9—Co269.8 (1)C2—C7—C8—O4121.9 (3)
O8iii—Co4—O9—Co2109.7 (1)C6—C7—C8—O453.5 (4)
O8ii—Co4—O9—Co2151.5 (1)Co4—O5—C9—O616.5 (5)
O5—Co4—O9—Co180.3 (1)Co4—O5—C9—C10164.4 (2)
O5iv—Co4—O9—Co1179.6 (1)Co1v—O6—C9—O5148.0 (3)
O8iii—Co4—O9—Co10.1 (1)Co2—O6—C9—O514.1 (5)
O8ii—Co4—O9—Co198.7 (1)Co1v—O6—C9—C1032.9 (4)
O1—Co2—O9—Co4172.3 (1)Co2—O6—C9—C10165.0 (2)
O6—Co2—O9—Co416.9 (1)O5—C9—C10—C1557.0 (4)
O7iv—Co2—O9—Co477.2 (1)O6—C9—C10—C15123.9 (3)
O4i—Co2—O9—Co493.3 (1)O5—C9—C10—C11125.1 (3)
O1—Co2—O9—Co171.2 (1)O6—C9—C10—C1154.1 (4)
O6—Co2—O9—Co199.6 (1)C15—C10—C11—C121.1 (5)
O7iv—Co2—O9—Co1166.3 (1)C9—C10—C11—C12179.0 (3)
O4i—Co2—O9—Co123.3 (1)C10—C11—C12—C132.2 (5)
O6ii—Co1—O9—Co479.7 (1)C11—C12—C13—C141.3 (6)
O4i—Co1—O9—Co4100.3 (1)C12—C13—C14—C150.9 (6)
O8iii—Co1—O9—Co40.2 (1)C13—C14—C15—C101.9 (6)
O2—Co1—O9—Co4179.5 (1)C13—C14—C15—C16176.8 (4)
O6ii—Co1—O9—Co2156.6 (1)C11—C10—C15—C141.0 (5)
O4i—Co1—O9—Co223.4 (1)C9—C10—C15—C14176.9 (3)
O8iii—Co1—O9—Co2123.6 (1)C11—C10—C15—C16175.8 (3)
O2—Co1—O9—Co255.8 (1)C9—C10—C15—C162.1 (5)
O3—Co3—O10—Co270.9 (1)Co2iv—O7—C16—O829.4 (5)
O3i—Co3—O10—Co228.1 (1)Co2iv—O7—C16—C15150.5 (2)
O2v—Co3—O10—Co2109.6 (1)Co1vii—O8—C16—O76.4 (5)
O2vi—Co3—O10—Co2153.6 (1)Co4v—O8—C16—O7153.9 (2)
O3—Co3—O10—Co1v179.5 (1)Co1vii—O8—C16—C15173.7 (2)
O3i—Co3—O10—Co1v81.5 (1)Co4v—O8—C16—C1526.0 (4)
O2v—Co3—O10—Co1v0.0 (1)C14—C15—C16—O796.1 (4)
O2vi—Co3—O10—Co1v96.8 (1)C10—C15—C16—O789.2 (4)
O1—Co2—O10—Co377.3 (1)C14—C15—C16—O884.0 (4)
O6—Co2—O10—Co393.5 (1)C10—C15—C16—O890.8 (4)
O7iv—Co2—O10—Co3172.4 (1)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1/2, z1/2; (iii) x+3/2, y, z1/2; (iv) x+3/2, y+1/2, z; (v) x, y+1/2, z+1/2; (vi) x+1/2, y, z+1/2; (vii) x+3/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Co3(C8H4O4)2(OH)2]
Mr539.03
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)298
a, b, c (Å)12.1121 (5), 22.6847 (9), 11.8730 (5)
V3)3262.2 (2)
Z8
Radiation typeMo Kα
µ (mm1)3.08
Crystal size (mm)0.45 × 0.13 × 0.03
Data collection
DiffractometerBruker Model CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.692, 0.912
No. of measured, independent and
observed [I > 2σ(I)] reflections
26490, 3904, 2518
Rint0.057
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.104, 0.89
No. of reflections3904
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.71, 0.82

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Co1—O22.119 (2)Co2—O7iv2.115 (2)
Co1—O4i2.105 (2)Co2—O92.087 (2)
Co1—O6ii2.097 (2)Co2—O102.086 (2)
Co1—O8iii2.115 (2)Co3—O2v2.340 (2)
Co1—O92.094 (2)Co3—O32.063 (2)
Co1—O10ii2.089 (2)Co3—O102.018 (2)
Co2—O12.108 (2)Co4—O52.056 (2)
Co2—O4i2.116 (2)Co4—O8ii2.379 (2)
Co2—O62.110 (2)Co4—O92.010 (2)
O2—Co1—O4i81.7 (1)O6—Co2—O7iv93.4 (1)
O2—Co1—O6ii98.5 (1)O6—Co2—O9102.0 (1)
O2—Co1—O8iii179.4 (1)O6—Co2—O1079.2 (1)
O2—Co1—O9100.6 (1)O7iv—Co2—O993.0 (1)
O2—Co1—O10ii78.5 (1)O7iv—Co2—O1086.6 (1)
O4i—Co1—O6ii178.8 (1)O9—Co2—O10178.8 (1)
O4i—Co1—O8iii97.8 (1)O2v—Co3—O2vi99.4 (1)
O4i—Co1—O978.8 (1)O2v—Co3—O3162.9 (1)
O4i—Co1—O10ii101.8 (1)O2v—Co3—O3i83.3 (1)
O6ii—Co1—O8iii82.0 (1)O2v—Co3—O1074.9 (1)
O6ii—Co1—O9100.0 (1)O2v—Co3—O10i101.5 (1)
O6ii—Co1—O10ii79.4 (1)O3—Co3—O3i99.1 (1)
O8iii—Co1—O979.5 (1)O3—Co3—O1088.0 (1)
O8iii—Co1—O10ii101.4 (1)O3—Co3—O10i95.5 (1)
O9—Co1—O10ii178.8 (1)O10—Co3—O10i174.6 (1)
O1—Co2—O4i93.7 (1)O5—Co4—O5iv99.4 (1)
O1—Co2—O6167.7 (1)O5—Co4—O8ii163.7 (1)
O1—Co2—O7iv95.2 (1)O5—Co4—O8iii82.1 (1)
O1—Co2—O986.3 (1)O5—Co4—O996.0 (1)
O1—Co2—O1092.6 (1)O5—Co4—O9iv88.5 (1)
O4i—Co2—O679.3 (1)O8ii—Co4—O8iii101.0 (1)
O4i—Co2—O7iv167.5 (1)O8ii—Co4—O9iv75.1 (1)
O4i—Co2—O978.7 (1)O8ii—Co4—O9100.3 (1)
O4i—Co2—O10101.9 (1)O9—Co4—O9iv173.0 (1)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1/2, z1/2; (iii) x+3/2, y, z1/2; (iv) x+3/2, y+1/2, z; (v) x, y+1/2, z+1/2; (vi) x+1/2, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds