Download citation
Download citation
link to html
The structure of the title mixed trimetallic diphosphate, K2Sr3Mn2(P2O7)3, is constructed of a three-dimensional matrix composed of SrO8-10, MnO5 and PO4 polyhedra. The sharing of O atoms between these polyhedra creates tunnels of large dimensions parallel to (010), in which are found columns of K+ ions. Thus, the presence of several cations differing in size in the solid matrix leads to the formation of large tunnels and potential conductivity.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102015214/ta1391sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102015214/ta1391Isup2.hkl
Contains datablock I

Comment top

There is extensive structural work reported in the literature in the domain of AIIBIIP2O7 and AI2BIIP2O7 complexes. For complexes of this type, which are of interest for their conductive properties, it is apparent that transition metals plus larger alkali and alkaline earth elements form bonds with more covalent character with the O atoms of diphosphate groups and thus a relatively rigid matrix. Smaller and more electropositive elements (forming interactions with oxygen which is more ionic in nature) allow movement through the channels or tunnels in these matrices, giving rise to conductivity.

For example, the structure of K3.5Pd2.25(P2O7)2 may be viewed as a matrix composed of Pd2.25(P2O7)2 groups. Corner-sharing PO4 polyhedra and square-planar PdO4 units are linked in a three-dimensional array, forming large parallel tunnels. These tunnels are of three types, viz. of dimensions 3.21 × 8.36, 3.84 × 8.14 and 3.55 × 10.65 Å in which are found two, two and three columns, respectively, of K+ ions. These columns are of sufficient diameter to allow movement of K+ ions and thus conductivity of the solid (σ673 K = 2.3 × 10-4 Ω-1 cm-1) (El Maadi et al., 2002).

Similarly, the isostructural complexes AIBII6(P2O7)2P3O10, with A = K and B = Mn, A = Ag and B = Mn, and A = Na and B = Mn (Bennazha et al., 2001, 2002) lead to the conclusion that the Mn6(P2O7)2P3O10 matrix is rigid, providing a stable host solid into which the K+, Ag+ or Na+ cations fit. One may conclude that the Mn6(P2O7)2P3O10 matrix is analogous to the zeolite-type matrices, which are rigid and solid, resisting conformational changes due to the presence of guest atoms or molecules in their cavities. In these three structures, the tunnels are of smaller dimensions (2.98 × 4.99 Å) and the Ag and Na atoms show valence-bond totals less than the ionic charge.

Another approach to creating a host matrix with tunnels and thus conducting properties may be to build the host matrix from P2O7 and two different cations, both of which tend to more covalent bonding character, but which differ in size. There is only one example in the literature of a trimetallic diphosphate, i.e. K6Sr2Ni5(P2O7)5 (El Maadi et al., 1995a). In this structure, the Sr2Ni5(P2O7)5 matrix forms tunnels of large dimension (3.64 × 9.28 Å) in which are found four individual columns of K+ ions. The conductivity of this material has not been established.

The structure of K2Sr3Mn2(P2O7)3 described here (Fig. 1 and 2) does not resemble any of its known mono- or bimetallic parents, e.g. Sr2P2O7 (Grenier & Masse, 1969), Mn2P2O7 (Lukaszewicz & Smajkiewicz, 1961), K2SrP2O7 (Trunov et al., 1991) or K2MnP2O7 (El Maadi et al., 1994); SrMnP2O7 and K4P2O7 are unknown. Thus, one cannot view the structure of K2Mn2Sr3(P2O7)3 as a simple substitution of potassium and manganese into an Sr2P2O7 matrix, for example.

The structure of K2Sr3Mn2(P2O7)3 is built up from [Sr3Mn2P4O16] units in the form of SrO8–10, MnO5 and PO4 coordination polyhedra, which create tunnels parallel to the [010] direction. Each tunnel is of dimensions, 5.43 × 9.28 Å. In each of these tunnels are found two columns of K+ ions. Tunnels, centered about (1/2, y, 1/2) and (1/2, y, 0), are delimited by four PO4 tetrahedra, two MnO5 square pyramids and two SrO8–10 polyhedra. Fig. 1, a projection on the (010) plane, shows these tunnels. Within the [Sr3Mn2P4O16] units, (Sr3O21) repeat units in the form of ribbons extend in the [010] direction.

Atoms Sr1, Sr2 and Sr3 display nine-, eight- or ten-coordination, with average Sr—O distances of 2.717 (11), 2.601 (12) and 2.783 (12) Å, respectively. Atoms K1 and K2 display nine- and seven-coordination, respectively. The average K—O distances of 2.983 (15) and 2.933 (15) Å comparable to those in K2SrP2O7 (Trunov et al., 1991), K2CuP2O7 (El Maadi et al., 1995b) and K2CdP2O7 (Faggiani et al., 1976). Both Mn atoms have square-pyramidal geometry, with Mn—O distances of 2.112 (15) and 2.120 (14) Å.

The valence-bond sums (Brown, 1981) for the cations are: Sr1 1.927, Sr2 2.48, Sr3 1.819, Mn1 2.01, Mn2, 2.05, K1 0.98 and K2 0.87. These sums are normal for Mn atoms and for Sr1 and Sr3. The high total for Sr2, which has the lowest coordination number of the three Sr atoms, is puzzling. We have often noted low totals (as seen for K2) for atoms which are mobile in their environment and thus involved in conductivity.

The space group is correctly chosen as P21. While the metal atoms and two of the diphosphate groups may be placed on positions of mirror symmetry in the centric space group P21/m (mandating an eclipsed conformation of the P2O7 groups), the third diphosphate group is disordered when forced to have the bonded O—P—O—P—O atoms on a mirror plane. This disorder is completely resolved in the non-centrosymmetric space group P21. This diphosphate group is seen in a pseudo-eclipsed conformation (the average O—P—P—O angle is 69.8°).

Thus, the transition from host matrices built up of one cation with `covalent tendencies' and diphosphate groups to matrices built of two such cations of different sizes and diphosphate groups appears to lead to matrices with tunnels of larger size. Evidence suggests that the presence of strontium or palladium in the solid matrix is of particular importance in the construction of large tunnels.

Experimental top

Crystals of K2Sr3Mn2(P2O7)3 were prepared by fusing a stoichiometric mixture of K2CO3, SrCO3, MnCO3 and (NH4)2HPO4 according to the equation

K2CO3 + 2MnCO3 + 3SrCO3 + 6(NH4)2HPO4 K2Mn2Sr3(P2O7)3 + 6CO2 + 12NH3 + 9H2O.

The reaction mixture was ground together and heated slowly, with intermittent grinding, to the temperature of fusion, 1073 K, in a porcelain crucible. The molten material obtained was held at this temperature for 24 h and then subjected to controlled cooling (6 K h-1) to 473 K after which, the furnace was turned off. Violet crystals were obtained.

Computing details top

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of K2Sr3Mn2(P2O7)3. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Projection of K2Sr3Mn2(P2O7)3 on the (010) plane. The Sr–O polyhedra, MnO5 pentagonal pyramids and PO4 tetrahedra are shown as solid forms surrounding the tunnels in each of which are seen two columns of K+ ions. The c axis is horizontal, with the a axis subtending an angle of 100.19°.
Dipotassium dimanganese tristrontium tris(diphosphate) top
Crystal data top
K2Sr3Mn2(P2O7)3F(000) = 920
Mr = 972.76Dx = 3.331 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 13.285 (6) ÅCell parameters from 47 reflections
b = 5.394 (2) Åθ = 3.5–9.6°
c = 13.750 (6) ŵ = 10.49 mm1
β = 100.19 (3)°T = 293 K
V = 969.8 (7) Å3Chunk, violet
Z = 20.1 × 0.1 × 0.1 mm
Data collection top
Syntex P4 four-circle
diffractometer
2492 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.082
Graphite monochromatorθmax = 30.0°, θmin = 2.0°
θ/2θ scansh = 181
Absorption correction: ψ scan
(XEMP; Siemens, 1991)
k = 17
Tmin = 0.87, Tmax = 0.91l = 1919
4061 measured reflections3 standard reflections every 97 reflections
3650 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0843P)2 + 3.6291P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.066(Δ/σ)max = 0.015
wR(F2) = 0.174Δρmax = 0.07 e Å3
S = 1.01Δρmin = 0.05 e Å3
3650 reflectionsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
307 parametersExtinction coefficient: 0.0018 (5)
0 restraintsAbsolute structure: Flack (1983), 0000 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.22 (3)
Crystal data top
K2Sr3Mn2(P2O7)3V = 969.8 (7) Å3
Mr = 972.76Z = 2
Monoclinic, P21Mo Kα radiation
a = 13.285 (6) ŵ = 10.49 mm1
b = 5.394 (2) ÅT = 293 K
c = 13.750 (6) Å0.1 × 0.1 × 0.1 mm
β = 100.19 (3)°
Data collection top
Syntex P4 four-circle
diffractometer
2492 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XEMP; Siemens, 1991)
Rint = 0.082
Tmin = 0.87, Tmax = 0.913 standard reflections every 97 reflections
4061 measured reflections intensity decay: 0.0%
3650 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.174Δρmax = 0.07 e Å3
S = 1.01Δρmin = 0.05 e Å3
3650 reflectionsAbsolute structure: Flack (1983), 0000 Friedel pairs
307 parametersAbsolute structure parameter: 0.22 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The y coordinate of Sr1 was fixed to establish the origin of the space group. Refinement of the structure in both enantiomorphic forms did not lead to determination of the absolute structure as reflected in the Friedel parameter.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.77594 (9)0.37940.16320 (9)0.0152 (3)
Sr20.00802 (10)0.8596 (8)0.25110 (10)0.0241 (3)
Sr30.24486 (9)0.3217 (4)0.35145 (9)0.0169 (4)
Mn10.77690 (16)0.3731 (9)0.11841 (14)0.0188 (5)
Mn20.20860 (16)0.3433 (8)0.62390 (15)0.0187 (6)
K10.5683 (2)0.3732 (13)0.3981 (2)0.0284 (9)
K20.4392 (2)0.3345 (13)0.0878 (3)0.0328 (10)
P10.0706 (2)0.3773 (12)0.1296 (2)0.0130 (7)
O110.1205 (14)0.136 (3)0.1733 (10)0.032 (4)
O120.1356 (13)0.594 (3)0.1779 (12)0.035 (4)
O130.0387 (7)0.401 (5)0.1386 (7)0.041 (5)
O140.0797 (6)0.382 (4)0.0147 (6)0.019 (2)
P20.1863 (3)0.3778 (14)0.0283 (2)0.0169 (9)
O210.2431 (10)0.136 (3)0.0039 (10)0.020 (3)
O220.1558 (8)0.385 (4)0.1392 (6)0.031 (3)
O230.2464 (12)0.612 (3)0.0113 (11)0.027 (4)
P30.1866 (3)0.8382 (12)0.4787 (2)0.0145 (9)
O310.2461 (10)0.605 (3)0.5197 (10)0.017 (3)
O320.2381 (10)1.077 (3)0.5219 (10)0.018 (3)
O330.1666 (8)0.833 (4)0.3670 (7)0.029 (3)
O340.0737 (7)0.834 (3)0.5105 (6)0.021 (3)
P40.0550 (2)0.8463 (12)0.6230 (2)0.0142 (9)
O410.0570 (7)0.817 (4)0.6235 (7)0.033 (4)
O420.1175 (12)0.627 (3)0.6770 (10)0.019 (3)
O430.1004 (12)1.090 (3)0.6667 (11)0.030 (4)
P50.5921 (3)0.3766 (13)0.6916 (3)0.0183 (8)
O510.6570 (9)0.503 (3)0.7808 (9)0.038 (4)
O520.5955 (9)0.525 (3)0.5987 (9)0.028 (3)
O530.6172 (10)0.103 (3)0.6877 (11)0.040 (4)
O540.4739 (7)0.394 (3)0.7045 (7)0.033 (3)
P60.4053 (3)0.3856 (13)0.7918 (3)0.0177 (8)
O610.3734 (8)0.654 (3)0.8014 (9)0.030 (3)
O620.4654 (8)0.276 (3)0.8850 (8)0.035 (3)
O630.3165 (8)0.219 (3)0.7426 (8)0.025 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0144 (5)0.0154 (8)0.0161 (5)0.0015 (7)0.0035 (4)0.0001 (7)
Sr20.0187 (6)0.0287 (8)0.0254 (6)0.0025 (8)0.0054 (4)0.0027 (7)
Sr30.0133 (5)0.0196 (10)0.0183 (5)0.0005 (7)0.0045 (4)0.0007 (7)
Mn10.0260 (10)0.0123 (14)0.0177 (9)0.0020 (15)0.0030 (7)0.0022 (13)
Mn20.0253 (10)0.0117 (16)0.0194 (9)0.0022 (13)0.0050 (8)0.0013 (13)
K10.0182 (13)0.028 (2)0.0362 (16)0.001 (2)0.0041 (11)0.003 (2)
K20.0256 (15)0.029 (3)0.0398 (18)0.002 (2)0.0047 (13)0.005 (2)
P10.0173 (14)0.009 (2)0.0130 (13)0.004 (2)0.0026 (11)0.003 (2)
O110.066 (11)0.021 (9)0.010 (5)0.020 (8)0.007 (6)0.005 (6)
O120.044 (9)0.025 (10)0.041 (9)0.018 (8)0.021 (7)0.008 (8)
O130.016 (4)0.083 (15)0.026 (5)0.011 (9)0.009 (4)0.005 (10)
O140.018 (4)0.023 (7)0.014 (4)0.007 (7)0.002 (3)0.000 (7)
P20.0211 (15)0.016 (3)0.0142 (13)0.000 (2)0.0062 (12)0.000 (2)
O210.017 (6)0.021 (8)0.027 (7)0.004 (6)0.014 (5)0.001 (6)
O220.038 (6)0.044 (10)0.012 (4)0.001 (10)0.009 (4)0.003 (9)
O230.029 (8)0.027 (9)0.027 (7)0.000 (7)0.011 (6)0.009 (7)
P30.0187 (14)0.010 (3)0.0156 (14)0.003 (2)0.0065 (11)0.001 (2)
O310.013 (6)0.013 (7)0.028 (7)0.001 (5)0.011 (5)0.000 (6)
O320.016 (6)0.018 (7)0.020 (6)0.009 (5)0.007 (5)0.004 (5)
O330.034 (5)0.036 (10)0.017 (4)0.005 (8)0.007 (4)0.006 (7)
O340.017 (4)0.026 (9)0.018 (4)0.000 (6)0.000 (3)0.004 (7)
P40.0134 (13)0.015 (3)0.0152 (13)0.002 (2)0.0037 (11)0.002 (2)
O410.016 (4)0.063 (13)0.022 (4)0.006 (7)0.011 (4)0.015 (8)
O420.015 (8)0.017 (7)0.016 (6)0.005 (6)0.008 (5)0.004 (6)
O430.042 (9)0.024 (9)0.022 (6)0.020 (7)0.006 (6)0.009 (6)
P50.0147 (14)0.015 (2)0.0259 (16)0.001 (2)0.0061 (12)0.000 (2)
O510.025 (6)0.059 (12)0.022 (6)0.002 (7)0.012 (5)0.004 (7)
O520.030 (6)0.026 (7)0.029 (6)0.004 (6)0.006 (5)0.001 (6)
O530.031 (7)0.026 (9)0.060 (9)0.012 (7)0.003 (7)0.009 (8)
O540.021 (5)0.054 (10)0.025 (5)0.001 (8)0.009 (4)0.006 (8)
P60.0159 (14)0.017 (2)0.0200 (15)0.001 (2)0.0032 (11)0.002 (2)
O610.016 (5)0.032 (9)0.044 (7)0.012 (6)0.011 (5)0.012 (7)
O620.029 (6)0.041 (9)0.032 (6)0.011 (7)0.003 (5)0.008 (7)
O630.025 (6)0.016 (7)0.031 (6)0.011 (5)0.003 (5)0.004 (6)
Geometric parameters (Å, º) top
Sr1—O61i2.449 (13)K1—O522.839 (13)
Sr1—O13ii2.547 (10)K1—O52i2.882 (14)
Sr1—O21iii2.655 (14)K1—O31i2.908 (14)
Sr1—O63iv2.667 (12)K1—O54i2.951 (18)
Sr1—O42i2.753 (17)K1—O54iv3.149 (19)
Sr1—O23v2.771 (16)K1—O61i3.206 (14)
Sr1—O43i2.847 (16)K1—O63iv3.258 (14)
Sr1—O22v2.86 (2)K2—O62iv2.693 (16)
Sr1—O22iii2.91 (2)K2—O61i2.851 (12)
Sr2—O332.410 (10)K2—O212.864 (14)
Sr2—O22vi2.437 (10)K2—O62xi2.888 (12)
Sr2—O43vii2.457 (18)K2—O51i2.985 (16)
Sr2—O11viii2.483 (19)K2—O232.991 (17)
Sr2—O42ix2.536 (17)K2—O62i3.264 (17)
Sr2—O122.557 (19)P1—O131.485 (10)
Sr2—O132.92 (2)P1—O121.533 (17)
Sr2—O41ix3.015 (19)P1—O111.536 (16)
Sr3—O53iv2.509 (15)P1—O141.605 (9)
Sr3—O41vii2.579 (9)O14—P21.628 (9)
Sr3—O52i2.650 (13)P2—O221.506 (9)
Sr3—O32x2.705 (13)P2—O211.534 (16)
Sr3—O312.771 (14)P2—O231.540 (17)
Sr3—O33x2.85 (2)P3—O331.512 (10)
Sr3—O112.882 (16)P3—O321.530 (14)
Sr3—O122.955 (18)P3—O311.538 (15)
Sr3—O51i2.967 (15)P3—O341.636 (10)
Sr3—O332.97 (2)O34—P41.611 (10)
Mn1—O51xi2.042 (12)P4—O411.497 (10)
Mn1—O23v2.101 (16)P4—O431.525 (16)
Mn1—O12v2.151 (17)P4—O421.554 (14)
Mn1—O21iii2.169 (15)P5—O521.514 (13)
Mn1—O11iii2.190 (17)P5—O531.516 (18)
Mn2—O632.082 (11)P5—O511.528 (13)
Mn2—O32x2.092 (14)P5—O541.614 (10)
Mn2—O312.133 (14)O54—P61.631 (10)
Mn2—O43x2.139 (16)P6—O621.506 (11)
Mn2—O422.158 (15)P6—O611.519 (18)
K1—O53iv2.824 (16)P6—O631.539 (12)
K1—O32i2.834 (15)
O61i—Sr1—O13ii152.3 (7)O23v—Mn1—O21iii82.9 (5)
O61i—Sr1—O21iii118.3 (4)O12v—Mn1—O21iii151.3 (6)
O13ii—Sr1—O21iii78.9 (5)O51xi—Mn1—O11iii90.2 (6)
O61i—Sr1—O63iv77.7 (5)O23v—Mn1—O11iii148.6 (6)
O13ii—Sr1—O63iv124.9 (6)O12v—Mn1—O11iii84.9 (5)
O21iii—Sr1—O63iv94.6 (4)O21iii—Mn1—O11iii89.5 (6)
O61i—Sr1—O42i85.2 (4)O63—Mn2—O32x96.9 (5)
O13ii—Sr1—O42i75.9 (5)O63—Mn2—O31121.9 (5)
O21iii—Sr1—O42i154.8 (4)O32x—Mn2—O3184.9 (4)
O63iv—Sr1—O42i99.6 (4)O63—Mn2—O43x89.0 (5)
O61i—Sr1—O23v86.9 (5)O32x—Mn2—O43x87.8 (6)
O13ii—Sr1—O23v82.4 (5)O31—Mn2—O43x148.8 (5)
O21iii—Sr1—O23v62.8 (4)O63—Mn2—O42108.2 (5)
O63iv—Sr1—O23v142.3 (4)O32x—Mn2—O42153.7 (5)
O42i—Sr1—O23v113.3 (5)O31—Mn2—O4288.2 (6)
O61i—Sr1—O43i113.9 (5)O43x—Mn2—O4285.2 (5)
O13ii—Sr1—O43i70.1 (5)O53iv—K1—O32i131.0 (5)
O21iii—Sr1—O43i117.1 (5)O53iv—K1—O52103.3 (4)
O63iv—Sr1—O43i64.8 (4)O32i—K1—O5263.9 (4)
O42i—Sr1—O43i53.2 (4)O53iv—K1—O52i71.8 (4)
O23v—Sr1—O43i151.4 (5)O32i—K1—O52i152.0 (4)
O61i—Sr1—O22v81.0 (4)O52—K1—O52i98.0 (3)
O13ii—Sr1—O22v72.1 (6)O53iv—K1—O31i176.1 (5)
O21iii—Sr1—O22v111.7 (4)O32i—K1—O31i52.7 (3)
O63iv—Sr1—O22v151.8 (4)O52—K1—O31i79.2 (4)
O42i—Sr1—O22v60.1 (4)O52i—K1—O31i105.1 (4)
O23v—Sr1—O22v53.2 (4)O53iv—K1—O54i96.1 (4)
O43i—Sr1—O22v108.6 (4)O32i—K1—O54i127.5 (4)
O61i—Sr1—O22iii140.2 (4)O52—K1—O54i134.2 (4)
O13ii—Sr1—O22iii67.3 (6)O52i—K1—O54i49.9 (3)
O21iii—Sr1—O22iii53.0 (4)O31i—K1—O54i80.0 (4)
O63iv—Sr1—O22iii65.8 (4)O53iv—K1—O54iv49.3 (4)
O42i—Sr1—O22iii115.2 (3)O32i—K1—O54iv84.6 (4)
O23v—Sr1—O22iii112.2 (4)O52—K1—O54iv99.2 (4)
O43i—Sr1—O22iii64.7 (4)O52i—K1—O54iv120.9 (3)
O22v—Sr1—O22iii138.6 (4)O31i—K1—O54iv133.6 (4)
O33—Sr2—O22vi177.8 (3)O54i—K1—O54iv124.3 (4)
O33—Sr2—O43vii100.1 (5)O53iv—K1—O61i97.5 (4)
O22vi—Sr2—O43vii78.1 (5)O32i—K1—O61i97.8 (4)
O33—Sr2—O11viii78.3 (5)O52—K1—O61i158.4 (3)
O22vi—Sr2—O11viii103.5 (5)O52i—K1—O61i94.0 (4)
O43vii—Sr2—O11viii178.2 (6)O31i—K1—O61i80.4 (4)
O33—Sr2—O42ix109.5 (5)O54i—K1—O61i47.3 (4)
O22vi—Sr2—O42ix68.9 (5)O54iv—K1—O61i89.8 (3)
O43vii—Sr2—O42ix71.2 (4)O53iv—K1—O63iv88.1 (4)
O11viii—Sr2—O42ix108.3 (6)O32i—K1—O63iv61.2 (3)
O33—Sr2—O1270.4 (5)O52—K1—O63iv114.8 (4)
O22vi—Sr2—O12111.3 (5)O52i—K1—O63iv144.9 (3)
O43vii—Sr2—O12109.4 (6)O31i—K1—O63iv93.5 (3)
O11viii—Sr2—O1271.0 (4)O54i—K1—O63iv106.7 (3)
O42ix—Sr2—O12179.3 (6)O54iv—K1—O63iv44.6 (3)
O33—Sr2—O13112.3 (6)O61i—K1—O63iv59.6 (4)
O22vi—Sr2—O1368.3 (6)O62iv—K2—O61i83.3 (4)
O43vii—Sr2—O1369.9 (5)O62iv—K2—O21139.4 (5)
O11viii—Sr2—O13111.5 (4)O61i—K2—O21137.2 (5)
O42ix—Sr2—O13126.5 (4)O62iv—K2—O62xi95.6 (4)
O12—Sr2—O1354.0 (4)O61i—K2—O62xi103.6 (4)
O33—Sr2—O41ix66.1 (5)O21—K2—O62xi80.0 (4)
O22vi—Sr2—O41ix113.2 (6)O62iv—K2—O51i133.4 (4)
O43vii—Sr2—O41ix107.8 (4)O61i—K2—O51i84.2 (4)
O11viii—Sr2—O41ix70.7 (4)O21—K2—O51i64.1 (4)
O42ix—Sr2—O41ix53.2 (4)O62xi—K2—O51i131.1 (5)
O12—Sr2—O41ix126.3 (4)O62iv—K2—O2387.7 (5)
O13—Sr2—O41ix177.1 (5)O61i—K2—O23166.2 (5)
O53iv—Sr3—O41vii142.6 (6)O21—K2—O2352.0 (4)
O53iv—Sr3—O52i80.8 (5)O62xi—K2—O2387.6 (4)
O41vii—Sr3—O52i135.2 (5)O51i—K2—O2394.6 (4)
O53iv—Sr3—O32x128.2 (4)O62iv—K2—O62i129.5 (4)
O41vii—Sr3—O32x72.5 (4)O61i—K2—O62i48.6 (4)
O52i—Sr3—O32x68.2 (4)O21—K2—O62i90.4 (4)
O53iv—Sr3—O3187.0 (5)O62xi—K2—O62i84.2 (4)
O41vii—Sr3—O3175.9 (4)O51i—K2—O62i65.0 (4)
O52i—Sr3—O31103.4 (4)O23—K2—O62i142.4 (4)
O32x—Sr3—O3162.7 (3)O13—P1—O12112.4 (12)
O53iv—Sr3—O33x149.7 (5)O13—P1—O11113.7 (12)
O41vii—Sr3—O33x66.9 (5)O12—P1—O11107.8 (8)
O52i—Sr3—O33x73.0 (4)O13—P1—O14109.0 (5)
O32x—Sr3—O33x54.3 (3)O12—P1—O14106.3 (9)
O31—Sr3—O33x113.3 (4)O11—P1—O14107.2 (9)
O53iv—Sr3—O11111.0 (5)P1—O14—P2125.4 (5)
O41vii—Sr3—O1171.8 (4)O22—P2—O21110.1 (10)
O52i—Sr3—O11108.8 (4)O22—P2—O23111.6 (10)
O32x—Sr3—O11117.7 (5)O21—P2—O23113.4 (6)
O31—Sr3—O11145.1 (5)O22—P2—O14105.8 (5)
O33x—Sr3—O1165.2 (4)O21—P2—O14108.7 (8)
O53iv—Sr3—O1278.4 (5)O23—P2—O14106.9 (9)
O41vii—Sr3—O1276.3 (4)O33—P3—O32113.3 (9)
O52i—Sr3—O12140.0 (4)O33—P3—O31110.1 (9)
O32x—Sr3—O12148.8 (5)O32—P3—O31112.3 (6)
O31—Sr3—O12109.2 (5)O33—P3—O34105.5 (5)
O33x—Sr3—O12112.7 (4)O32—P3—O34106.0 (8)
O11—Sr3—O1250.3 (4)O31—P3—O34109.1 (8)
O53iv—Sr3—O51i78.6 (5)P4—O34—P3124.1 (5)
O41vii—Sr3—O51i128.1 (5)O41—P4—O43114.4 (10)
O52i—Sr3—O51i52.4 (3)O41—P4—O42111.4 (10)
O32x—Sr3—O51i109.5 (4)O43—P4—O42109.1 (7)
O31—Sr3—O51i153.3 (3)O41—P4—O34108.8 (5)
O33x—Sr3—O51i73.5 (4)O43—P4—O34107.2 (9)
O11—Sr3—O51i61.7 (4)O42—P4—O34105.4 (8)
O12—Sr3—O51i90.0 (4)O52—P5—O53116.4 (9)
O53iv—Sr3—O3374.4 (5)O52—P5—O51110.2 (9)
O41vii—Sr3—O3368.9 (5)O53—P5—O51111.5 (9)
O52i—Sr3—O33144.9 (4)O52—P5—O54103.7 (7)
O32x—Sr3—O33109.0 (4)O53—P5—O54106.6 (9)
O31—Sr3—O3351.5 (3)O51—P5—O54107.9 (7)
O33x—Sr3—O33135.7 (4)P5—O54—P6139.5 (7)
O11—Sr3—O33103.3 (4)O62—P6—O61114.4 (8)
O12—Sr3—O3357.9 (4)O62—P6—O63113.3 (8)
O51i—Sr3—O33141.3 (4)O61—P6—O63112.9 (7)
O51xi—Mn1—O23v120.8 (6)O62—P6—O54110.8 (7)
O51xi—Mn1—O12v113.0 (6)O61—P6—O54103.8 (9)
O23v—Mn1—O12v87.3 (7)O63—P6—O54100.2 (7)
O51xi—Mn1—O21iii95.0 (6)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y, z; (iii) x+1, y+1/2, z; (iv) x+1, y+1/2, z+1; (v) x+1, y1/2, z; (vi) x, y+1/2, z; (vii) x, y1/2, z+1; (viii) x, y+1, z; (ix) x, y+1/2, z+1; (x) x, y1, z; (xi) x, y, z1.

Experimental details

Crystal data
Chemical formulaK2Sr3Mn2(P2O7)3
Mr972.76
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)13.285 (6), 5.394 (2), 13.750 (6)
β (°) 100.19 (3)
V3)969.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)10.49
Crystal size (mm)0.1 × 0.1 × 0.1
Data collection
DiffractometerSyntex P4 four-circle
diffractometer
Absorption correctionψ scan
(XEMP; Siemens, 1991)
Tmin, Tmax0.87, 0.91
No. of measured, independent and
observed [I > 2σ(I)] reflections
4061, 3650, 2492
Rint0.082
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.174, 1.01
No. of reflections3650
No. of parameters307
Δρmax, Δρmin (e Å3)0.07, 0.05
Absolute structureFlack (1983), 0000 Friedel pairs
Absolute structure parameter0.22 (3)

Computer programs: XSCANS (Siemens, 1991), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) top
Sr1—O61i2.449 (13)Mn1—O51xi2.042 (12)
Sr1—O13ii2.547 (10)Mn1—O23v2.101 (16)
Sr1—O21iii2.655 (14)Mn1—O12v2.151 (17)
Sr1—O63iv2.667 (12)Mn1—O21iii2.169 (15)
Sr1—O42i2.753 (17)Mn1—O11iii2.190 (17)
Sr1—O23v2.771 (16)Mn2—O632.082 (11)
Sr1—O43i2.847 (16)Mn2—O32x2.092 (14)
Sr1—O22v2.86 (2)Mn2—O312.133 (14)
Sr1—O22iii2.91 (2)Mn2—O43x2.139 (16)
Sr2—O332.410 (10)Mn2—O422.158 (15)
Sr2—O22vi2.437 (10)K1—O53iv2.824 (16)
Sr2—O43vii2.457 (18)K1—O32i2.834 (15)
Sr2—O11viii2.483 (19)K1—O522.839 (13)
Sr2—O42ix2.536 (17)K1—O52i2.882 (14)
Sr2—O122.557 (19)K1—O31i2.908 (14)
Sr2—O132.92 (2)K1—O54i2.951 (18)
Sr2—O41ix3.015 (19)K1—O54iv3.149 (19)
Sr3—O53iv2.509 (15)K1—O61i3.206 (14)
Sr3—O41vii2.579 (9)K1—O63iv3.258 (14)
Sr3—O52i2.650 (13)K2—O62iv2.693 (16)
Sr3—O32x2.705 (13)K2—O61i2.851 (12)
Sr3—O312.771 (14)K2—O212.864 (14)
Sr3—O33x2.85 (2)K2—O62xi2.888 (12)
Sr3—O112.882 (16)K2—O51i2.985 (16)
Sr3—O122.955 (18)K2—O232.991 (17)
Sr3—O51i2.967 (15)K2—O62i3.264 (17)
Sr3—O332.97 (2)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y, z; (iii) x+1, y+1/2, z; (iv) x+1, y+1/2, z+1; (v) x+1, y1/2, z; (vi) x, y+1/2, z; (vii) x, y1/2, z+1; (viii) x, y+1, z; (ix) x, y+1/2, z+1; (x) x, y1, z; (xi) x, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds