Download citation
Download citation
link to html
The title compound, [Ti(C15H17NO2S)Cl2], has a Ti atom bound to the N and O atoms of a p-toluene­sulfon­amide ligand, which is tethered by a three-carbon chain to a [eta]5-cyclo­penta­dienyl group. The distorted square-pyramidal geometry is completed by two Cl atoms. The Ti-N bond length of 2.0375 (13) Å is longer than that in related compounds, the N atom having asymmetric trigonal-planar geometry. Conformational strain relief is noted when compared with ethyl-tethered compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102016785/ta1393sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102016785/ta1393Isup2.hkl
Contains datablock I

CCDC reference: 140434

Comment top

Dichloro-{N-[3-(η5-cyclopentadienyl)propyl]-4-toluenesulfonamido- κ2N,O}titanium(IV), (I), is related to previously reported structures (Lensink, 1998, hereinafter LENS; Lensink, Gainsford & Hosie, 2001; Lensink, Gainsford & Baxter, 2001, hereinafter LENS2). The racemic crystal structure consists of independent molecules (one enantiomer is shown in Fig. 1), with only weak intermolecular contacts, e.g. C3—H3···O2i with C3···O2 3.261 (2) Å [symmetry code (i): x, 3/2 - y, z - 1/2]. \sch

The Ti atom in (I) has a distorted square-pyramidal coordination. It is 0.820 (1) Å out of the mean plane through atoms N, O1, Cl1 and Cl2 [mean deviation 0.019 (1) Å] towards the cyclopentadienyl ring. In the related complexes [Ti(C5H4CH2CH2NSO2C6H4CH3)Cl2] (LENS) and [Ti(C5H4CH2CH2NSO2C6H4CH3)(CF3CO3)2(C4H6O)] (LENS2), which have an ethyl linkage from the N atom to the cyclopentadienyl ring, the Ti atoms have a distorted trigonal-bipyramidal geometry and distorted octahedral coordination, respectively. The longer ligand backbone (propyl) chain in (I) allows the complex to relieve some conformational strain by adopting a different geometry. Thus, the Ti—N—C8—C9, N—C8—C9—C15 and C9—C15—C10—C11 dihedral angles of 57.4 (2), -62.3 (2) and 39.1 (2)°, respectively, are unstrained compared with the values of 27.3, -28.9 and 108.8° found in LENS.

There is also a concomitant reduction in the displacement of the terminal C15 atom from the cyclopentadienyl plane, being 0.031 (3) Å in (I) compared with 0.164 Å in LENS. The cyclopentadienyl ring planes [average out-of-plane deviations 0.005 (1) Å] and the Ti—Cg distance (2.023 Å) are identical with the data in LENS (Cg is the centre of gravity of the cyclopentadienyl ring). There are also no significant changes in the bond angles around the N atom in LENS and in (I). In contrast, the closely related four-coordinate Ti complexes studied by Sinnema et al. (1997), which (only) lack the sulfonamido O coordination, show the reverse trend, with the propyl-cyclopentadienyl chain structure having more steric crowding than the ethyl-linked molecule.

The N atom in (I) has an asymmetric trigonal-planar geometry, with the sum of the angles around it being 355.3°. The Ti—N distance of 2.0375 (13) Å is significantly longer (~0.17 Å) than the Ti—N distances in either [Ti(C5H5)(NiPr2)2Cl2] (Pupi et al., 1995) or [Ti(C5H4CH2CH2NiPr)Cl2] (Sinnema et al., 1997), although it is within the wide ranges previously observed for Ti complexes (LENS2). The longer Ti—N distance suggests that this bond is best described as a single bond between the Ti and N atoms, consistent with the estimated Ti—N single bond distance of 1.96–1.97 Å. The possible lone-pair interaction of atom O1 with the Ti perhaps diminishes the N(pπ)-M(dπ) interaction.

The Ti—O1 distance of 2.2008 (11) Å is much shorter than the sum of the van der Waals radii, and the difference in the S—O1 and S—O2 distances [1.491 (1) and 1.432 (1) Å, respectively] confirm this as a single bond, as previously discussed in the LENS2 paper.

Experimental top

A solution of C5H5(CH2)3NHSO2C6H4CH3 (0.60 g, 2.2 mmol) dissolved in toluene (5 ml) was slowly added to a Schlenk tube charged with Ti(NMe2)4 (0.50 g, 2.2 mmol) and toluene (15 ml) at room temperature. The reaction mixture was stirred overnight. After removal of the solvent in vacuo, a dark-orange oil remained. The oil was redissolved in toluene (15 ml). A solution of Me3SiCl (0.81 g, 7.44 mmol) in toluene (5 ml) was then added slowly and the mixture was stirred overnight. A dark-orange solid precipitate was isolated (yield 0.30 g, 0.77 mmol). Analysis calculated for C15H17Cl2NO2STi: C 45.7, H 4.4, N 3.6%; found: C 45.9, H 4.6, N 3.3%. Crystals of (I) were obtained from a solution in dichloromethane-pentane (Ratio?).

Refinement top

All H atoms, except those on methyl C atoms, were constrained with Uiso(H) = 1.2Ueq(C); the factor was 1.5 times for the methyl H atoms on C7. C—H distances were constrained in the range 0.95–0.99 Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
Dichloro-{N-[3-(η5-cyclopentadienyl)propyl]-4-toluenesulfonamido- κ2N,O}titanium(IV) top
Crystal data top
[Ti(C15H17NO2S)Cl2]F(000) = 808
Mr = 394.16Dx = 1.583 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3192 reflections
a = 16.986 (3) Åθ = 2.7–25.8°
b = 7.441 (2) ŵ = 0.97 mm1
c = 13.488 (5) ÅT = 153 K
β = 104.009 (6)°Block, red
V = 1654.1 (8) Å30.88 × 0.66 × 0.50 mm
Z = 4
Data collection top
Make Model CCD area-detector
diffractometer
3386 independent reflections
Radiation source: fine-focus sealed tube3044 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.192 pixels mm-1θmax = 26.4°, θmin = 2.5°
ϕ and ω scansh = 2121
Absorption correction: multi-scan
(Blessing, 1995)
k = 99
Tmin = 0.509, Tmax = 0.615l = 1614
20524 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.039P)2 + 0.611P]
where P = (Fo2 + 2Fc2)/3
3386 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ti(C15H17NO2S)Cl2]V = 1654.1 (8) Å3
Mr = 394.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.986 (3) ŵ = 0.97 mm1
b = 7.441 (2) ÅT = 153 K
c = 13.488 (5) Å0.88 × 0.66 × 0.50 mm
β = 104.009 (6)°
Data collection top
Make Model CCD area-detector
diffractometer
3386 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3044 reflections with I > 2σ(I)
Tmin = 0.509, Tmax = 0.615Rint = 0.026
20524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
3386 reflectionsΔρmin = 0.42 e Å3
200 parameters
Special details top

Experimental. Crystal decay was monitored by repeating the initial 10 frames at the end of the data collection and analyzing duplicate reflections. The standard 1.0 mm diameter collimator was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti0.331293 (15)0.69417 (4)0.277298 (19)0.01795 (8)
S0.17831 (2)0.66306 (5)0.31665 (3)0.02000 (9)
Cl20.34869 (2)0.52146 (6)0.14294 (3)0.02787 (10)
Cl10.33643 (2)0.96324 (5)0.19387 (3)0.02807 (10)
O10.22709 (6)0.82918 (14)0.31529 (9)0.0237 (2)
O20.15367 (7)0.62264 (18)0.40846 (9)0.0303 (3)
N0.23838 (7)0.52557 (17)0.28475 (10)0.0206 (3)
C20.09475 (9)0.7685 (2)0.12677 (12)0.0262 (3)
H20.14380.82420.12100.031*
C90.28879 (12)0.2746 (2)0.40427 (14)0.0347 (4)
H9A0.28060.14500.41510.042*
H9B0.27350.34150.46020.042*
C100.40332 (10)0.5020 (2)0.40671 (12)0.0259 (3)
C110.37592 (9)0.6508 (2)0.45423 (11)0.0230 (3)
H110.33840.64580.49620.028*
C80.23310 (10)0.3315 (2)0.30275 (13)0.0263 (3)
H8A0.24810.26460.24660.032*
H8B0.17640.30000.30240.032*
C10.09007 (9)0.6819 (2)0.21689 (12)0.0205 (3)
C60.01873 (9)0.5979 (2)0.22543 (13)0.0253 (3)
H60.01600.53870.28690.030*
C40.04586 (10)0.6895 (2)0.05243 (13)0.0277 (3)
C140.45955 (10)0.5700 (3)0.35407 (13)0.0352 (4)
H140.48870.50020.31600.042*
C120.41326 (10)0.8076 (2)0.42922 (12)0.0277 (3)
H120.40480.92630.45040.033*
C30.02672 (10)0.7718 (2)0.04582 (13)0.0294 (4)
H30.02940.83130.01560.035*
C130.46541 (10)0.7572 (3)0.36714 (13)0.0355 (4)
H130.49850.83560.33920.043*
C50.04857 (10)0.6021 (2)0.14258 (13)0.0281 (3)
H50.09720.54420.14780.034*
C150.37894 (11)0.3081 (2)0.40972 (15)0.0373 (4)
H15A0.41150.25390.47360.045*
H15B0.39320.24460.35190.045*
C70.11863 (11)0.6956 (3)0.03720 (15)0.0401 (4)
H7A0.15890.60760.02710.060*
H7B0.10190.66700.10000.060*
H7C0.14250.81620.04280.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti0.01365 (13)0.02624 (15)0.01405 (14)0.00061 (10)0.00355 (10)0.00074 (10)
S0.01547 (17)0.02526 (19)0.02040 (18)0.00217 (13)0.00654 (14)0.00005 (14)
Cl20.0296 (2)0.0360 (2)0.01935 (18)0.00463 (16)0.00862 (15)0.00441 (15)
Cl10.0338 (2)0.0284 (2)0.02411 (19)0.00182 (15)0.01110 (16)0.00148 (15)
O10.0189 (5)0.0245 (6)0.0284 (6)0.0009 (4)0.0069 (4)0.0038 (4)
O20.0249 (6)0.0457 (7)0.0231 (6)0.0021 (5)0.0114 (5)0.0022 (5)
N0.0158 (6)0.0235 (6)0.0231 (6)0.0023 (5)0.0056 (5)0.0002 (5)
C20.0194 (7)0.0313 (8)0.0298 (8)0.0025 (6)0.0093 (6)0.0050 (7)
C90.0425 (10)0.0239 (8)0.0323 (9)0.0012 (7)0.0017 (8)0.0050 (7)
C100.0217 (7)0.0323 (9)0.0183 (7)0.0054 (6)0.0057 (6)0.0021 (6)
C110.0227 (7)0.0316 (8)0.0133 (7)0.0004 (6)0.0016 (6)0.0011 (6)
C80.0228 (8)0.0218 (8)0.0319 (9)0.0003 (6)0.0016 (6)0.0012 (6)
C10.0161 (7)0.0226 (7)0.0232 (7)0.0038 (5)0.0055 (6)0.0003 (6)
C60.0213 (7)0.0264 (8)0.0300 (8)0.0016 (6)0.0098 (6)0.0023 (7)
C40.0219 (8)0.0293 (8)0.0299 (8)0.0065 (6)0.0024 (6)0.0061 (7)
C140.0169 (7)0.0647 (13)0.0215 (8)0.0120 (8)0.0004 (6)0.0047 (8)
C120.0274 (8)0.0315 (9)0.0195 (7)0.0064 (7)0.0031 (6)0.0005 (6)
C30.0270 (8)0.0363 (9)0.0259 (8)0.0075 (7)0.0084 (7)0.0050 (7)
C130.0167 (7)0.0616 (12)0.0248 (8)0.0092 (8)0.0017 (6)0.0081 (8)
C50.0180 (7)0.0275 (8)0.0390 (9)0.0018 (6)0.0071 (7)0.0030 (7)
C150.0344 (10)0.0281 (9)0.0380 (10)0.0085 (7)0.0134 (8)0.0022 (7)
C70.0278 (9)0.0497 (12)0.0365 (10)0.0067 (8)0.0043 (8)0.0074 (8)
Geometric parameters (Å, º) top
Ti—N2.0375 (13)C10—C151.505 (3)
Ti—O12.2008 (11)C11—C121.407 (2)
Ti—Cl22.2983 (7)C11—H110.9500
Ti—Cl12.3087 (7)C8—H8A0.9900
Ti—C122.3385 (17)C8—H8B0.9900
Ti—C112.3448 (17)C1—C61.393 (2)
Ti—C132.3540 (16)C6—C51.392 (2)
Ti—C102.3567 (16)C6—H60.9500
Ti—C142.3621 (17)C4—C51.389 (3)
Ti—S2.7849 (6)C4—C31.399 (2)
S—O21.4319 (12)C4—C71.506 (2)
S—O11.4907 (12)C14—C131.404 (3)
S—N1.5765 (13)C14—H140.9500
S—C11.7608 (16)C12—C131.409 (3)
N—C81.471 (2)C12—H120.9500
C2—C31.385 (2)C3—H30.9500
C2—C11.395 (2)C13—H130.9500
C2—H20.9500C5—H50.9500
C9—C81.524 (2)C15—H15A0.9900
C9—C151.536 (3)C15—H15B0.9900
C9—H9A0.9900C7—H7A0.9800
C9—H9B0.9900C7—H7B0.9800
C10—C111.413 (2)C7—H7C0.9800
C10—C141.415 (3)
N—Ti—O166.01 (5)C10—C11—Ti72.96 (9)
N—Ti—Cl286.77 (4)C12—C11—H11125.6
O1—Ti—Cl2134.67 (3)C10—C11—H11125.6
N—Ti—Cl1132.78 (4)Ti—C11—H11120.9
O1—Ti—Cl181.09 (3)N—C8—C9111.82 (13)
Cl2—Ti—Cl194.21 (3)N—C8—H8A109.3
N—Ti—C12118.88 (6)C9—C8—H8A109.3
O1—Ti—C1288.45 (6)N—C8—H8B109.3
Cl2—Ti—C12136.87 (5)C9—C8—H8B109.3
Cl1—Ti—C1291.68 (5)H8A—C8—H8B107.9
N—Ti—C1185.90 (5)C6—C1—C2120.90 (14)
O1—Ti—C1184.60 (5)C6—C1—S119.86 (12)
Cl2—Ti—C11130.84 (5)C2—C1—S119.02 (12)
Cl1—Ti—C11125.05 (4)C5—C6—C1119.04 (15)
N—Ti—C13139.63 (6)C5—C6—H6120.5
O1—Ti—C13121.46 (6)C1—C6—H6120.5
Cl2—Ti—C13102.95 (5)C5—C4—C3118.50 (15)
Cl1—Ti—C1386.11 (5)C5—C4—C7121.47 (16)
N—Ti—C1081.91 (6)C3—C4—C7120.03 (16)
O1—Ti—C10114.02 (5)C13—C14—C10109.13 (15)
Cl2—Ti—C1095.85 (5)C13—C14—Ti72.36 (10)
Cl1—Ti—C10144.39 (5)C10—C14—Ti72.35 (9)
N—Ti—C14112.38 (7)C13—C14—H14125.4
O1—Ti—C14141.70 (5)C10—C14—H14125.4
Cl2—Ti—C1481.14 (5)Ti—C14—H14121.5
Cl1—Ti—C14114.40 (5)C11—C12—C13107.83 (16)
C12—Ti—C1457.77 (6)C11—C12—Ti72.76 (9)
C11—Ti—C1457.55 (6)C13—C12—Ti73.13 (9)
O2—S—O1117.68 (7)C11—C12—H12126.1
O2—S—N116.34 (7)C13—C12—H12126.1
O1—S—N97.84 (7)Ti—C12—H12119.9
O2—S—C1107.73 (7)C2—C3—C4121.47 (15)
O1—S—C1107.31 (7)C2—C3—H3119.3
N—S—C1109.30 (7)C4—C3—H3119.3
S—O1—Ti96.03 (6)C14—C13—C12107.65 (16)
C8—N—S121.52 (11)C14—C13—Ti73.00 (9)
C8—N—Ti133.76 (10)C12—C13—Ti71.93 (9)
S—N—Ti100.03 (7)C14—C13—H13126.2
C3—C2—C1118.86 (15)C12—C13—H13126.2
C3—C2—H2120.6Ti—C13—H13120.7
C1—C2—H2120.6C4—C5—C6121.22 (15)
C8—C9—C15113.14 (15)C4—C5—H5119.4
C8—C9—H9A109.0C6—C5—H5119.4
C15—C9—H9A109.0C10—C15—C9115.60 (15)
C8—C9—H9B109.0C10—C15—H15A108.4
C15—C9—H9B109.0C9—C15—H15A108.4
H9A—C9—H9B107.8C10—C15—H15B108.4
C11—C10—C14106.49 (16)C9—C15—H15B108.4
C11—C10—C15128.04 (16)H15A—C15—H15B107.4
C14—C10—C15125.47 (16)C4—C7—H7A109.5
C11—C10—Ti72.05 (9)C4—C7—H7B109.5
C14—C10—Ti72.77 (10)H7A—C7—H7B109.5
C15—C10—Ti120.33 (11)C4—C7—H7C109.5
C12—C11—C10108.88 (15)H7A—C7—H7C109.5
C12—C11—Ti72.27 (9)H7B—C7—H7C109.5
O2—S—O1—Ti122.77 (7)C3—C2—C1—C60.8 (2)
N—S—O1—Ti2.55 (6)C3—C2—C1—S175.43 (13)
C1—S—O1—Ti115.65 (6)O2—S—C1—C623.10 (15)
N—Ti—O1—S2.14 (5)O1—S—C1—C6150.73 (12)
Cl2—Ti—O1—S60.35 (7)N—S—C1—C6104.18 (13)
Cl1—Ti—O1—S147.45 (5)Ti—S—C1—C6153.90 (11)
C12—Ti—O1—S120.61 (7)O2—S—C1—C2162.23 (13)
C11—Ti—O1—S85.77 (6)O1—S—C1—C234.61 (14)
C13—Ti—O1—S132.71 (7)N—S—C1—C270.49 (14)
C10—Ti—O1—S66.34 (7)Ti—S—C1—C220.77 (15)
C14—Ti—O1—S94.12 (10)C2—C1—C6—C50.3 (2)
O2—S—N—C835.33 (15)S—C1—C6—C5174.89 (12)
O1—S—N—C8161.59 (12)C11—C10—C14—C131.18 (18)
C1—S—N—C886.92 (13)C15—C10—C14—C13178.80 (15)
Ti—S—N—C8158.81 (15)Ti—C10—C14—C1363.45 (12)
O2—S—N—Ti123.48 (7)C11—C10—C14—Ti64.63 (11)
O1—S—N—Ti2.78 (7)C15—C10—C14—Ti115.35 (15)
C1—S—N—Ti114.27 (7)N—Ti—C14—C13148.58 (10)
O1—Ti—N—C8156.79 (15)O1—Ti—C14—C1369.42 (14)
Cl2—Ti—N—C860.48 (14)Cl2—Ti—C14—C13128.65 (10)
Cl1—Ti—N—C8153.22 (12)Cl1—Ti—C14—C1338.04 (11)
C12—Ti—N—C883.00 (15)C12—Ti—C14—C1337.61 (10)
C11—Ti—N—C870.88 (15)C11—Ti—C14—C1379.28 (11)
C13—Ti—N—C845.79 (19)C10—Ti—C14—C13117.51 (15)
C10—Ti—N—C835.91 (14)S—Ti—C14—C13116.45 (10)
C14—Ti—N—C818.56 (16)N—Ti—C14—C1031.07 (12)
S—Ti—N—C8154.75 (18)O1—Ti—C14—C1048.10 (15)
O1—Ti—N—S2.04 (5)Cl2—Ti—C14—C10113.83 (10)
Cl2—Ti—N—S144.78 (6)Cl1—Ti—C14—C10155.55 (9)
Cl1—Ti—N—S52.03 (8)C12—Ti—C14—C1079.90 (11)
C12—Ti—N—S71.75 (8)C11—Ti—C14—C1038.23 (9)
C11—Ti—N—S83.87 (7)C13—Ti—C14—C10117.51 (15)
C13—Ti—N—S108.96 (10)S—Ti—C14—C101.07 (13)
C10—Ti—N—S118.84 (7)C10—C11—C12—C130.97 (18)
C14—Ti—N—S136.18 (7)Ti—C11—C12—C1365.22 (11)
N—Ti—C10—C1194.42 (10)C10—C11—C12—Ti64.25 (11)
O1—Ti—C10—C1135.28 (11)N—Ti—C12—C1121.43 (12)
Cl2—Ti—C10—C11179.70 (9)O1—Ti—C12—C1182.78 (10)
Cl1—Ti—C10—C1174.05 (12)Cl2—Ti—C12—C1198.22 (10)
C12—Ti—C10—C1136.81 (9)Cl1—Ti—C12—C11163.81 (9)
C13—Ti—C10—C1178.08 (11)C13—Ti—C12—C11115.42 (15)
C14—Ti—C10—C11114.39 (15)C10—Ti—C12—C1136.83 (9)
S—Ti—C10—C1164.82 (9)C14—Ti—C12—C1178.15 (11)
N—Ti—C10—C14151.19 (11)S—Ti—C12—C1154.55 (10)
O1—Ti—C10—C14149.67 (10)N—Ti—C12—C13136.85 (11)
Cl2—Ti—C10—C1465.31 (10)O1—Ti—C12—C13161.80 (11)
Cl1—Ti—C10—C1440.35 (14)Cl2—Ti—C12—C1317.20 (14)
C12—Ti—C10—C1477.58 (11)Cl1—Ti—C12—C1380.77 (11)
C11—Ti—C10—C14114.39 (15)C11—Ti—C12—C13115.42 (15)
C13—Ti—C10—C1436.31 (11)C10—Ti—C12—C1378.59 (12)
S—Ti—C10—C14179.22 (10)C14—Ti—C12—C1337.27 (11)
N—Ti—C10—C1529.69 (14)S—Ti—C12—C13169.97 (10)
O1—Ti—C10—C1588.83 (14)C1—C2—C3—C40.5 (3)
Cl2—Ti—C10—C1556.19 (14)C5—C4—C3—C20.4 (3)
Cl1—Ti—C10—C15161.84 (11)C7—C4—C3—C2179.93 (16)
C12—Ti—C10—C15160.92 (16)C10—C14—C13—C120.60 (18)
C11—Ti—C10—C15124.11 (18)Ti—C14—C13—C1264.04 (11)
C13—Ti—C10—C15157.81 (17)C10—C14—C13—Ti63.44 (11)
C14—Ti—C10—C15121.49 (19)C11—C12—C13—C140.23 (18)
S—Ti—C10—C1559.29 (14)Ti—C12—C13—C1464.75 (11)
C14—C10—C11—C121.32 (17)C11—C12—C13—Ti64.98 (11)
C15—C10—C11—C12178.66 (15)N—Ti—C13—C1448.08 (14)
Ti—C10—C11—C1263.80 (11)O1—Ti—C13—C14137.15 (10)
C14—C10—C11—Ti65.12 (11)Cl2—Ti—C13—C1452.35 (10)
C15—C10—C11—Ti114.86 (16)Cl1—Ti—C13—C14145.78 (10)
N—Ti—C11—C12161.29 (10)C12—Ti—C13—C14115.68 (15)
O1—Ti—C11—C1295.04 (10)C11—Ti—C13—C1478.03 (11)
Cl2—Ti—C11—C12116.56 (10)C10—Ti—C13—C1436.57 (10)
Cl1—Ti—C11—C1219.90 (11)S—Ti—C13—C14100.91 (11)
C13—Ti—C11—C1237.62 (11)N—Ti—C13—C1267.60 (15)
C10—Ti—C11—C12116.96 (14)O1—Ti—C13—C1221.47 (13)
C14—Ti—C11—C1278.84 (11)Cl2—Ti—C13—C12168.03 (10)
S—Ti—C11—C12127.36 (10)Cl1—Ti—C13—C1298.54 (11)
N—Ti—C11—C1081.75 (10)C11—Ti—C13—C1237.65 (10)
O1—Ti—C11—C10148.00 (10)C10—Ti—C13—C1279.10 (11)
Cl2—Ti—C11—C100.39 (12)C14—Ti—C13—C12115.68 (15)
Cl1—Ti—C11—C10136.86 (9)S—Ti—C13—C1214.77 (15)
C12—Ti—C11—C10116.96 (14)C3—C4—C5—C60.9 (2)
C13—Ti—C11—C1079.34 (11)C7—C4—C5—C6179.57 (16)
C14—Ti—C11—C1038.12 (10)C1—C6—C5—C40.5 (2)
S—Ti—C11—C10115.68 (9)C11—C10—C15—C939.1 (2)
S—N—C8—C993.09 (16)C14—C10—C15—C9140.90 (17)
Ti—N—C8—C957.4 (2)Ti—C10—C15—C951.2 (2)
C15—C9—C8—N62.25 (19)C8—C9—C15—C1065.4 (2)

Experimental details

Crystal data
Chemical formula[Ti(C15H17NO2S)Cl2]
Mr394.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)16.986 (3), 7.441 (2), 13.488 (5)
β (°) 104.009 (6)
V3)1654.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.88 × 0.66 × 0.50
Data collection
DiffractometerMake Model CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.509, 0.615
No. of measured, independent and
observed [I > 2σ(I)] reflections
20524, 3386, 3044
Rint0.026
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.067, 1.06
No. of reflections3386
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.42

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Ti—N2.0375 (13)S—O21.4319 (12)
Ti—O12.2008 (11)S—O11.4907 (12)
Ti—Cl22.2983 (7)S—N1.5765 (13)
Ti—Cl12.3087 (7)S—C11.7608 (16)
N—Ti—O166.01 (5)O2—S—N116.34 (7)
O1—Ti—Cl2134.67 (3)C8—N—S121.52 (11)
N—Ti—Cl1132.78 (4)C8—N—Ti133.76 (10)
Cl2—Ti—Cl194.21 (3)S—N—Ti100.03 (7)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds