Download citation
Download citation
link to html
The title compound, [Re2(C7H4NS2)4Cl2]·CH2Cl2, consists of dirhenium mol­ecules with bridging N,S-benzo­thia­zole-2-thiol­ate ligands, axial Cl- ligands and intramolecular hydrogen bonding. These mol­ecules adopt somewhat staggered conformations, with a long Re-Re quadruple bond distance of 2.2716 (3) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102004249/ta1364sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102004249/ta1364Isup2.hkl
Contains datablock I

CCDC reference: 187909

Comment top

In the major component, [Re2(S2NC7H4)4Cl2], of the title compound, (I), each one of the four benzothiazole-2-thiolate ligands bridges the dirhenium unit by binding through one S atom and the N atom, rather than through both S atoms. The preference of ReIII to form bonds to N rather than S has been previously documented by the discovery of N-bound thiocyanate ligands in the [Re2(NCS)8]2- ion (Cotton et al., 1967). \sch

The four bridging ligands are arranged so that all N and S atoms are trans to each other. This leads to a cis arrangement of N and S atoms around each Re atom. Two axial Cl- ligands and an Re—Re bond complete the coordination about the dirhenium unit, so that both metal atoms end up in essentially identical pseudo-octahedral environments.

Hydrogen bonding exists between the two Cl- ligands and the H atoms at the 4-positions on two of the benzothiazole-2-thiolate ligands (Table 2). The Cl1—H24 and Cl2—H3 distances are 2.50 and 2.52 Å, respectively, and these are illustrated by dashed lines in Fig. 1. Apparently as a result of this hydrogen bonding, the Re—Re—Cl bond angles are bent away from linearity at 158.88 (3) and 159.85 (2)°.

As illustrated in Fig. 2, the molecule takes on a somewhat staggered conformation, with an average torsion angle about the dirhenium axis of 18 (1)°. This torsional twist is far greater than that in any of the compounds with bridging ligands listed in Cotton and Walton's compilation of structural data for compounds containing Re—Re quadruple bonds (Cotton & Walton, 1993). The Re—Re bond distance of 2.2716 (3) Å is also longer than that in any of the bridged compounds in Cotton and Walton's list. Twisting away from an eclipsed conformation is known to weaken the δ component of the quadruple bond (Campbell et al., 1985). However, another factor seems to be at work in (I).

A search of the Cambridge Structural Database (Version 5.22; Allen & Kennard, 1993) for structures published after Cotton and Walton's book went to press has yielded six molecules with Re—Re quadruple bonds longer than 2.25 Å. In each of these molecules, there is at least one bridging ligand. These bridging ligands are 2,6-bis(diphenylphosphino)pyridine (Cotton et al., 1998) and N,N'-diarylformamidinate, with aryl = p-tolyl (Cotton & Ren, 1992), and p-methoxyphenyl, 3,4-dichlorophenyl and 3,5-dichlorophenyl (Eglin et al., 1999). All torsion angles about the dirhenium units are less than 12°, but the Re—Re bond distances range from 2.270 to 2.304 Å. This elongation of the quadruple bonds has been attributed to the presence of axial Cl- ligands (Cotton et al., 1998).

Molecules of (I) pack in a way that maximizes S—S interactions, as shown in Fig. 3. There are intermolecular contacts involving one Cl- ligand (Cl2) and all S atoms, with the exception of S4. These nonbonding distances range from 3.467 to 3.626 Å.

Experimental top

All synthetic procedures were carried out under a nitrogen atmosphere. Hexachlorobis(methyldiphenylphosphino)dirhenium(III), Re2Cl6(PMePh2)2, (50.1 mg, 0.0508 mmol), 2,2'-dithiobis(benzothiazole) (33.8 mg, 0.102 mmol), and dichloromethane (15 ml) were combined in a 50 ml round-bottomed flask. The mixture was stirred at reflux for 3 h. The resulting deep-purple mixture was filtered through a medium glass frit. Slow evaporation of the filtrate yielded a dark solid. A small amount of this solid was dissolved in dichloromethane (5 ml) and layered with hexanes (20 ml). Thin purple crystals of (I) formed after one week NB red-brown given below. Analysis calculated for Re2Cl4S8N4C29H18: C 29.19, H 1.52, N 4.70%; found: C 28.54, H 1.66, N 4.79%. IR data (KBr, cm-1): 1608 (w), 1465 (m), 1353 (m), 1322 (m), 1288 (w), 1253 (w), 1109 (m-s), 1100 (versus), 1047 (s), 1026 (w), 841 (m), 763 (s), 754 (versus). Visible maxima (nm) in CH2Cl2: 742, 620, 539, 427.

Refinement top

H atoms were treated as riding, with C—H = 0.94–0.98 Å and Uiso(H) = 1.2Ueq(C). Are these the correct constraints? The largest peak in the final difference map is located 0.97 Å from solvent atom Cl3.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii and the dichloromethane solvent molecule has been omitted.
[Figure 2] Fig. 2. The [Re2(NS2C7H4)4Cl2] molecule of (I) viewed directly down the Re—Re axis. All H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A packing diagram for (I), showing some of the main S—S and S—Cl interactions.
Tetrakis(µ-benzothiazole-2-thiolato)-1:2κ4N:S2;1:2κ4S2:N- dichloro-1κCl,2κCl-dirhenium(III)(Re—Re) dichloromethane solvate top
Crystal data top
[Re2(S2NC7H4)4Cl2]·CH2Cl2F(000) = 2264
Mr = 1193.15Dx = 2.250 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.9408 (7) ÅCell parameters from 9504 reflections
b = 15.5347 (8) Åθ = 2.6–27.5°
c = 17.5303 (9) ŵ = 7.68 mm1
β = 92.092 (1)°T = 213 K
V = 3521.8 (3) Å3Plate, red-brown
Z = 40.38 × 0.16 × 0.02 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
8000 independent reflections
Radiation source: normal-focus sealed tube6368 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: analytical
face-indexed (XPREP in SHELXTL; Siemens, 1996)
h = 169
Tmin = 0.174, Tmax = 0.851k = 2018
21991 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0185P)2]
where P = (Fo2 + 2Fc2)/3
8000 reflections(Δ/σ)max = 0.002
424 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Re2(S2NC7H4)4Cl2]·CH2Cl2V = 3521.8 (3) Å3
Mr = 1193.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.9408 (7) ŵ = 7.68 mm1
b = 15.5347 (8) ÅT = 213 K
c = 17.5303 (9) Å0.38 × 0.16 × 0.02 mm
β = 92.092 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
8000 independent reflections
Absorption correction: analytical
face-indexed (XPREP in SHELXTL; Siemens, 1996)
6368 reflections with I > 2σ(I)
Tmin = 0.174, Tmax = 0.851Rint = 0.036
21991 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 0.98Δρmax = 1.10 e Å3
8000 reflectionsΔρmin = 0.71 e Å3
424 parameters
Special details top

Experimental. The first 50 frames were measured again at the end of the data collection procedure and used to evaluate any decay.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.402035 (13)0.233553 (9)0.636027 (8)0.02012 (5)
Re20.570330 (13)0.275300 (9)0.643519 (8)0.01912 (4)
Cl10.24541 (9)0.13696 (6)0.61028 (6)0.0319 (2)
Cl20.73142 (8)0.36746 (6)0.62748 (6)0.0282 (2)
S10.43737 (9)0.11491 (6)0.71957 (6)0.0258 (2)
S20.59375 (9)0.08328 (6)0.84479 (6)0.0296 (2)
S30.44070 (9)0.14991 (6)0.52467 (6)0.0290 (2)
S40.63252 (10)0.07321 (7)0.46228 (6)0.0345 (3)
S50.53868 (9)0.35918 (6)0.53005 (6)0.0278 (2)
S60.35311 (10)0.42827 (7)0.44396 (7)0.0368 (3)
S70.53397 (9)0.39333 (6)0.72470 (6)0.0249 (2)
S80.37442 (10)0.42520 (7)0.83724 (6)0.0323 (3)
N10.6150 (3)0.20433 (18)0.74394 (17)0.0213 (7)
N20.6347 (3)0.17647 (19)0.57844 (17)0.0230 (7)
N30.3410 (3)0.32880 (19)0.56225 (18)0.0241 (7)
N40.3526 (3)0.30651 (19)0.73294 (17)0.0226 (7)
C10.5520 (3)0.1392 (2)0.7641 (2)0.0220 (9)
C20.6958 (3)0.2157 (2)0.7992 (2)0.0228 (9)
C30.7691 (3)0.2815 (2)0.8013 (2)0.0281 (9)
H30.77050.32300.76240.034*
C40.8394 (4)0.2838 (3)0.8620 (2)0.0309 (10)
H40.88960.32750.86380.037*
C50.8389 (4)0.2239 (3)0.9208 (2)0.0333 (10)
H50.88770.22790.96170.040*
C60.7668 (3)0.1585 (3)0.9191 (2)0.0292 (10)
H60.76600.11730.95840.035*
C70.6951 (3)0.1550 (2)0.8580 (2)0.0257 (9)
C80.5709 (3)0.1393 (2)0.5259 (2)0.0254 (9)
C90.7373 (4)0.1496 (2)0.5716 (2)0.0265 (10)
C100.8222 (3)0.1720 (2)0.6190 (2)0.0276 (9)
H100.81370.20780.66150.033*
C110.9184 (4)0.1411 (3)0.6024 (3)0.0371 (11)
H110.97600.15560.63410.044*
C120.9313 (4)0.0881 (3)0.5386 (3)0.0408 (12)
H120.99800.06940.52680.049*
C130.8478 (4)0.0630 (3)0.4930 (3)0.0370 (11)
H130.85630.02610.45120.044*
C140.7503 (4)0.0938 (2)0.5103 (2)0.0315 (10)
C150.4091 (3)0.3668 (2)0.5167 (2)0.0263 (9)
C160.2380 (4)0.3521 (2)0.5418 (2)0.0276 (10)
C170.1496 (4)0.3292 (3)0.5786 (2)0.0299 (10)
H170.15360.29560.62330.036*
C180.0543 (4)0.3569 (3)0.5483 (3)0.0363 (11)
H180.00670.34110.57220.044*
C190.0486 (4)0.4080 (3)0.4825 (3)0.0385 (12)
H190.01640.42530.46230.046*
C200.1364 (4)0.4333 (3)0.4469 (3)0.0358 (11)
H200.13220.46840.40330.043*
C210.2314 (4)0.4058 (2)0.4769 (2)0.0300 (10)
C220.4167 (3)0.3693 (2)0.7587 (2)0.0233 (9)
C230.2680 (3)0.2982 (2)0.7802 (2)0.0231 (9)
C240.1899 (3)0.2366 (2)0.7754 (2)0.0301 (10)
H240.18800.19560.73590.036*
C250.1154 (4)0.2367 (3)0.8297 (3)0.0349 (11)
H250.06140.19630.82570.042*
C260.1175 (4)0.2947 (3)0.8899 (2)0.0365 (11)
H260.06680.29180.92680.044*
C270.1936 (4)0.3561 (3)0.8958 (2)0.0362 (11)
H270.19550.39600.93610.043*
C280.2680 (4)0.3577 (2)0.8400 (2)0.0290 (10)
C290.9784 (7)0.0434 (4)0.7540 (4)0.108 (3)
H29A0.99570.08950.79050.130*
H29B0.94330.07000.70950.130*
Cl31.09014 (14)0.00144 (9)0.72557 (9)0.0676 (4)
Cl40.89223 (15)0.02667 (11)0.79603 (9)0.0812 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.02086 (10)0.01914 (8)0.02014 (8)0.00205 (7)0.00233 (6)0.00001 (6)
Re20.02018 (9)0.01788 (7)0.01915 (8)0.00070 (7)0.00144 (6)0.00002 (6)
Cl10.0280 (6)0.0331 (5)0.0342 (6)0.0082 (5)0.0022 (5)0.0049 (4)
Cl20.0261 (6)0.0293 (5)0.0289 (5)0.0048 (4)0.0024 (4)0.0049 (4)
S10.0285 (6)0.0205 (5)0.0279 (5)0.0049 (4)0.0047 (5)0.0034 (4)
S20.0354 (7)0.0283 (5)0.0245 (5)0.0053 (5)0.0055 (5)0.0070 (4)
S30.0300 (7)0.0303 (5)0.0264 (5)0.0040 (5)0.0011 (5)0.0074 (4)
S40.0402 (8)0.0305 (5)0.0331 (6)0.0001 (5)0.0050 (5)0.0130 (4)
S50.0262 (6)0.0304 (5)0.0266 (5)0.0038 (5)0.0031 (5)0.0087 (4)
S60.0341 (7)0.0362 (6)0.0393 (6)0.0017 (5)0.0091 (5)0.0166 (5)
S70.0244 (6)0.0197 (4)0.0306 (5)0.0026 (4)0.0013 (5)0.0043 (4)
S80.0366 (7)0.0319 (5)0.0288 (6)0.0057 (5)0.0065 (5)0.0091 (4)
N10.028 (2)0.0186 (15)0.0173 (16)0.0007 (14)0.0024 (14)0.0011 (12)
N20.027 (2)0.0212 (16)0.0207 (17)0.0018 (15)0.0004 (15)0.0010 (13)
N30.023 (2)0.0233 (16)0.0255 (18)0.0031 (15)0.0052 (15)0.0016 (13)
N40.0210 (19)0.0209 (15)0.0257 (18)0.0022 (14)0.0023 (15)0.0025 (13)
C10.028 (2)0.0202 (18)0.0175 (19)0.0016 (17)0.0027 (17)0.0005 (14)
C20.021 (2)0.0275 (19)0.0197 (19)0.0017 (17)0.0010 (17)0.0037 (15)
C30.026 (3)0.030 (2)0.028 (2)0.0002 (19)0.0001 (19)0.0021 (17)
C40.025 (3)0.035 (2)0.033 (2)0.005 (2)0.001 (2)0.0026 (18)
C50.028 (3)0.044 (2)0.027 (2)0.002 (2)0.0113 (19)0.0024 (19)
C60.029 (3)0.035 (2)0.023 (2)0.005 (2)0.0035 (19)0.0023 (17)
C70.026 (2)0.0252 (19)0.026 (2)0.0009 (18)0.0007 (18)0.0013 (16)
C80.034 (3)0.0230 (19)0.020 (2)0.0014 (18)0.0047 (18)0.0018 (15)
C90.037 (3)0.0205 (19)0.023 (2)0.0046 (19)0.0066 (19)0.0027 (15)
C100.030 (3)0.028 (2)0.025 (2)0.0068 (19)0.0005 (19)0.0025 (16)
C110.030 (3)0.036 (2)0.045 (3)0.007 (2)0.002 (2)0.002 (2)
C120.036 (3)0.033 (2)0.053 (3)0.014 (2)0.009 (2)0.001 (2)
C130.044 (3)0.025 (2)0.042 (3)0.012 (2)0.006 (2)0.0049 (18)
C140.041 (3)0.0179 (19)0.036 (2)0.0042 (19)0.004 (2)0.0011 (16)
C150.028 (3)0.0234 (19)0.026 (2)0.0006 (18)0.0074 (19)0.0036 (16)
C160.028 (3)0.0202 (19)0.034 (2)0.0033 (18)0.008 (2)0.0022 (16)
C170.029 (3)0.033 (2)0.027 (2)0.005 (2)0.002 (2)0.0057 (17)
C180.029 (3)0.038 (2)0.042 (3)0.002 (2)0.000 (2)0.011 (2)
C190.033 (3)0.028 (2)0.053 (3)0.009 (2)0.021 (2)0.008 (2)
C200.035 (3)0.030 (2)0.041 (3)0.002 (2)0.013 (2)0.0022 (19)
C210.036 (3)0.0211 (19)0.032 (2)0.0004 (19)0.007 (2)0.0004 (16)
C220.026 (2)0.0219 (18)0.022 (2)0.0011 (18)0.0022 (18)0.0015 (15)
C230.024 (2)0.0231 (19)0.022 (2)0.0027 (17)0.0012 (17)0.0027 (15)
C240.029 (3)0.031 (2)0.031 (2)0.003 (2)0.0014 (19)0.0039 (17)
C250.030 (3)0.037 (2)0.038 (3)0.003 (2)0.003 (2)0.0069 (19)
C260.031 (3)0.049 (3)0.030 (2)0.002 (2)0.011 (2)0.002 (2)
C270.037 (3)0.043 (3)0.029 (2)0.004 (2)0.011 (2)0.0046 (19)
C280.032 (3)0.031 (2)0.024 (2)0.001 (2)0.0007 (19)0.0009 (17)
C290.168 (9)0.057 (4)0.105 (6)0.051 (5)0.069 (6)0.042 (4)
Cl30.0685 (12)0.0638 (9)0.0700 (10)0.0075 (8)0.0028 (8)0.0114 (7)
Cl40.0864 (14)0.0901 (11)0.0683 (11)0.0118 (10)0.0203 (10)0.0025 (9)
Geometric parameters (Å, º) top
Re1—N32.100 (3)C5—H50.9400
Re1—N42.159 (3)C6—C71.393 (6)
Re1—Re22.2716 (3)C6—H60.9400
Re1—S12.3879 (9)C9—C141.395 (5)
Re1—S32.4126 (10)C9—C101.397 (6)
Re1—Cl12.5488 (11)C10—C111.376 (6)
Re2—N22.103 (3)C10—H100.9400
Re2—N12.139 (3)C11—C121.405 (6)
Re2—S72.3786 (9)C11—H110.9400
Re2—S52.4006 (10)C12—C131.377 (7)
Re2—Cl22.5529 (10)C12—H120.9400
S1—C11.694 (4)C13—C141.392 (6)
S2—C11.729 (4)C13—H130.9400
S2—C71.730 (4)C16—C171.380 (6)
S3—C81.692 (5)C16—C211.412 (5)
S4—C81.732 (4)C17—C181.392 (6)
S4—C141.744 (5)C17—H170.9400
S5—C151.689 (4)C18—C191.401 (6)
S6—C151.731 (4)C18—H180.9400
S6—C211.733 (5)C19—C201.373 (6)
S7—C221.692 (4)C19—H190.9400
S8—C221.733 (4)C20—C211.387 (6)
S8—C281.733 (4)C20—H200.9400
N1—C11.354 (5)C23—C241.392 (6)
N1—C21.411 (5)C23—C281.398 (5)
N2—C81.345 (5)C24—C251.379 (6)
N2—C91.401 (5)C24—H240.9400
N3—C151.346 (5)C25—C261.387 (6)
N3—C161.415 (5)C25—H250.9400
N4—C221.348 (5)C26—C271.372 (6)
N4—C231.403 (5)C26—H260.9400
C2—C31.394 (5)C27—C281.397 (6)
C2—C71.398 (5)C27—H270.9400
C3—C41.375 (6)C29—Cl31.696 (7)
C3—H30.9400C29—Cl41.742 (7)
C4—C51.388 (6)C29—H29A0.9800
C4—H40.9400C29—H29B0.9800
C5—C61.378 (6)
N3—Re1—N489.95 (12)C2—C7—S2111.2 (3)
N3—Re1—Re299.94 (9)N2—C8—S3123.6 (3)
N4—Re1—Re296.65 (9)N2—C8—S4114.2 (3)
N3—Re1—S1168.74 (10)S3—C8—S4122.1 (2)
N4—Re1—S188.75 (8)C14—C9—C10119.9 (4)
Re2—Re1—S191.33 (3)C14—C9—N2113.2 (4)
N3—Re1—S388.03 (9)C10—C9—N2127.0 (4)
N4—Re1—S3174.72 (9)C11—C10—C9119.1 (4)
Re2—Re1—S388.50 (3)C11—C10—H10120.5
S1—Re1—S392.28 (4)C9—C10—H10120.5
N3—Re1—Cl191.55 (9)C10—C11—C12120.5 (5)
N4—Re1—Cl1101.05 (9)C10—C11—H11119.7
Re2—Re1—Cl1158.88 (3)C12—C11—H11119.7
S1—Re1—Cl177.73 (4)C13—C12—C11120.9 (5)
S3—Re1—Cl174.14 (4)C13—C12—H12119.5
N2—Re2—N188.27 (11)C11—C12—H12119.5
N2—Re2—Re199.09 (9)C12—C13—C14118.4 (4)
N1—Re2—Re197.47 (9)C12—C13—H13120.8
N2—Re2—S7168.07 (10)C14—C13—H13120.8
N1—Re2—S787.61 (8)C13—C14—C9121.2 (4)
Re1—Re2—S792.55 (3)C13—C14—S4127.9 (3)
N2—Re2—S590.33 (9)C9—C14—S4110.9 (3)
N1—Re2—S5174.07 (10)N3—C15—S5123.7 (3)
Re1—Re2—S588.44 (3)N3—C15—S6114.4 (3)
S7—Re2—S592.63 (4)S5—C15—S6121.8 (2)
N2—Re2—Cl290.49 (9)C17—C16—C21120.2 (4)
N1—Re2—Cl2100.53 (9)C17—C16—N3127.2 (4)
Re1—Re2—Cl2159.85 (2)C21—C16—N3112.6 (4)
S7—Re2—Cl279.27 (3)C16—C17—C18118.6 (4)
S5—Re2—Cl273.72 (3)C16—C17—H17120.7
C1—S1—Re1104.83 (13)C18—C17—H17120.7
C1—S2—C789.93 (19)C17—C18—C19120.6 (5)
C8—S3—Re1106.14 (13)C17—C18—H18119.7
C8—S4—C1489.7 (2)C19—C18—H18119.7
C15—S5—Re2106.92 (14)C20—C19—C18121.1 (4)
C15—S6—C2190.3 (2)C20—C19—H19119.4
C22—S7—Re2103.92 (13)C18—C19—H19119.4
C22—S8—C2889.63 (19)C19—C20—C21118.5 (4)
C1—N1—C2110.6 (3)C19—C20—H20120.7
C1—N1—Re2117.0 (3)C21—C20—H20120.7
C2—N1—Re2132.2 (2)C20—C21—C16120.9 (4)
C8—N2—C9111.9 (3)C20—C21—S6128.0 (3)
C8—N2—Re2116.1 (3)C16—C21—S6111.0 (3)
C9—N2—Re2131.3 (3)N4—C22—S7126.2 (3)
C15—N3—C16111.6 (3)N4—C22—S8114.9 (3)
C15—N3—Re1115.8 (3)S7—C22—S8118.9 (2)
C16—N3—Re1131.7 (3)C24—C23—C28118.7 (4)
C22—N4—C23110.7 (3)C24—C23—N4127.5 (4)
C22—N4—Re1116.6 (3)C28—C23—N4113.8 (4)
C23—N4—Re1132.6 (3)C25—C24—C23118.7 (4)
N1—C1—S1124.8 (3)C25—C24—H24120.6
N1—C1—S2114.6 (3)C23—C24—H24120.6
S1—C1—S2120.5 (2)C24—C25—C26122.1 (4)
C3—C2—C7119.9 (4)C24—C25—H25118.9
C3—C2—N1126.7 (3)C26—C25—H25118.9
C7—C2—N1113.4 (3)C27—C26—C25120.2 (4)
C4—C3—C2118.0 (4)C27—C26—H26119.9
C4—C3—H3121.0C25—C26—H26119.9
C2—C3—H3121.0C26—C27—C28118.1 (4)
C3—C4—C5122.4 (4)C26—C27—H27121.0
C3—C4—H4118.8C28—C27—H27121.0
C5—C4—H4118.8C27—C28—C23122.1 (4)
C6—C5—C4120.0 (4)C27—C28—S8126.8 (3)
C6—C5—H5120.0C23—C28—S8110.9 (3)
C4—C5—H5120.0Cl3—C29—Cl4115.7 (3)
C5—C6—C7118.5 (4)Cl3—C29—H29A108.4
C5—C6—H6120.8Cl4—C29—H29A108.4
C7—C6—H6120.8Cl3—C29—H29B108.4
C6—C7—C2121.2 (4)Cl4—C29—H29B108.4
C6—C7—S2127.5 (3)H29A—C29—H29B107.4
S1—Re1—Re2—N117.44 (8)N3—Re1—Re2—S517.91 (9)
S3—Re1—Re2—N220.26 (9)N4—Re1—Re2—S716.46 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl20.942.503.347 (4)150
C24—H24···Cl10.942.523.382 (4)153

Experimental details

Crystal data
Chemical formula[Re2(S2NC7H4)4Cl2]·CH2Cl2
Mr1193.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)213
a, b, c (Å)12.9408 (7), 15.5347 (8), 17.5303 (9)
β (°) 92.092 (1)
V3)3521.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)7.68
Crystal size (mm)0.38 × 0.16 × 0.02
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionAnalytical
face-indexed (XPREP in SHELXTL; Siemens, 1996)
Tmin, Tmax0.174, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
21991, 8000, 6368
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.051, 0.98
No. of reflections8000
No. of parameters424
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.71

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXL97.

Selected geometric parameters (Å, º) top
Re1—N32.100 (3)Re2—N22.103 (3)
Re1—N42.159 (3)Re2—N12.139 (3)
Re1—Re22.2716 (3)Re2—S72.3786 (9)
Re1—S12.3879 (9)Re2—S52.4006 (10)
Re1—S32.4126 (10)Re2—Cl22.5529 (10)
Re1—Cl12.5488 (11)
Re2—Re1—Cl1158.88 (3)Re1—Re2—Cl2159.85 (2)
S1—Re1—Re2—N117.44 (8)N3—Re1—Re2—S517.91 (9)
S3—Re1—Re2—N220.26 (9)N4—Re1—Re2—S716.46 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl20.942.503.347 (4)150
C24—H24···Cl10.942.523.382 (4)153
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds