Download citation
Download citation
link to html
In the centrosymmetric title complex, [Mn(C7H8N2O2)4(H2O)2](ClO4)2, the MnII ion is in an octahedral environment, with the equatorial plane being defined by the O atoms of four monodentate carboxyl­ate groups, and the octahedron being completed by two trans-coordinated water mol­ecules. There are intramolecular hydrogen bonds between the coordinated water mol­ecules and the non-coordinated O atoms of the carboxyl­ate groups. Hydrogen bonds between the amino groups and the carboxyl­ate groups of neighbouring mol­ecules generate a layered hydrogen-bonded network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102000343/ta1355sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102000343/ta1355Isup2.hkl
Contains datablock I

CCDC reference: 182985

Comment top

Manganese complexes containing coordinated carboxylate have been extensively studied for their structural chemistry and biological function. Much research has focused on the preparation of model compounds to mimic various manganese enzymes, such as manganese catalase (Christou, 1989) and the water-oxidizing oxygen-evolving complex (OEC) of photosystem II (Linburg et al., 1999). A rich structural diversity of carboxylate-containing Mn complexes has been revealed. The carboxylate ligand can coordinate to Mn, in different oxidation states, in different coordination fashions, such as syn and anti, and monodentate and bidentate (Iikura & Nagata, 1998). Here, we present the structure of a further such complex, the title compound, (I). \sch

The structure described here shows (I) to be a centrosymmetric mononuclear species, with Mn at a crystallographic centre of symmetry. The MnII is in an octahedral environment, with the equatorial plane being defined by the O atoms of four unidentate carboxylate groups of the (4-aminopyridinio)acetate ligands, and the octahedron being completed by two trans-coordinated water molecules (Fig. 1). The perchlorate ions are not coordinated to Mn.

Bond lengths and angles in (I) are normal and the unique angles in the octahedron are close to ideal (Table 1). In particular, the Mn—O1W distance (Mn-water) is 2.225 (2) Å, which is similar to the value of 2.218 (2) Å found in [Mn(H2O)6(HC4O3NH2)2] by Hosein et al. (1998). The C—O distances in (I) are normal, indicating that the coordination of MnII to acetate does not affect the geometry of the acetate.

The dihedral angles of the basal plane through atoms O2, O2A, O4 and O4A with the O2- and O4-containing acetate plane are 37.5 (2) and 56.5 (1)°, respectively. The dihedral angles between the N3- and N4-containing pyridyl rings, and the C2- and C9-containing acetate planes, are 77.8 (2) and 61.7 (2)°, respectively. The orientation of the pyridyl ring is defined by the torsion angles of 179.6 (3)° for C2—N3—C3—C4 and 178.4 (4)° for C9—N4—C14—C13.

The non-coordinated carboxylate O atoms (O1 and O3) and the water molecule, O1W, are cis with respect to the equatorial plane (Fig. 1), and each of O1 and O3 is the receptor in an intramolecular hydrogen bond from O1W (Table 2). In the crystal, intermolecular hydrogen bonds between the amino group of the ligand and the O atoms of the carboxylate groups from neighbouring molecules, together with weak hydrogen bonds formed between the amino groups and a disordered perchlorate ion, form a layered hydrogen-bonded network.

Experimental top

Mn(ClO4)2·6H2O (1.00 mmol) was mixed with 4-amino-N-pyridine acetate (4.00 mmol) in a thick Pyrex tube, and pyridine (0.10 ml) and n-butanol (2.50 ml) were then added. The solution was heated at 363 K for 2 d, and was then kept at ambient temperature for one week for crystallization. Colourless prismatic crystals of (I) formed.

Refinement top

All H atoms were placed in geometrically calculated positions, with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and refined as riding atoms, with Uiso = 1.2Ueq(parent atom). The occupancy factor for a second orientation of the perchlorate ion refined to close to 1/2, therefore the occupancies of the perchlorate O atoms were set to 0.5 for the final refinement.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the structure of (I) showing the atom-numbering scheme, with 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
Tetrakis[(4-aminopyridinio)acetato-κO]diaquamanganese(II) diperchlorate top
Crystal data top
[Mn(C7H8N2O2)4(H2O)2](ClO4)2Z = 1
Mr = 898.49F(000) = 463
Triclinic, P1Dx = 1.583 Mg m3
a = 9.049 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.507 (3) ÅCell parameters from 2867 reflections
c = 10.779 (3) Åθ = 1.4–27.8°
α = 71.79 (4)°µ = 0.58 mm1
β = 89.52 (4)°T = 293 K
γ = 76.13 (4)°Prism, colourless
V = 942.7 (4) Å30.3 × 0.2 × 0.2 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3275 independent reflections
Radiation source: fine-focus sealed tube2834 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1997)
h = 810
Tmin = 0.870, Tmax = 0.901k = 1112
4859 measured reflectionsl = 1012
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0923P)2 + 0.2644P]
where P = (Fo2 + 2Fc2)/3
3275 reflections(Δ/σ)max < 0.001
295 parametersΔρmax = 0.48 e Å3
160 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Mn(C7H8N2O2)4(H2O)2](ClO4)2γ = 76.13 (4)°
Mr = 898.49V = 942.7 (4) Å3
Triclinic, P1Z = 1
a = 9.049 (2) ÅMo Kα radiation
b = 10.507 (3) ŵ = 0.58 mm1
c = 10.779 (3) ÅT = 293 K
α = 71.79 (4)°0.3 × 0.2 × 0.2 mm
β = 89.52 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3275 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1997)
2834 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.901Rint = 0.043
4859 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049160 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.05Δρmax = 0.48 e Å3
3275 reflectionsΔρmin = 0.45 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn0.50000.50000.50000.0412 (2)
O1W0.3803 (3)0.5874 (3)0.6475 (2)0.0598 (6)
H1WA0.37540.50830.70960.072*
H1WB0.28760.62820.60490.072*
O10.1171 (3)0.6735 (3)0.4687 (3)0.0687 (7)
O20.2827 (3)0.5108 (3)0.4126 (3)0.0620 (7)
O30.4198 (4)0.3141 (3)0.8073 (3)0.0907 (10)
O40.5123 (3)0.2935 (2)0.6218 (2)0.0597 (6)
N10.2135 (4)0.2511 (3)0.0093 (3)0.0714 (9)
H1A0.28630.25240.04260.086*
H1B0.16150.19030.01970.086*
N20.7765 (4)0.2212 (4)0.4847 (4)0.0727 (9)
H2A0.73290.28310.47770.087*
H2B0.85700.20990.44410.087*
C10.1638 (3)0.6040 (4)0.3959 (4)0.0533 (8)
C20.0659 (5)0.6423 (5)0.2688 (4)0.0766 (12)
H2C0.04040.65330.28830.092*
H2D0.07690.73060.21090.092*
C30.2240 (4)0.5378 (4)0.1233 (4)0.0653 (9)
H3A0.28010.60340.11340.078*
N30.1065 (3)0.5386 (3)0.2009 (3)0.0614 (8)
C40.2618 (4)0.4441 (4)0.0600 (3)0.0626 (9)
H4A0.34290.44660.00650.075*
N40.6079 (3)0.0138 (3)0.7186 (3)0.0554 (7)
C50.1812 (4)0.3429 (4)0.0731 (3)0.0565 (8)
C60.0625 (4)0.3438 (4)0.1588 (4)0.0629 (9)
H6A0.00640.27770.17350.075*
C70.0306 (4)0.4403 (5)0.2192 (4)0.0685 (10)
H7A0.04730.43870.27600.082*
C80.4889 (4)0.2472 (3)0.7390 (3)0.0556 (8)
C90.5523 (6)0.0927 (4)0.8068 (4)0.0725 (11)
H9A0.63540.07950.86950.087*
H9B0.47300.05560.85540.087*
C100.5385 (4)0.0810 (3)0.7033 (3)0.0552 (8)
H10A0.45220.09350.74830.066*
C110.5887 (4)0.1583 (3)0.6257 (3)0.0507 (7)
H11A0.53660.22160.61690.061*
C120.7198 (4)0.1434 (3)0.5578 (3)0.0516 (8)
C130.7874 (4)0.0408 (4)0.5720 (4)0.0671 (10)
H13A0.87170.02380.52580.081*
C140.7316 (4)0.0328 (4)0.6515 (4)0.0646 (10)
H14A0.77960.09880.66040.078*
Cl10.14846 (13)0.06845 (12)0.13633 (11)0.0775 (4)
O110.0057 (6)0.0542 (11)0.1141 (9)0.115 (3)0.50
O120.1681 (10)0.0976 (11)0.2535 (6)0.111 (3)0.50
O130.1814 (10)0.0588 (6)0.1530 (9)0.107 (3)0.50
O140.2431 (12)0.1661 (8)0.0364 (9)0.178 (4)0.50
O11'0.2394 (11)0.1683 (8)0.1829 (11)0.137 (3)0.50
O12'0.0392 (11)0.0201 (9)0.2325 (9)0.181 (4)0.50
O13'0.2372 (10)0.0073 (9)0.1018 (9)0.116 (3)0.50
O14'0.0830 (12)0.1400 (7)0.0290 (8)0.130 (3)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0416 (4)0.0427 (4)0.0447 (4)0.0139 (3)0.0052 (3)0.0190 (3)
O1W0.0635 (14)0.0626 (14)0.0642 (15)0.0184 (11)0.0153 (11)0.0338 (12)
O10.0516 (13)0.0903 (19)0.0774 (17)0.0095 (12)0.0060 (12)0.0513 (15)
O20.0474 (13)0.0650 (15)0.0821 (17)0.0062 (11)0.0113 (11)0.0409 (13)
O30.151 (3)0.0582 (16)0.0636 (17)0.0189 (17)0.0401 (18)0.0266 (13)
O40.0833 (16)0.0448 (13)0.0518 (14)0.0169 (11)0.0145 (12)0.0162 (10)
N10.095 (2)0.0628 (19)0.0570 (18)0.0136 (17)0.0041 (16)0.0252 (15)
N20.0645 (19)0.081 (2)0.099 (3)0.0339 (17)0.0286 (18)0.054 (2)
C10.0429 (17)0.060 (2)0.069 (2)0.0177 (15)0.0054 (15)0.0324 (17)
C20.068 (2)0.084 (3)0.081 (3)0.006 (2)0.013 (2)0.050 (2)
C30.071 (2)0.063 (2)0.064 (2)0.0197 (18)0.0004 (18)0.0215 (18)
N30.0565 (17)0.0682 (19)0.0621 (18)0.0040 (14)0.0070 (14)0.0330 (15)
C40.072 (2)0.065 (2)0.0524 (19)0.0186 (18)0.0130 (17)0.0210 (17)
N40.0691 (18)0.0438 (15)0.0511 (16)0.0110 (13)0.0022 (13)0.0143 (12)
C50.068 (2)0.0540 (19)0.0410 (17)0.0038 (16)0.0059 (15)0.0143 (14)
C60.066 (2)0.072 (2)0.058 (2)0.0240 (18)0.0016 (17)0.0258 (18)
C70.054 (2)0.095 (3)0.064 (2)0.018 (2)0.0057 (17)0.036 (2)
C80.072 (2)0.0477 (18)0.0519 (19)0.0184 (16)0.0094 (16)0.0206 (15)
C90.114 (3)0.050 (2)0.051 (2)0.014 (2)0.008 (2)0.0184 (16)
C100.0573 (19)0.0491 (18)0.0568 (19)0.0167 (15)0.0108 (15)0.0113 (15)
C110.0472 (16)0.0478 (17)0.0613 (19)0.0182 (14)0.0040 (14)0.0184 (15)
C120.0447 (16)0.0513 (18)0.063 (2)0.0154 (14)0.0044 (14)0.0219 (16)
C130.0510 (19)0.066 (2)0.101 (3)0.0287 (17)0.0200 (19)0.040 (2)
C140.057 (2)0.058 (2)0.090 (3)0.0242 (17)0.0010 (19)0.033 (2)
Cl10.12867 (7)0.1431 (7)0.1156 (7)0.0481 (6)0.0266 (6)0.0394 (6)
O110.091 (4)0.184 (8)0.132 (6)0.077 (5)0.044 (4)0.105 (6)
O120.116 (6)0.171 (8)0.084 (5)0.067 (5)0.029 (4)0.071 (5)
O130.134 (7)0.065 (4)0.126 (7)0.045 (4)0.040 (5)0.026 (4)
O140.214 (9)0.129 (7)0.158 (8)0.034 (7)0.040 (8)0.006 (7)
O11'0.144 (7)0.105 (6)0.187 (9)0.047 (5)0.065 (7)0.070 (6)
O12'0.170 (8)0.174 (8)0.166 (8)0.014 (7)0.071 (7)0.026 (7)
O13'0.123 (6)0.151 (8)0.116 (7)0.078 (6)0.004 (5)0.069 (6)
O14'0.191 (8)0.079 (5)0.117 (6)0.053 (5)0.080 (6)0.014 (4)
Geometric parameters (Å, º) top
Mn—O4i2.133 (2)C4—H4A0.9300
Mn—O42.133 (2)N4—C101.349 (5)
Mn—O2i2.151 (2)N4—C141.349 (5)
Mn—O22.151 (2)N4—C91.459 (5)
Mn—O1Wi2.225 (2)C5—C61.411 (5)
Mn—O1W2.225 (2)C6—C71.344 (5)
O1W—H1WA0.9001C6—H6A0.9300
O1W—H1WB0.9000C7—H7A0.9300
O1—C11.238 (4)C8—C91.523 (5)
O2—C11.240 (4)C9—H9A0.9700
O3—C81.238 (4)C9—H9B0.9700
O4—C81.240 (4)C10—C111.344 (5)
N1—C51.330 (5)C10—H10A0.9300
N1—H1A0.8600C11—C121.404 (5)
N1—H1B0.8600C11—H11A0.9300
N2—C121.322 (4)C12—C131.406 (5)
N2—H2A0.8600C13—C141.345 (5)
N2—H2B0.8600C13—H13A0.9300
C1—C21.526 (5)C14—H14A0.9300
C2—N31.469 (5)Cl1—O141.360 (5)
C2—H2C0.9700Cl1—O12'1.375 (5)
C2—H2D0.9700Cl1—O14'1.383 (4)
C3—C41.344 (5)Cl1—O13'1.383 (4)
C3—N31.347 (5)Cl1—O121.390 (4)
C3—H3A0.9300Cl1—O11'1.392 (4)
N3—C71.337 (5)Cl1—O111.394 (4)
C4—C51.400 (5)Cl1—O131.396 (4)
O4i—Mn—O4180.00N3—C7—C6122.6 (4)
O4i—Mn—O2i90.15 (11)N3—C7—H7A118.7
O4—Mn—O2i89.85 (11)C6—C7—H7A118.7
O4i—Mn—O289.85 (11)O3—C8—O4126.6 (3)
O4—Mn—O290.15 (11)O3—C8—C9116.3 (3)
O2i—Mn—O2180.0O4—C8—C9117.1 (3)
O4i—Mn—O1Wi91.80 (10)N4—C9—C8114.5 (3)
O4—Mn—O1Wi88.20 (10)N4—C9—H9A108.6
O2i—Mn—O1Wi89.49 (9)C8—C9—H9A108.6
O2—Mn—O1Wi90.51 (9)N4—C9—H9B108.6
O4i—Mn—O1W88.20 (10)C8—C9—H9B108.6
O4—Mn—O1W91.80 (10)H9A—C9—H9B107.6
O2i—Mn—O1W90.51 (9)C11—C10—N4122.8 (3)
O2—Mn—O1W89.49 (9)C11—C10—H10A118.6
O1Wi—Mn—O1W180.0N4—C10—H10A118.6
Mn—O1W—H1WA99.4C10—C11—C12120.0 (3)
Mn—O1W—H1WB100.1C10—C11—H11A120.0
H1WA—O1W—H1WB108.7C12—C11—H11A120.0
C1—O2—Mn127.5 (2)N2—C12—C11121.9 (3)
C8—O4—Mn130.8 (2)N2—C12—C13121.9 (3)
C5—N1—H1A120.0C11—C12—C13116.2 (3)
C5—N1—H1B120.0C14—C13—C12120.8 (3)
H1A—N1—H1B120.0C14—C13—H13A119.6
C12—N2—H2A120.0C12—C13—H13A119.6
C12—N2—H2B120.0C13—C14—N4121.9 (3)
H2A—N2—H2B120.0C13—C14—H14A119.1
O1—C1—O2127.5 (3)N4—C14—H14A119.1
O1—C1—C2115.6 (3)O14—Cl1—O12'172.6 (6)
O1—O1W—O3111.15 (13)O14—Cl1—O14'62.1 (5)
O2—C1—C2116.9 (3)O12'—Cl1—O14'111.3 (5)
N3—C2—C1113.1 (3)O14—Cl1—O13'77.8 (5)
N3—C2—H2C109.0O12'—Cl1—O13'108.6 (5)
C1—C2—H2C109.0O14'—Cl1—O13'111.3 (5)
N3—C2—H2D109.0O14—Cl1—O12111.9 (5)
C1—C2—H2D109.0O12'—Cl1—O1268.5 (5)
H2C—C2—H2D107.8O14'—Cl1—O12126.0 (5)
C4—C3—N3121.4 (4)O13'—Cl1—O12119.8 (6)
C4—C3—H3A119.3O14—Cl1—O11'70.4 (5)
N3—C3—H3A119.3O12'—Cl1—O11'109.7 (5)
C7—N3—C3118.9 (3)O14'—Cl1—O11'106.0 (4)
C7—N3—C2120.3 (3)O13'—Cl1—O11'109.9 (5)
C3—N3—C2120.7 (4)O14—Cl1—O11113.5 (5)
C3—C4—C5121.1 (3)O12'—Cl1—O1160.1 (5)
C3—C4—H4A119.4O14'—Cl1—O1151.3 (4)
C5—C4—H4A119.4O13'—Cl1—O11123.9 (6)
C10—N4—C14118.3 (3)O12—Cl1—O11106.6 (4)
C10—N4—C9121.0 (3)O11'—Cl1—O11126.0 (5)
C14—N4—C9120.6 (3)O14—Cl1—O13108.4 (5)
N1—C5—C4122.5 (3)O12'—Cl1—O1378.0 (5)
N1—C5—C6121.5 (4)O14'—Cl1—O13124.9 (6)
C4—C5—C6115.9 (3)O12—Cl1—O13108.3 (4)
C7—C6—C5119.9 (4)O11'—Cl1—O13122.1 (6)
C7—C6—H6A120.0O11—Cl1—O13108.0 (4)
C5—C6—H6A120.0
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.901.932.787 (4)160
N1—H1A···O3ii0.862.052.879 (5)163
O1W—H1WB···O10.902.002.856 (4)158
N2—H2A···O2iii0.862.353.072 (5)142
N2—H2A···O4iii0.862.513.205 (5)138
N2—H2B···O1iv0.862.353.038 (5)137
Symmetry codes: (ii) x, y, z1; (iii) x+1, y, z+1; (iv) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Mn(C7H8N2O2)4(H2O)2](ClO4)2
Mr898.49
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.049 (2), 10.507 (3), 10.779 (3)
α, β, γ (°)71.79 (4), 89.52 (4), 76.13 (4)
V3)942.7 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.870, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
4859, 3275, 2834
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.148, 1.05
No. of reflections3275
No. of parameters295
No. of restraints160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.45

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Mn—O42.133 (2)N2—C121.322 (4)
Mn—O22.151 (2)C2—N31.469 (5)
Mn—O1W2.225 (2)C3—C41.344 (5)
O1—C11.238 (4)N3—C71.337 (5)
O2—C11.240 (4)N4—C101.349 (5)
O3—C81.238 (4)N4—C141.349 (5)
O4—C81.240 (4)N4—C91.459 (5)
N1—C51.330 (5)C5—C61.411 (5)
O4—Mn—O290.15 (11)O1—O1W—O3111.15 (13)
O4—Mn—O1W91.80 (10)N3—C2—C1113.1 (3)
O2—Mn—O1W89.49 (9)C7—N3—C2120.3 (3)
C1—O2—Mn127.5 (2)N1—C5—C4122.5 (3)
C8—O4—Mn130.8 (2)O3—C8—O4126.6 (3)
O1—C1—O2127.5 (3)O3—C8—C9116.3 (3)
O1—C1—C2115.6 (3)N2—C12—C11121.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.901.9252.787 (4)160
N1—H1A···O3i0.862.0462.879 (5)163
O1W—H1WB···O10.902.0032.856 (4)158
N2—H2A···O2ii0.862.3523.072 (5)142
N2—H2A···O4ii0.862.5133.205 (5)138
N2—H2B···O1iii0.862.3533.038 (5)137
Symmetry codes: (i) x, y, z1; (ii) x+1, y, z+1; (iii) x+1, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds