Download citation
Download citation
link to html
The title compound, bis(2,2'-methyl­imino­diethano­lato)-1[kappa]3O,N,O';3[kappa]3O,N,O'-di-[mu]3-propane-1,3-diolato-1:2:3[kappa]8O:O,O':O'-[mu]-propane-1,3-diolato-1:3[kappa]2O:O'-propane-1,3-diolato-2[kappa]2O,O'-trititanium(IV), [Ti3(C5H11NO2)2(C3H6O2)4], has four 1,3-propane­diolate ligands binding in three different modes. Two ligands chelate adjacent Ti atoms with normal [mu]3-O bridges, giving typical edge-sharing of the Ti distorted octahedra, one chelating to the central Ti atom with no [mu]-bridging, and the other spanning the cluster, binding only to the outermost Ti atoms. The two methyl­imino­diethano­late ligands each coordinate to the outer Ti atoms via their N and two O atoms. The Ti-O bond lengths range, in a self-consistent fashion, from 1.816 (2) to 2.082 (2) Å, while the average Ti-N distance is 2.391 (3) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102006273/ta1372sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102006273/ta1372Isup2.hkl
Contains datablock I

CCDC reference: 187917

Comment top

Titanium alkoxides can be modified to provide complexes with properties designed for specific applications. Chelating diols and aminoalcohols have been demonstrated to improve the stability of alkoxide complexes and their solutions (Takahashi & Matsuoka, 1988; Tanaka et al., 1995). The chelating amine function acts to increase coordinative saturation at the metal centre, reducing the tendency of the ligands to form µ bridges. This is a useful strategy in producing low-nuclearity complexes for metal-organic chemical vapour deposition (Jones et al., 1998, 2001; Lee et al., 1999). Sterically demanding ligands have also been used to limit nuclearity (Damo et al., 2000; Boyle et al., 1995). Titanium complexes containing bulky diol ligands in tandem with 2,2'-methyliminodiethanolate (or N-methyldiethoxoamine, MDEA) produce volatile dimeric complexes (Sevast'yanov et al., 2001). As part of this study, we have employed the less sterically demanding 1,3-propanediol to form the title compound, (I), in order to illustrate the contribution which steric factors impose on the structure of the complex. The present analysis was required as the chemical structure was not unambiguously determined by other techniques. \sch

The crystal structure of (I) consists of independent Ti3(MDEA)2(1,3-propanediolate)4 molecules (Fig. 1), with only weak intermolecular contacts, e.g. C13—H13A···H13Ai 2.22 Å [symmetry code: (i) 1 - x, 1 - y, -z]. Both MDEA ligands adopt two conformations, which were modelled using total linked occupancies of 1 for the two resolvable atom sets around N1 and N2 (C11, C12 and C14, and C19, C20 and C22). For clarity, Fig. 1 shows only the major conformation of the rings (suffix A), corresponding to occupancies of 0.772 (7) and 0.52 (1) for the N1 and N2 sets, respectively. Trititanium alkoxy compounds adopt either this chain configuration, or a triangular arrangement which permits the coordination of at least one O atom (µ3-O) to all three Ti atoms (e.g. Boyle et al., 1999).

The outer Ti atoms, Ti1 and Ti3, have similar distorted octahedral coordination, with an approximate square plane through the edge-sharing and MDEA O atoms, with a deviation of 0.040 (2) Å from the plane through atoms O1, O2, O4 and O5 for which atom?; atom Ti1 deviates by -0.282 (1) Å and atom Ti2 by -0.04 (2)3 Å from this plane. The Ti2 octahedral distortion is greater, approaching a trigonal antiprism coordination, consistent with the wider variation in Ti—O bond lengths.

Methyl- and dimethyl-substituted ethoxoamine ligands (MDEA and DMEA) bound to titanium oxide species form a wide range of products under controlled hydrolysis (Kemmitt, Al-Salim & Gainsford, 1999; Kemmitt, Al-Salim, Gainsford & Henderson, 1999; Johnson et al., 2001, and references therein). For compound (I), the two MDEA ligands do not provide any of the Ti-bridging O atoms, each being bound by the two O atoms [Ti—O 1.848 (2)–1.878 (2) Å] and one N atom [average Ti—N 2.405 (3) Å] to the outer two Ti atoms.

In contrast with the MDEA ligands, the 1,3-propanediolate ligand is coordinated to the trititanium cluster in three different modes. The first of these is a `ubiquitous' mode (Boyle et al., 1997), in which the µ3-O atoms (e.g. atoms O1 and O7 in O1—C1—C2—C3—O7) are linked to the central and outer Ti atoms (Davis et al., 2001; Minhas et al., 1992). Two of these ligands provide the edge-sharing of the distorted octahedra. As observed previously (Corden et al., 1999; Boyle et al., 1997), these Ti—O bond lengths are much longer than normal non-bridged Ti—O bonds, varying, in (I), from 1.988 (2) to 2.082 (2) Å, with mean values for Ti—O—C, Ti···Ti and Ti—O of 123.6°, 3.322 (1) Å and 2.04 Å, respectively. These values are within the ranges observed at the longer end of the spectrum; in a subset of titanium six-coordinate oxocomplexes, where one Ti binds an N atom (as here), the Ti—O range is 1.939–2.49 Å, with mean values for Ti—O—C, Ti···Ti and Ti—O of 122°, 3.12 Å and 1.99 Å, respectively [CONQUEST, 33 hits (Cambridge Structural Database, 2001; Allen & Kennard, 1993)].

The second mode involves coordination to one Ti atom, Ti2 (O9 and O10), with an average Ti2—O distance of 1.851 (3) Å. There are no complete reports of this ligand bound like this in metal oxide complexes, although a rhenium compound has been studied (Nunes et al., 1998). In the related five-coordinate [Ti(2,4-dimethyl-2,4-pentanediolate)2]2 dimer, the Ti—O lengths range from 1.802 (2) to 1.816 (2) Å (Damo et al., 2000). In six-coordinate titanium complexes with unsymmetrically substituted neutral glycols (Steinhuebel & Lippard, 1999), the Ti—O distances are comparable, varying from 1.862 (4) to 1.888 (2) Å.

The third and novel mode involves linking the outer two Ti atoms, like the handle of the basket formed by the remainder of the cluster, with a shorter average Ti—O length of 1.820 (3) Å. This coordination has apparently not been reported before (CSD; CONQUEST, 2001 Release). The nearest equivalent to this, with a similar span between Ti atoms, is the coordination of tris(hydroxymethylpropane) in a tetratitanium compound (Boyle at al., 1995), although, in this case, all the O atoms also bind two Ti atoms (µ2-O type). The shorter Ti—O lengths of 1.750 (4) Å in [TiCl2(cyclopentadienyl)]2(1,3-propanediolate) (Huang & Stephan, 1995), where the TiCpCl2 entities are only linked by the diolate, and 1.776 (2) Å in [Ti(triethoxoamine)]2[OC(CH3)2C(CH3)2O] (Naiini et al., 1993), where the titanatranyl entities are linked by the pinacolate, reflect the four-coordinate less crowded trigonal-pyramidal titanium stereochemistry. The angles subtended at the O atom (Ti—O—C) in these two reference structures are also quite different (158.1 and 159.6°, respectively), compared with 128.5 (2) and 129.0 (2)° in (I). The propane chain dihedral angles [59.7 (4) and 57.3 (4)°] indicate there is little strain in this mode of coordination, although these values are also similar to those in the other 1,3-propanediolate ligands in (I).

Experimental top

Ti(isopropoxide)4 was reacted at room temperature with equimolar 2,2'-methyliminodiethanolate and 1,3-propanediol in toluene. Evaporation of liberated 2-propanol under reduced pressure allowed the slow growth of crystals of (I) as the only isolable product (ca 30% yield). Adjustment of the reactant stoichiometries to reflect the product formula resulted in slight improvement of yields (45%).

Refinement top

All H atoms were constrained to an isotropic displacement parameter 1.2 times that of the equivalent U of their parent atom. Atoms C11, C12 and C14, and C19, C20 and C22 (and their riding H atoms) were refined over two sites, with two common occupancies for each set and a total occupancy of 1.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 in WinGX (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Only the major conformations for the MDEA rings are shown (see text). Displacement ellipsoids are drawn at the 30% probability level and H atoms have been excluded for clarity.
bis(2,2'-methyliminodiethanolato)-1κ3O,N,O';3κ3O,N,O'-di-µ3-propane- 1,3-diolato-1:2:3-κ4O:O,O':O'-µ-propane-1,3-diolato-1:3κ2O:O'-propane- 1,3-diolato-2κ2O,O'-trititanium(IV) top
Crystal data top
[Ti3(C3H6O2)4(C5H11NO2)2]F(000) = 1416
Mr = 674.31Dx = 1.515 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5609 reflections
a = 11.732 (4) Åθ = 2.2–26.3°
b = 18.415 (6) ŵ = 0.85 mm1
c = 13.703 (5) ÅT = 168 K
β = 92.842 (5)°Block, colourless
V = 2956.9 (17) Å30.65 × 0.30 × 0.24 mm
Z = 4
Data collection top
Siemens SMART? CCD area-detector
diffractometer
5953 independent reflections
Radiation source: fine-focus sealed tube4627 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 8.192 pixels mm-1θmax = 26.4°, θmin = 1.9°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(Blessing, 1995)
k = 2222
Tmin = 0.679, Tmax = 0.815l = 1713
37694 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0575P)2 + 2.8442P]
where P = (Fo2 + 2Fc2)/3
5953 reflections(Δ/σ)max = 0.001
403 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Ti3(C3H6O2)4(C5H11NO2)2]V = 2956.9 (17) Å3
Mr = 674.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.732 (4) ŵ = 0.85 mm1
b = 18.415 (6) ÅT = 168 K
c = 13.703 (5) Å0.65 × 0.30 × 0.24 mm
β = 92.842 (5)°
Data collection top
Siemens SMART? CCD area-detector
diffractometer
5953 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4627 reflections with I > 2σ(I)
Tmin = 0.679, Tmax = 0.815Rint = 0.046
37694 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.09Δρmax = 0.34 e Å3
5953 reflectionsΔρmin = 0.60 e Å3
403 parameters
Special details top

Experimental. Crystal decay was monitored by repeating the initial 10 frames at the end of the data collection and analyzing duplicate reflections. The standard 0.8 mm diameter collimator was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.68892 (4)0.15471 (3)0.12697 (4)0.03007 (14)
Ti20.85655 (4)0.24374 (3)0.02048 (3)0.02823 (14)
Ti30.69451 (4)0.38075 (3)0.10298 (4)0.03387 (15)
O10.72785 (16)0.16827 (11)0.01469 (13)0.0321 (4)
O20.83563 (16)0.21754 (11)0.11819 (13)0.0318 (4)
O30.57419 (17)0.22159 (12)0.12807 (15)0.0396 (5)
O40.71955 (18)0.14691 (12)0.26017 (14)0.0387 (5)
O50.59248 (16)0.07627 (11)0.09340 (16)0.0396 (5)
O60.79220 (16)0.34434 (10)0.01297 (14)0.0318 (4)
O70.77309 (17)0.28353 (11)0.13880 (14)0.0354 (4)
O80.55886 (17)0.35265 (12)0.05704 (16)0.0429 (5)
O90.92808 (17)0.17363 (12)0.09350 (15)0.0393 (5)
O100.99678 (16)0.28678 (12)0.00438 (16)0.0397 (5)
O110.64694 (18)0.39184 (13)0.23317 (16)0.0446 (5)
O120.69245 (19)0.47452 (12)0.05015 (18)0.0482 (6)
N10.8113 (2)0.05173 (14)0.14030 (19)0.0372 (6)
N20.8527 (2)0.43968 (14)0.17457 (18)0.0367 (6)
C10.6848 (3)0.13074 (17)0.1002 (2)0.0364 (7)
H1A0.62200.09800.08270.044*
H1B0.74610.10060.12630.044*
C20.6409 (3)0.18408 (19)0.1784 (2)0.0451 (8)
H2A0.60790.15620.23470.054*
H2B0.57870.21320.15180.054*
C30.7308 (3)0.23553 (18)0.2148 (2)0.0432 (8)
H3A0.79500.20700.23920.052*
H3B0.69740.26450.26990.052*
C40.8783 (3)0.26598 (17)0.1939 (2)0.0394 (7)
H4A0.96050.27500.18590.047*
H4B0.87010.24280.25840.047*
C50.8149 (3)0.33775 (18)0.1910 (2)0.0435 (7)
H5A0.84100.36690.24850.052*
H5B0.73240.32800.19650.052*
C60.8306 (3)0.38226 (17)0.0993 (2)0.0408 (7)
H6A0.78760.42830.10370.049*
H6B0.91240.39450.09500.049*
C70.4791 (3)0.22988 (18)0.0605 (3)0.0442 (8)
H7A0.41890.19480.07670.053*
H7B0.50300.21860.00610.053*
C80.4304 (3)0.30665 (19)0.0620 (3)0.0491 (9)
H8A0.36370.30930.01490.059*
H8B0.40300.31660.12790.059*
C90.5148 (3)0.36515 (19)0.0369 (3)0.0470 (8)
H9A0.47660.41310.03720.056*
H9B0.57850.36590.08700.056*
C100.8057 (3)0.1013 (2)0.3028 (2)0.0506 (8)
H10A0.78830.08980.37110.061*
H10B0.88040.12640.30360.061*
C130.6243 (3)0.00294 (18)0.0881 (3)0.0528 (9)
H13A0.58270.02020.03170.063*
H13B0.60270.02250.14820.063*
C151.0357 (3)0.1810 (2)0.1380 (2)0.0482 (8)
H15A1.03080.22040.18710.058*
H15B1.05400.13530.17190.058*
C161.1291 (3)0.1980 (2)0.0616 (3)0.0532 (9)
H16A1.13040.16000.01050.064*
H16B1.20370.19720.09230.064*
C171.1128 (3)0.2710 (2)0.0148 (3)0.0502 (8)
H17A1.15920.27300.04740.060*
H17B1.14150.30910.05830.060*
C180.7163 (3)0.4146 (3)0.3084 (3)0.0645 (11)
H18A0.68910.46240.33280.077*
H18B0.70820.37960.36320.077*
C210.7747 (4)0.5290 (2)0.0646 (3)0.0693 (12)
H21A0.83370.52710.01040.083*
H21B0.73750.57720.06290.083*
C11A0.8113 (4)0.0309 (3)0.2431 (3)0.0454 (12)0.772 (7)
H11A0.88160.00350.26200.055*0.772 (7)
H11B0.74450.00030.25490.055*0.772 (7)
C12A0.7485 (4)0.0046 (2)0.0774 (4)0.0457 (13)0.772 (7)
H12A0.76630.00230.00810.055*0.772 (7)
H12B0.77360.05390.09770.055*0.772 (7)
C14A0.9289 (4)0.0592 (3)0.1064 (4)0.0429 (11)0.772 (7)
H14A0.92560.07330.03730.051*0.772 (7)
H14B0.96890.01260.11410.051*0.772 (7)
H14C0.97000.09640.14520.051*0.772 (7)
C19A0.8385 (7)0.4205 (6)0.2770 (5)0.046 (2)0.520 (13)
H19A0.87680.37360.28820.055*0.520 (13)
H19B0.87510.45790.31680.055*0.520 (13)
C20A0.8294 (7)0.5206 (4)0.1572 (6)0.0423 (19)0.520 (13)
H20A0.90200.54810.15550.051*0.520 (13)
H20B0.77900.54010.21110.051*0.520 (13)
C22A0.9715 (6)0.4240 (5)0.1373 (7)0.045 (2)0.520 (13)
H22A0.97970.43660.06780.054*0.520 (13)
H22B1.02520.45280.17380.054*0.520 (13)
H22C0.98780.37220.14570.054*0.520 (13)
C11B0.8755 (12)0.0719 (8)0.2425 (9)0.038 (4)0.228 (7)
H11C0.90930.02740.27240.045*0.228 (7)
H11D0.93840.10630.23100.045*0.228 (7)
C12B0.7363 (12)0.0077 (7)0.1539 (13)0.042 (4)0.228 (7)
H12C0.71740.01070.22340.050*0.228 (7)
H12D0.77400.05360.13620.050*0.228 (7)
C14B0.8993 (13)0.0412 (9)0.0715 (12)0.035 (4)*0.228 (7)
H14D0.92260.08840.04610.042*0.228 (7)
H14E0.86980.01070.01730.042*0.228 (7)
H14F0.96530.01740.10440.042*0.228 (7)
C19B0.8064 (8)0.4603 (7)0.2722 (6)0.049 (2)0.480 (13)
H19C0.77800.51090.26980.059*0.480 (13)
H19D0.86870.45900.31830.059*0.480 (13)
C20B0.8691 (8)0.5008 (5)0.1113 (9)0.052 (3)0.480 (13)
H20C0.92750.48730.05990.062*0.480 (13)
H20D0.90160.54050.14980.062*0.480 (13)
C22B0.9591 (7)0.3966 (6)0.1842 (9)0.050 (3)0.480 (13)
H22D0.94370.35590.22890.060*0.480 (13)
H22E0.98520.37800.11990.060*0.480 (13)
H22F1.01830.42770.21000.060*0.480 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0283 (2)0.0338 (3)0.0285 (3)0.0006 (2)0.0047 (2)0.0016 (2)
Ti20.0269 (2)0.0332 (3)0.0250 (3)0.00121 (19)0.00486 (19)0.00105 (19)
Ti30.0302 (3)0.0377 (3)0.0344 (3)0.0042 (2)0.0093 (2)0.0077 (2)
O10.0333 (10)0.0383 (11)0.0247 (10)0.0048 (8)0.0005 (8)0.0039 (8)
O20.0355 (10)0.0361 (11)0.0236 (9)0.0050 (8)0.0005 (8)0.0013 (8)
O30.0347 (10)0.0451 (12)0.0394 (12)0.0048 (9)0.0070 (9)0.0052 (9)
O40.0424 (11)0.0459 (12)0.0283 (11)0.0006 (9)0.0070 (9)0.0055 (9)
O50.0323 (10)0.0384 (12)0.0479 (13)0.0044 (9)0.0013 (9)0.0058 (10)
O60.0340 (10)0.0324 (10)0.0293 (10)0.0013 (8)0.0052 (8)0.0028 (8)
O70.0397 (11)0.0411 (11)0.0257 (10)0.0049 (9)0.0038 (8)0.0005 (9)
O80.0318 (10)0.0553 (14)0.0425 (12)0.0061 (9)0.0102 (9)0.0132 (10)
O90.0364 (11)0.0457 (12)0.0366 (12)0.0062 (9)0.0101 (9)0.0004 (9)
O100.0283 (10)0.0469 (12)0.0443 (12)0.0008 (9)0.0070 (9)0.0028 (10)
O110.0358 (11)0.0564 (14)0.0418 (12)0.0002 (10)0.0030 (9)0.0178 (10)
O120.0516 (13)0.0386 (12)0.0562 (15)0.0106 (10)0.0218 (11)0.0071 (10)
N10.0344 (12)0.0395 (14)0.0381 (14)0.0008 (10)0.0050 (10)0.0056 (11)
N20.0329 (12)0.0408 (14)0.0369 (14)0.0018 (10)0.0072 (10)0.0069 (11)
C10.0389 (15)0.0401 (16)0.0294 (15)0.0040 (12)0.0063 (12)0.0083 (12)
C20.0526 (19)0.0507 (19)0.0307 (16)0.0033 (15)0.0101 (14)0.0083 (14)
C30.0573 (19)0.0514 (19)0.0206 (14)0.0085 (15)0.0011 (13)0.0017 (13)
C40.0476 (17)0.0444 (18)0.0255 (14)0.0137 (14)0.0063 (13)0.0022 (12)
C50.0553 (19)0.0434 (18)0.0317 (16)0.0065 (15)0.0015 (14)0.0104 (13)
C60.0505 (18)0.0353 (16)0.0365 (17)0.0042 (13)0.0003 (14)0.0078 (13)
C70.0330 (15)0.0511 (19)0.0489 (19)0.0022 (14)0.0053 (14)0.0126 (15)
C80.0337 (15)0.056 (2)0.060 (2)0.0092 (14)0.0192 (15)0.0209 (17)
C90.0414 (17)0.0492 (19)0.052 (2)0.0094 (14)0.0189 (15)0.0087 (15)
C100.060 (2)0.055 (2)0.0358 (18)0.0010 (17)0.0065 (16)0.0107 (15)
C130.054 (2)0.0376 (18)0.065 (2)0.0066 (15)0.0112 (17)0.0022 (16)
C150.0446 (17)0.056 (2)0.0452 (19)0.0136 (16)0.0181 (15)0.0049 (16)
C160.0341 (16)0.069 (2)0.057 (2)0.0115 (16)0.0123 (15)0.0108 (18)
C170.0285 (15)0.063 (2)0.059 (2)0.0009 (14)0.0041 (14)0.0092 (17)
C180.058 (2)0.099 (3)0.0369 (19)0.019 (2)0.0029 (17)0.023 (2)
C210.086 (3)0.0328 (19)0.093 (3)0.0038 (19)0.045 (3)0.0006 (19)
C11A0.052 (3)0.045 (3)0.039 (2)0.003 (2)0.0006 (19)0.0118 (19)
C12A0.051 (3)0.034 (2)0.051 (3)0.0046 (18)0.001 (2)0.001 (2)
C14A0.036 (2)0.044 (3)0.050 (3)0.0075 (19)0.006 (2)0.002 (2)
C19A0.051 (4)0.053 (5)0.034 (4)0.000 (4)0.015 (3)0.008 (3)
C20A0.043 (4)0.039 (4)0.045 (4)0.006 (3)0.000 (3)0.015 (3)
C22A0.032 (3)0.052 (5)0.051 (5)0.006 (3)0.007 (3)0.006 (4)
C11B0.038 (7)0.048 (9)0.026 (7)0.009 (7)0.008 (5)0.012 (6)
C12B0.053 (8)0.021 (6)0.053 (11)0.002 (6)0.016 (7)0.001 (6)
C19B0.051 (5)0.057 (6)0.039 (4)0.005 (4)0.009 (3)0.017 (4)
C20B0.049 (5)0.047 (5)0.059 (6)0.017 (4)0.010 (4)0.002 (4)
C22B0.033 (4)0.054 (6)0.066 (7)0.011 (4)0.021 (4)0.024 (5)
Geometric parameters (Å, º) top
Ti1—O31.825 (2)C7—H7A0.9900
Ti1—O41.848 (2)C7—H7B0.9900
Ti1—O51.878 (2)C8—C91.514 (5)
Ti1—O12.031 (2)C8—H8A0.9900
Ti1—O22.082 (2)C8—H8B0.9900
Ti1—N12.380 (3)C9—H9A0.9900
Ti2—O101.843 (2)C9—H9B0.9900
Ti2—O91.859 (2)C10—C11B1.309 (14)
Ti2—O21.988 (2)C10—C11A1.536 (6)
Ti2—O71.992 (2)C10—H10A0.9900
Ti2—O12.057 (2)C10—H10B0.9900
Ti2—O62.061 (2)C13—C12A1.479 (6)
Ti3—O81.816 (2)C13—C12B1.568 (16)
Ti3—O111.854 (2)C13—H13A0.9900
Ti3—O121.873 (2)C13—H13B0.9900
Ti3—O62.027 (2)C15—C161.510 (5)
Ti3—O72.084 (2)C15—H15A0.9900
Ti3—N22.401 (2)C15—H15B0.9900
O1—C11.431 (3)C16—C171.506 (5)
O2—C41.439 (3)C16—H16A0.9900
O3—C71.422 (4)C16—H16B0.9900
O4—C101.418 (4)C17—H17A0.9900
O5—C131.404 (4)C17—H17B0.9900
O6—C61.427 (3)C18—C19B1.421 (9)
O7—C31.435 (4)C18—C19A1.480 (9)
O8—C91.429 (4)C18—H18A0.9900
O9—C151.436 (4)C18—H18B0.9900
O10—C171.429 (4)C21—C20B1.405 (9)
O11—C181.408 (4)C21—C20A1.458 (8)
O12—C211.413 (4)C21—H21A0.9900
N1—C12B1.422 (13)C21—H21B0.9900
N1—C14B1.446 (15)C11A—H11A0.9900
N1—C11A1.460 (5)C11A—H11B0.9900
N1—C14A1.485 (5)C12A—H12A0.9900
N1—C12A1.516 (5)C12A—H12B0.9900
N1—C11B1.601 (13)C14A—H14A0.9800
N2—C20B1.428 (8)C14A—H14B0.9800
N2—C19A1.448 (8)C14A—H14C0.9800
N2—C19B1.468 (8)C19A—H19A0.9900
N2—C22A1.489 (8)C19A—H19B0.9900
N2—C22B1.490 (8)C20A—H20A0.9900
N2—C20A1.536 (8)C20A—H20B0.9900
C1—C21.524 (4)C22A—H22A0.9800
C1—H1A0.9900C22A—H22B0.9800
C1—H1B0.9900C22A—H22C0.9800
C2—C31.520 (5)C11B—H11C0.9900
C2—H2A0.9900C11B—H11D0.9900
C2—H2B0.9900C12B—H12C0.9900
C3—H3A0.9900C12B—H12D0.9900
C3—H3B0.9900C14B—H14D0.9800
C4—C51.516 (5)C14B—H14E0.9800
C4—H4A0.9900C14B—H14F0.9800
C4—H4B0.9900C19B—H19C0.9900
C5—C61.519 (4)C19B—H19D0.9900
C5—H5A0.9900C20B—H20C0.9900
C5—H5B0.9900C20B—H20D0.9900
C6—H6A0.9900C22B—H22D0.9800
C6—H6B0.9900C22B—H22E0.9800
C7—C81.525 (5)C22B—H22F0.9800
O3—Ti1—O498.72 (10)H7A—C7—H7B107.9
O3—Ti1—O594.90 (10)C9—C8—C7114.0 (3)
O4—Ti1—O5105.51 (10)C9—C8—H8A108.8
O3—Ti1—O197.22 (9)C7—C8—H8A108.8
O4—Ti1—O1155.68 (9)C9—C8—H8B108.8
O5—Ti1—O191.25 (9)C7—C8—H8B108.8
O3—Ti1—O2103.75 (9)H8A—C8—H8B107.6
O4—Ti1—O288.82 (8)O8—C9—C8111.1 (3)
O5—Ti1—O2154.54 (9)O8—C9—H9A109.4
O1—Ti1—O269.57 (7)C8—C9—H9A109.4
O3—Ti1—N1168.34 (9)O8—C9—H9B109.4
O4—Ti1—N177.02 (9)C8—C9—H9B109.4
O5—Ti1—N176.10 (9)H9A—C9—H9B108.0
O1—Ti1—N190.46 (9)C11B—C10—O4116.1 (6)
O2—Ti1—N187.13 (9)O4—C10—C11A109.2 (3)
O10—Ti2—O988.59 (10)C11B—C10—H10A132.3
O10—Ti2—O294.54 (9)O4—C10—H10A109.8
O9—Ti2—O2115.25 (9)C11A—C10—H10A109.8
O10—Ti2—O7113.00 (9)O4—C10—H10B109.8
O9—Ti2—O791.96 (9)C11A—C10—H10B109.8
O2—Ti2—O7142.05 (8)H10A—C10—H10B108.3
O10—Ti2—O1159.07 (9)O5—C13—C12A111.2 (3)
O9—Ti2—O184.46 (9)O5—C13—C12B107.9 (5)
O2—Ti2—O170.93 (8)O5—C13—H13A109.4
O7—Ti2—O187.01 (8)C12A—C13—H13A109.4
O10—Ti2—O684.59 (9)C12B—C13—H13A139.6
O9—Ti2—O6157.56 (9)O5—C13—H13B109.4
O2—Ti2—O686.65 (8)C12A—C13—H13B109.4
O7—Ti2—O671.31 (8)H13A—C13—H13B108.0
O1—Ti2—O6108.73 (8)O9—C15—C16110.4 (3)
O8—Ti3—O1197.92 (10)O9—C15—H15A109.6
O8—Ti3—O1295.76 (10)C16—C15—H15A109.6
O11—Ti3—O12105.15 (11)O9—C15—H15B109.6
O8—Ti3—O696.04 (9)C16—C15—H15B109.6
O11—Ti3—O6157.28 (9)H15A—C15—H15B108.1
O12—Ti3—O691.13 (10)C17—C16—C15112.1 (3)
O8—Ti3—O7104.03 (10)C17—C16—H16A109.2
O11—Ti3—O789.06 (9)C15—C16—H16A109.2
O12—Ti3—O7153.84 (10)C17—C16—H16B109.2
O6—Ti3—O770.17 (8)C15—C16—H16B109.2
O8—Ti3—N2168.27 (9)H16A—C16—H16B107.9
O11—Ti3—N276.05 (9)O10—C17—C16113.7 (3)
O12—Ti3—N276.48 (9)O10—C17—H17A108.8
O6—Ti3—N292.94 (8)C16—C17—H17A108.8
O7—Ti3—N286.11 (9)O10—C17—H17B108.8
C1—O1—Ti1129.50 (17)C16—C17—H17B108.8
C1—O1—Ti2121.67 (17)H17A—C17—H17B107.7
Ti1—O1—Ti2108.68 (9)O11—C18—C19B111.6 (4)
C4—O2—Ti2118.92 (17)O11—C18—C19A113.3 (4)
C4—O2—Ti1124.17 (17)O11—C18—H18A108.9
Ti2—O2—Ti1109.38 (9)C19A—C18—H18A108.9
C7—O3—Ti1128.5 (2)O11—C18—H18B108.9
C10—O4—Ti1123.5 (2)C19B—C18—H18B133.8
C13—O5—Ti1126.44 (19)C19A—C18—H18B108.9
C6—O6—Ti3129.10 (18)H18A—C18—H18B107.7
C6—O6—Ti2121.36 (18)C20B—C21—O12111.1 (4)
Ti3—O6—Ti2108.80 (9)O12—C21—C20A112.3 (4)
C3—O7—Ti2120.14 (18)O12—C21—H21A109.1
C3—O7—Ti3123.99 (18)C20A—C21—H21A109.1
Ti2—O7—Ti3109.26 (9)C20B—C21—H21B134.4
C9—O8—Ti3129.0 (2)O12—C21—H21B109.1
C15—O9—Ti2126.4 (2)C20A—C21—H21B109.1
C17—O10—Ti2136.8 (2)H21A—C21—H21B107.9
C18—O11—Ti3125.4 (2)N1—C11A—C10107.1 (3)
C21—O12—Ti3125.3 (2)N1—C11A—H11A110.3
C12B—N1—C14B116.7 (9)C10—C11A—H11A110.3
C14B—N1—C11A128.9 (7)N1—C11A—H11B110.3
C12B—N1—C14A134.7 (6)C10—C11A—H11B110.3
C11A—N1—C14A111.8 (3)H11A—C11A—H11B108.6
C11A—N1—C12A110.2 (3)C13—C12A—N1109.5 (3)
C14A—N1—C12A108.5 (3)C13—C12A—H12A109.8
C12B—N1—C11B109.3 (9)N1—C12A—H12A109.8
C14B—N1—C11B106.3 (8)C13—C12A—H12B109.8
C12B—N1—Ti1104.4 (6)N1—C12A—H12B109.8
C14B—N1—Ti1120.3 (6)H12A—C12A—H12B108.2
C11A—N1—Ti1104.8 (2)N1—C14A—H14A109.5
C14A—N1—Ti1118.0 (2)N1—C14A—H14B109.5
C12A—N1—Ti1103.1 (2)H14A—C14A—H14B109.5
C11B—N1—Ti197.9 (5)N1—C14A—H14C109.5
C20B—N2—C19A141.8 (6)H14A—C14A—H14C109.5
C20B—N2—C19B112.5 (6)H14B—C14A—H14C109.5
C19A—N2—C22A110.3 (5)N2—C19A—C18111.3 (5)
C19B—N2—C22A131.4 (5)N2—C19A—H19A109.4
C20B—N2—C22B112.6 (6)C18—C19A—H19A109.4
C19B—N2—C22B109.3 (5)N2—C19A—H19B109.4
C19A—N2—C20A111.9 (5)C18—C19A—H19B109.4
C22A—N2—C20A107.8 (5)H19A—C19A—H19B108.0
C22B—N2—C20A133.3 (5)C21—C20A—N2109.1 (5)
C20B—N2—Ti3101.0 (3)C21—C20A—H20A109.9
C19A—N2—Ti3103.4 (3)N2—C20A—H20A109.9
C19B—N2—Ti3103.3 (3)C21—C20A—H20B109.9
C22A—N2—Ti3120.1 (3)N2—C20A—H20B109.9
C22B—N2—Ti3117.6 (4)H20A—C20A—H20B108.3
C20A—N2—Ti3103.2 (3)N2—C22A—H22A109.5
O1—C1—C2111.0 (2)N2—C22A—H22B109.5
O1—C1—H1A109.4H22A—C22A—H22B109.5
C2—C1—H1A109.4N2—C22A—H22C109.5
O1—C1—H1B109.4H22A—C22A—H22C109.5
C2—C1—H1B109.4H22B—C22A—H22C109.5
H1A—C1—H1B108.0C10—C11B—N1111.5 (9)
C3—C2—C1114.6 (3)C10—C11B—H11C109.3
C3—C2—H2A108.6N1—C11B—H11C109.3
C1—C2—H2A108.6C10—C11B—H11D109.3
C3—C2—H2B108.6N1—C11B—H11D109.3
C1—C2—H2B108.6H11C—C11B—H11D108.0
H2A—C2—H2B107.6N1—C12B—C13109.6 (9)
O7—C3—C2111.5 (2)N1—C12B—H12C109.8
O7—C3—H3A109.3C13—C12B—H12C109.8
C2—C3—H3A109.3N1—C12B—H12D109.8
O7—C3—H3B109.3C13—C12B—H12D109.8
C2—C3—H3B109.3H12C—C12B—H12D108.2
H3A—C3—H3B108.0N1—C14B—H14D109.5
O2—C4—C5111.6 (2)N1—C14B—H14E109.5
O2—C4—H4A109.3H14D—C14B—H14E109.5
C5—C4—H4A109.3N1—C14B—H14F109.5
O2—C4—H4B109.3H14D—C14B—H14F109.5
C5—C4—H4B109.3H14E—C14B—H14F109.5
H4A—C4—H4B108.0C18—C19B—N2113.6 (6)
C4—C5—C6114.4 (3)C18—C19B—H19C108.9
C4—C5—H5A108.7N2—C19B—H19C108.9
C6—C5—H5A108.7C18—C19B—H19D108.9
C4—C5—H5B108.7N2—C19B—H19D108.9
C6—C5—H5B108.7H19C—C19B—H19D107.7
H5A—C5—H5B107.6C21—C20B—N2118.8 (6)
O6—C6—C5112.0 (2)C21—C20B—H20C107.6
O6—C6—H6A109.2N2—C20B—H20C107.6
C5—C6—H6A109.2C21—C20B—H20D107.6
O6—C6—H6B109.2N2—C20B—H20D107.6
C5—C6—H6B109.2H20C—C20B—H20D107.0
H6A—C6—H6B107.9N2—C22B—H22D109.5
O3—C7—C8111.9 (3)N2—C22B—H22E109.5
O3—C7—H7A109.2H22D—C22B—H22E109.5
C8—C7—H7A109.2N2—C22B—H22F109.5
O3—C7—H7B109.2H22D—C22B—H22F109.5
C8—C7—H7B109.2H22E—C22B—H22F109.5
O3—Ti1—O1—C191.6 (2)O1—Ti1—N1—C12B113.6 (7)
O4—Ti1—O1—C1137.7 (3)O2—Ti1—N1—C12B176.9 (7)
O5—Ti1—O1—C13.5 (2)O3—Ti1—N1—C14B151.1 (9)
O2—Ti1—O1—C1166.3 (2)O4—Ti1—N1—C14B139.2 (8)
N1—Ti1—O1—C179.6 (2)O5—Ti1—N1—C14B111.0 (8)
O3—Ti1—O1—Ti292.89 (11)O1—Ti1—N1—C14B19.8 (8)
O4—Ti1—O1—Ti237.8 (3)O2—Ti1—N1—C14B49.7 (8)
O5—Ti1—O1—Ti2172.02 (10)O3—Ti1—N1—C11A53.9 (6)
O2—Ti1—O1—Ti29.14 (8)O4—Ti1—N1—C11A15.8 (2)
N1—Ti1—O1—Ti295.91 (10)O5—Ti1—N1—C11A94.1 (3)
O10—Ti2—O1—C1118.4 (3)O1—Ti1—N1—C11A174.8 (2)
O9—Ti2—O1—C147.3 (2)O2—Ti1—N1—C11A105.3 (2)
O2—Ti2—O1—C1166.4 (2)O3—Ti1—N1—C14A178.9 (5)
O7—Ti2—O1—C145.0 (2)O4—Ti1—N1—C14A109.3 (3)
O6—Ti2—O1—C1114.1 (2)O5—Ti1—N1—C14A140.9 (3)
O10—Ti2—O1—Ti157.5 (3)O1—Ti1—N1—C14A49.7 (3)
O9—Ti2—O1—Ti1128.64 (11)O2—Ti1—N1—C14A19.8 (3)
O2—Ti2—O1—Ti19.50 (9)O3—Ti1—N1—C12A61.5 (6)
O7—Ti2—O1—Ti1139.10 (10)O4—Ti1—N1—C12A131.2 (3)
O6—Ti2—O1—Ti169.98 (10)O5—Ti1—N1—C12A21.3 (2)
O10—Ti2—O2—C435.1 (2)O1—Ti1—N1—C12A69.9 (2)
O9—Ti2—O2—C4125.7 (2)O2—Ti1—N1—C12A139.4 (2)
O7—Ti2—O2—C4102.5 (2)O3—Ti1—N1—C11B94.6 (7)
O1—Ti2—O2—C4160.3 (2)O4—Ti1—N1—C11B25.0 (6)
O6—Ti2—O2—C449.2 (2)O5—Ti1—N1—C11B134.8 (6)
O10—Ti2—O2—Ti1173.87 (10)O1—Ti1—N1—C11B134.0 (6)
O9—Ti2—O2—Ti183.29 (12)O2—Ti1—N1—C11B64.5 (6)
O7—Ti2—O2—Ti148.48 (18)O8—Ti3—N2—C20B66.5 (8)
O1—Ti2—O2—Ti19.31 (8)O11—Ti3—N2—C20B126.7 (6)
O6—Ti2—O2—Ti1101.83 (10)O12—Ti3—N2—C20B17.0 (6)
O3—Ti1—O2—C465.9 (2)O6—Ti3—N2—C20B73.4 (6)
O4—Ti1—O2—C432.7 (2)O7—Ti3—N2—C20B143.3 (6)
O5—Ti1—O2—C4158.1 (2)O8—Ti3—N2—C19A83.9 (7)
O1—Ti1—O2—C4158.6 (2)O11—Ti3—N2—C19A23.7 (5)
N1—Ti1—O2—C4109.8 (2)O12—Ti3—N2—C19A133.4 (5)
O3—Ti1—O2—Ti283.19 (11)O6—Ti3—N2—C19A136.1 (5)
O4—Ti1—O2—Ti2178.12 (10)O7—Ti3—N2—C19A66.3 (5)
O5—Ti1—O2—Ti252.7 (2)O8—Ti3—N2—C19B50.0 (8)
O1—Ti1—O2—Ti29.50 (9)O11—Ti3—N2—C19B10.2 (6)
N1—Ti1—O2—Ti2101.06 (10)O12—Ti3—N2—C19B99.5 (6)
O4—Ti1—O3—C7149.2 (2)O6—Ti3—N2—C19B170.1 (6)
O5—Ti1—O3—C742.7 (2)O7—Ti3—N2—C19B100.2 (6)
O1—Ti1—O3—C749.2 (2)O8—Ti3—N2—C22A152.8 (7)
O2—Ti1—O3—C7119.9 (2)O11—Ti3—N2—C22A147.1 (5)
N1—Ti1—O3—C781.6 (5)O12—Ti3—N2—C22A103.3 (5)
O3—Ti1—O4—C10179.1 (2)O6—Ti3—N2—C22A12.8 (5)
O5—Ti1—O4—C1083.3 (2)O7—Ti3—N2—C22A57.1 (5)
O1—Ti1—O4—C1048.7 (4)O8—Ti3—N2—C22B170.5 (8)
O2—Ti1—O4—C1075.4 (2)O11—Ti3—N2—C22B110.3 (7)
N1—Ti1—O4—C1011.9 (2)O12—Ti3—N2—C22B140.0 (7)
O3—Ti1—O5—C13173.8 (3)O6—Ti3—N2—C22B49.5 (6)
O4—Ti1—O5—C1373.4 (3)O7—Ti3—N2—C22B20.4 (6)
O1—Ti1—O5—C1388.8 (3)O8—Ti3—N2—C20A32.9 (7)
O2—Ti1—O5—C1348.9 (4)O11—Ti3—N2—C20A93.0 (4)
N1—Ti1—O5—C131.3 (3)O12—Ti3—N2—C20A16.7 (4)
O8—Ti3—O6—C692.4 (2)O6—Ti3—N2—C20A107.1 (4)
O11—Ti3—O6—C6139.9 (3)O7—Ti3—N2—C20A177.0 (4)
O12—Ti3—O6—C63.6 (2)Ti1—O1—C1—C2127.6 (2)
O7—Ti3—O6—C6164.9 (2)Ti2—O1—C1—C257.4 (3)
N2—Ti3—O6—C680.1 (2)O1—C1—C2—C361.5 (3)
O8—Ti3—O6—Ti297.58 (11)Ti2—O7—C3—C263.5 (3)
O11—Ti3—O6—Ti230.1 (3)Ti3—O7—C3—C284.9 (3)
O12—Ti3—O6—Ti2166.51 (10)C1—C2—C3—O764.9 (4)
O7—Ti3—O6—Ti25.20 (8)Ti2—O2—C4—C566.0 (3)
N2—Ti3—O6—Ti289.98 (10)Ti1—O2—C4—C580.5 (3)
O10—Ti2—O6—C649.1 (2)O2—C4—C5—C664.7 (3)
O9—Ti2—O6—C6122.0 (3)Ti3—O6—C6—C5134.4 (2)
O2—Ti2—O6—C645.8 (2)Ti2—O6—C6—C556.6 (3)
O7—Ti2—O6—C6165.6 (2)C4—C5—C6—O659.8 (4)
O1—Ti2—O6—C6114.4 (2)Ti1—O3—C7—C8157.4 (2)
O10—Ti2—O6—Ti3121.90 (10)O3—C7—C8—C959.7 (4)
O9—Ti2—O6—Ti349.0 (3)Ti3—O8—C9—C8153.5 (2)
O2—Ti2—O6—Ti3143.21 (9)C7—C8—C9—O857.3 (4)
O7—Ti2—O6—Ti35.40 (8)Ti1—O4—C10—C11B9.7 (9)
O1—Ti2—O6—Ti374.65 (10)Ti1—O4—C10—C11A36.7 (4)
O10—Ti2—O7—C3126.7 (2)Ti1—O5—C13—C12A20.4 (5)
O9—Ti2—O7—C337.4 (2)Ti1—O5—C13—C12B22.9 (7)
O2—Ti2—O7—C3100.1 (2)Ti2—O9—C15—C1658.7 (3)
O1—Ti2—O7—C346.9 (2)O9—C15—C16—C1765.4 (4)
O6—Ti2—O7—C3157.8 (2)Ti2—O10—C17—C165.3 (5)
O10—Ti2—O7—Ti380.69 (12)C15—C16—C17—O1040.3 (4)
O9—Ti2—O7—Ti3170.00 (10)Ti3—O11—C18—C19B28.4 (7)
O2—Ti2—O7—Ti352.45 (17)Ti3—O11—C18—C19A7.5 (7)
O1—Ti2—O7—Ti3105.66 (10)Ti3—O12—C21—C20B9.3 (8)
O6—Ti2—O7—Ti35.26 (8)Ti3—O12—C21—C20A27.7 (6)
O8—Ti3—O7—C365.2 (2)C12B—N1—C11A—C10136.0 (7)
O11—Ti3—O7—C332.7 (2)C14B—N1—C11A—C10116.0 (9)
O12—Ti3—O7—C3156.7 (2)C14A—N1—C11A—C1092.9 (4)
O6—Ti3—O7—C3156.7 (2)C12A—N1—C11A—C10146.3 (3)
N2—Ti3—O7—C3108.8 (2)C11B—N1—C11A—C1048.9 (8)
O8—Ti3—O7—Ti286.05 (11)Ti1—N1—C11A—C1036.0 (4)
O11—Ti3—O7—Ti2176.02 (10)C11B—C10—C11A—N161.1 (8)
O12—Ti3—O7—Ti252.0 (2)O4—C10—C11A—N147.0 (4)
O6—Ti3—O7—Ti25.39 (9)O5—C13—C12A—N138.9 (5)
N2—Ti3—O7—Ti299.94 (10)C11A—N1—C12A—C1374.7 (4)
O11—Ti3—O8—C9148.5 (2)C14A—N1—C12A—C13162.6 (3)
O12—Ti3—O8—C942.3 (3)Ti1—N1—C12A—C1336.7 (4)
O6—Ti3—O8—C949.4 (3)C22A—N2—C19A—C18163.1 (7)
O7—Ti3—O8—C9120.4 (2)C22B—N2—C19A—C18149.9 (9)
N2—Ti3—O8—C990.3 (5)C20A—N2—C19A—C1876.9 (8)
O10—Ti2—O9—C1522.5 (2)Ti3—N2—C19A—C1833.5 (8)
O2—Ti2—O9—C15116.8 (2)O11—C18—C19A—N230.5 (9)
O7—Ti2—O9—C1590.5 (2)O12—C21—C20A—N240.7 (7)
O1—Ti2—O9—C15177.3 (2)C19A—N2—C20A—C21144.4 (6)
O6—Ti2—O9—C1549.7 (4)C19B—N2—C20A—C21135.4 (7)
O9—Ti2—O10—C175.2 (3)C22A—N2—C20A—C2194.2 (7)
O2—Ti2—O10—C17110.0 (3)Ti3—N2—C20A—C2133.8 (6)
O7—Ti2—O10—C1796.8 (3)O4—C10—C11B—N135.7 (12)
O1—Ti2—O10—C1765.2 (4)C12B—N1—C11B—C1070.2 (12)
O6—Ti2—O10—C17163.8 (3)C14B—N1—C11B—C10163.0 (11)
O8—Ti3—O11—C18179.1 (3)Ti1—N1—C11B—C1038.1 (10)
O12—Ti3—O11—C1880.9 (3)C14B—N1—C12B—C1396.6 (11)
O6—Ti3—O11—C1853.5 (4)C11B—N1—C12B—C13142.7 (9)
O7—Ti3—O11—C1876.8 (3)Ti1—N1—C12B—C1338.8 (10)
N2—Ti3—O11—C189.4 (3)O5—C13—C12B—N141.8 (11)
O8—Ti3—O12—C21176.0 (3)O11—C18—C19B—N236.1 (11)
O11—Ti3—O12—C2176.1 (3)C20B—N2—C19B—C18135.3 (8)
O6—Ti3—O12—C2187.8 (3)Ti3—N2—C19B—C1827.2 (10)
O7—Ti3—O12—C2144.7 (4)O12—C21—C20B—N228.1 (12)
N2—Ti3—O12—C214.9 (3)C19B—N2—C20B—C2180.8 (11)
O3—Ti1—N1—C12B17.8 (9)C22B—N2—C20B—C21155.1 (9)
O4—Ti1—N1—C12B87.4 (7)Ti3—N2—C20B—C2128.8 (11)
O5—Ti1—N1—C12B22.4 (7)

Experimental details

Crystal data
Chemical formula[Ti3(C3H6O2)4(C5H11NO2)2]
Mr674.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)168
a, b, c (Å)11.732 (4), 18.415 (6), 13.703 (5)
β (°) 92.842 (5)
V3)2956.9 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.65 × 0.30 × 0.24
Data collection
DiffractometerSiemens SMART? CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.679, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
37694, 5953, 4627
Rint0.046
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.121, 1.09
No. of reflections5953
No. of parameters403
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.60

Computer programs: SMART (Siemens, 1996), SMART, SAINT (Siemens, 1996) and SADABS (Sheldrick, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 in WinGX (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Ti1—O31.825 (2)Ti2—O71.992 (2)
Ti1—O41.848 (2)Ti2—O12.057 (2)
Ti1—O51.878 (2)Ti2—O62.061 (2)
Ti1—O12.031 (2)Ti3—O81.816 (2)
Ti1—O22.082 (2)Ti3—O111.854 (2)
Ti1—N12.380 (3)Ti3—O121.873 (2)
Ti2—O101.843 (2)Ti3—O62.027 (2)
Ti2—O91.859 (2)Ti3—O72.084 (2)
Ti2—O21.988 (2)Ti3—N22.401 (2)
O3—Ti1—O498.72 (10)O10—Ti2—O294.54 (9)
O3—Ti1—O594.90 (10)O9—Ti2—O2115.25 (9)
O4—Ti1—O5105.51 (10)O10—Ti2—O7113.00 (9)
O3—Ti1—O197.22 (9)O9—Ti2—O791.96 (9)
O4—Ti1—O1155.68 (9)O2—Ti2—O7142.05 (8)
O5—Ti1—O191.25 (9)O10—Ti2—O1159.07 (9)
O3—Ti1—O2103.75 (9)O9—Ti2—O184.46 (9)
O4—Ti1—O288.82 (8)O2—Ti2—O170.93 (8)
O5—Ti1—O2154.54 (9)O7—Ti2—O187.01 (8)
O1—Ti1—O269.57 (7)O10—Ti2—O684.59 (9)
O3—Ti1—N1168.34 (9)O9—Ti2—O6157.56 (9)
O4—Ti1—N177.02 (9)O2—Ti2—O686.65 (8)
O5—Ti1—N176.10 (9)O7—Ti2—O671.31 (8)
O1—Ti1—N190.46 (9)O1—Ti2—O6108.73 (8)
O2—Ti1—N187.13 (9)C1—O1—Ti1129.50 (17)
O10—Ti2—O988.59 (10)Ti1—O1—Ti2108.68 (9)
O1—C1—C2—C361.5 (3)O3—C7—C8—C959.7 (4)
C1—C2—C3—O764.9 (4)C7—C8—C9—O857.3 (4)
O2—C4—C5—C664.7 (3)O9—C15—C16—C1765.4 (4)
C4—C5—C6—O659.8 (4)C15—C16—C17—O1040.3 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds