Download citation
Download citation
link to html
Reaction of 1,10-phenanthroline (phen) with iron trichloride in the presence of sodium nitrilo­tri­acetate (NTA) resulted in the formation of red crystals of the title complex, [Fe(C6H6NO6)(C12H8N2)(H2O)]·H2O. The Fe atom has a distorted capped trigonal prismatic coordination comprised of one tetradentate NTA, one bidentate phen molecule and a water mol­ecule. Intermolecular O-H...O hydrogen bonds link the mol­ecules into infinite chains. The chains are crosslinked by hydrogen bonds involving the solvent water mol­ecule, leading to an infinite ladder packing mode.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101017036/ta1352sup1.cif
Contains datablocks FYY, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101017036/ta1352Isup2.hkl
Contains datablock I

CCDC reference: 180137

Comment top

The structures of several iron(III) complexes containing coordinated tetradentate NTA (Clegg et al., 1984; White et al., 1984; Heath et al., 1992; Fujita et al., 1994; Powell et al., 1995) have been reported due to the unique reactivity of Fe(III)-NTA solutions (Awai et al., 1979; Goddard et al., 1986). With the exception of the seven-coordinate [Fe(NTA)2]3- ion (Clegg et al., 1984), the iron atoms in all the known Fe-NTA complexes are six-coordinate. To the best of our knowledge, seven-coordinate iron(III) compounds are also rare (Marlin et al., 2000; Sanchiz et al., 1997; Finnen et al., 1991; Fleischer & Hawkinson, 1967). Herein we report the X-ray structure of a seven-coordinate iron centre compound, [Fe(NTA)(Phen)(H2O)]·H2O (I).

Unlike most seven-coordinate iron(III) complexes which usually have pentagonal bipyramidal geometries, the Fe atom in (I) lies near the centre of a distorted capped trigonal prism: O1, O3 and N2; and O5, O7 and N1 make up the two triangular ends of the distorted trigonal prism, while N3 (of NTA) occupies the capped position (Fig. 1). The Fe—O7 (water) bond length is significantly longer than the Fe—O bond lengths to NTA (Table 1), but the latter are similar to those previously observed in Fe(NTA) complexes (Clegg et al., 1984; White et al., 1984; Heath et al., 1992; Fujita et al., 1994; Powell et al., 1995). The Fe—N3 bond length is significantly longer than the average value of the Fe—N(Phen) bonds [2.2340 (13) Å]. Steric effects due to the constraints on the NTA ligand, required by its tetradentate ligation, may be responsible for the difference in the Fe—N bond lengths. The molecules are packed in such a way that the intermolecular O—H···O hydrogen bonding interconnections [2.696 (2) Å] between the coordinated water molecule and the carboxylate oxygen (O2) in the NTA ligand (Table 2) results in infinite chains of molecules. Each solvent water molecule bridges two iron complex molecules through long-range intermolecular hydrogen bonds O8—H···O and forms the rung of the infinite ladder packing mode.

Experimental top

Preparation of (I). A methanol solution of phen (36.02 mg, 0.2 mmol) was slowly added to a methanol solution of FeCl3·6H2O (54.06 mg, 0.2 mmol), followed by a water solution of Na[N(CH2COO)3] (51.42 mg, 0.2 mmol). Well shaped red polyhedral crystals of (I) were separated from the mother liquor by slow evaporation at room temperature after three weeks. They were filtered of, washed with a small amount of water, and dried in air. The yield is 25%. Anal. Calcd for C18H20N3O8Fe: C, 46.77; H, 4.36; N, 9.09%. Found: C, 46.93; H, 4.62; N, 9.35%.

Refinement top

All H atoms were located in difference maps and refined isotropically [C—H = 0.81 (3)–1.02 (3) Å)].

Computing details top

Data collection: KappaCCD (Nonius B. V., 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) & maXus (Mackay et al., 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Bruker SHELXTL V5.1 (Sheldrick, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. An ORTEP diagram of (I) and atom labelling, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
(I) top
Crystal data top
[Fe(C6H6NO6)(C12H8N2)(H2O)].H2OF(000) = 948
Mr = 460.20Dx = 1.637 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7051 (5) ÅCell parameters from 24260 reflections
b = 8.0381 (3) Åθ = 3.5–27.9°
c = 19.8739 (7) ŵ = 0.86 mm1
β = 92.879 (2)°T = 293 K
V = 1867.51 (12) Å3Polyhedron, red
Z = 40.27 × 0.16 × 0.11 mm
Data collection top
NONIUS KappaCCD
diffractometer
4467 independent reflections
Radiation source: fine-focus sealed tube3086 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 0.76 pixels mm-1θmax = 27.9°, θmin = 3.5°
ω scansh = 1515
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995, 1997)
k = 1010
Tmin = 0.789, Tmax = 0.909l = 2526
24260 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.1433P]
where P = (Fo2 + 2Fc2)/3
4467 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Fe(C6H6NO6)(C12H8N2)(H2O)].H2OV = 1867.51 (12) Å3
Mr = 460.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7051 (5) ŵ = 0.86 mm1
b = 8.0381 (3) ÅT = 293 K
c = 19.8739 (7) Å0.27 × 0.16 × 0.11 mm
β = 92.879 (2)°
Data collection top
NONIUS KappaCCD
diffractometer
4467 independent reflections
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995, 1997)
3086 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.909Rint = 0.066
24260 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.098All H-atom parameters refined
S = 1.02Δρmax = 0.50 e Å3
4467 reflectionsΔρmin = 0.42 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe0.20451 (3)0.26301 (3)0.123392 (15)0.02161 (11)
O10.28839 (13)0.05034 (18)0.15071 (8)0.0283 (4)
O20.28711 (15)0.22592 (19)0.14949 (10)0.0388 (4)
O30.08277 (13)0.23425 (17)0.04966 (7)0.0267 (4)
O40.09738 (15)0.1759 (2)0.01638 (8)0.0418 (4)
O50.16469 (15)0.3437 (2)0.21563 (8)0.0353 (4)
O60.14334 (16)0.2722 (2)0.32247 (8)0.0413 (5)
O70.17502 (19)0.5088 (2)0.09580 (9)0.0337 (4)
O80.05410 (18)0.0701 (2)0.42309 (12)0.0444 (5)
N10.37406 (17)0.3730 (2)0.15566 (9)0.0287 (5)
N20.31620 (16)0.2314 (2)0.03656 (9)0.0262 (4)
N30.06959 (16)0.0781 (2)0.16354 (9)0.0251 (4)
H10.340 (2)0.454 (3)0.2449 (13)0.045 (8)*
H20.529 (3)0.553 (4)0.2748 (15)0.071 (10)*
H30.672 (3)0.527 (4)0.1961 (15)0.073 (10)*
H50.717 (3)0.418 (3)0.0848 (13)0.047 (9)*
H60.681 (2)0.292 (3)0.0165 (13)0.043 (8)*
H80.529 (2)0.160 (3)0.0955 (13)0.050 (8)*
H90.340 (2)0.079 (3)0.1116 (14)0.053 (8)*
H100.211 (2)0.117 (3)0.0263 (12)0.042 (8)*
H13A0.091 (2)0.094 (3)0.0944 (13)0.040 (7)*
H13B0.076 (2)0.178 (4)0.1637 (13)0.049 (8)*
H15A0.069 (2)0.232 (3)0.1548 (12)0.036 (7)*
H15B0.098 (2)0.047 (3)0.1334 (11)0.032 (7)*
H17B0.001 (2)0.080 (3)0.2557 (12)0.043 (7)*
H17A0.122 (2)0.011 (3)0.2557 (12)0.040 (7)*
H200.083 (3)0.129 (4)0.3952 (14)0.051 (10)*
H210.069 (3)0.109 (4)0.4611 (17)0.073 (12)*
H220.214 (3)0.591 (4)0.1193 (15)0.079 (11)*
H230.110 (3)0.531 (4)0.0908 (16)0.069 (12)*
C10.4008 (3)0.4463 (3)0.21448 (14)0.0402 (6)
C20.5106 (3)0.5040 (4)0.23225 (17)0.0526 (8)
C30.5943 (3)0.4867 (4)0.18794 (17)0.0554 (9)
C40.5701 (2)0.4103 (3)0.12480 (14)0.0418 (7)
C50.6526 (3)0.3853 (4)0.07545 (18)0.0547 (9)
C60.6247 (3)0.3126 (4)0.01623 (18)0.0532 (8)
C70.5102 (2)0.2566 (3)0.00021 (13)0.0379 (6)
C80.4760 (3)0.1794 (4)0.06066 (14)0.0461 (7)
C90.3655 (3)0.1299 (4)0.07095 (14)0.0441 (7)
C100.2876 (2)0.1575 (3)0.02136 (12)0.0354 (6)
C110.4272 (2)0.2796 (3)0.04767 (12)0.0289 (5)
C120.4576 (2)0.3564 (3)0.11131 (12)0.0287 (5)
C130.1083 (2)0.0849 (3)0.13960 (13)0.0274 (5)
C140.2375 (2)0.0907 (3)0.14758 (11)0.0251 (5)
C150.0399 (2)0.1308 (3)0.13152 (12)0.0309 (5)
C160.0208 (2)0.1821 (3)0.05961 (11)0.0287 (5)
C170.0738 (2)0.0869 (3)0.23721 (11)0.0302 (5)
C180.1315 (2)0.2460 (3)0.26142 (11)0.0270 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe0.01980 (18)0.02124 (17)0.02356 (17)0.00200 (13)0.00100 (12)0.00070 (13)
O10.0219 (9)0.0247 (8)0.0378 (9)0.0034 (7)0.0044 (7)0.0022 (7)
O20.0304 (10)0.0242 (8)0.0614 (11)0.0027 (7)0.0021 (9)0.0012 (8)
O30.0219 (9)0.0320 (8)0.0259 (8)0.0017 (7)0.0017 (6)0.0010 (7)
O40.0270 (10)0.0580 (11)0.0392 (10)0.0019 (9)0.0103 (8)0.0049 (9)
O50.0426 (11)0.0290 (9)0.0349 (9)0.0087 (8)0.0087 (8)0.0085 (8)
O60.0451 (12)0.0517 (11)0.0272 (9)0.0026 (9)0.0037 (8)0.0091 (8)
O70.0324 (12)0.0230 (8)0.0449 (10)0.0016 (8)0.0073 (9)0.0018 (8)
O80.0452 (13)0.0447 (11)0.0427 (12)0.0076 (9)0.0034 (10)0.0027 (11)
N10.0270 (12)0.0257 (10)0.0328 (11)0.0036 (8)0.0061 (9)0.0014 (9)
N20.0208 (10)0.0289 (10)0.0287 (10)0.0004 (8)0.0006 (8)0.0021 (8)
N30.0229 (11)0.0258 (9)0.0264 (9)0.0015 (8)0.0006 (8)0.0030 (8)
C10.0395 (17)0.0394 (14)0.0404 (15)0.0066 (13)0.0106 (13)0.0018 (13)
C20.047 (2)0.0532 (18)0.0554 (18)0.0122 (15)0.0236 (17)0.0089 (16)
C30.0316 (18)0.0586 (19)0.073 (2)0.0156 (15)0.0228 (17)0.0024 (16)
C40.0233 (15)0.0418 (15)0.0594 (17)0.0060 (12)0.0079 (13)0.0111 (13)
C50.0227 (17)0.064 (2)0.077 (2)0.0097 (15)0.0028 (16)0.0150 (18)
C60.0267 (17)0.066 (2)0.068 (2)0.0020 (15)0.0142 (16)0.0162 (18)
C70.0254 (14)0.0427 (15)0.0462 (15)0.0035 (12)0.0061 (11)0.0107 (12)
C80.0363 (18)0.0581 (17)0.0455 (16)0.0122 (14)0.0171 (14)0.0024 (15)
C90.0404 (19)0.0567 (17)0.0355 (14)0.0045 (14)0.0063 (13)0.0085 (14)
C100.0300 (16)0.0430 (14)0.0334 (13)0.0010 (12)0.0024 (12)0.0045 (12)
C110.0218 (13)0.0271 (11)0.0377 (13)0.0013 (10)0.0003 (10)0.0096 (10)
C120.0203 (13)0.0269 (11)0.0383 (13)0.0015 (10)0.0053 (10)0.0074 (11)
C130.0251 (14)0.0238 (12)0.0332 (13)0.0031 (10)0.0012 (11)0.0050 (11)
C140.0248 (13)0.0237 (11)0.0266 (11)0.0002 (10)0.0002 (10)0.0003 (9)
C150.0178 (13)0.0338 (13)0.0409 (14)0.0008 (11)0.0009 (11)0.0012 (12)
C160.0224 (14)0.0292 (12)0.0340 (13)0.0016 (10)0.0030 (10)0.0069 (10)
C170.0312 (15)0.0332 (13)0.0263 (12)0.0043 (11)0.0035 (11)0.0017 (10)
C180.0218 (12)0.0319 (12)0.0278 (12)0.0043 (10)0.0047 (9)0.0033 (11)
Geometric parameters (Å, º) top
Fe—O32.0054 (15)C2—H20.95 (3)
Fe—O52.0208 (15)C3—C41.413 (4)
Fe—O12.0316 (15)C3—H30.97 (3)
Fe—O72.0744 (16)C4—C121.400 (3)
Fe—N22.2311 (19)C4—C51.424 (4)
Fe—N12.2370 (19)C5—C61.340 (5)
Fe—N32.3381 (19)C5—H50.81 (3)
O1—C141.281 (3)C6—C71.434 (4)
O2—C141.232 (3)C6—H60.97 (3)
O3—C161.307 (3)C7—C111.400 (3)
O4—C161.211 (3)C7—C81.400 (4)
O5—C181.277 (3)C8—C91.358 (4)
O6—C181.232 (3)C8—H80.96 (3)
O7—H220.92 (4)C9—C101.394 (4)
O7—H230.79 (4)C9—H90.94 (3)
O8—H200.81 (3)C10—H100.96 (3)
O8—H210.83 (3)C11—C121.436 (3)
N1—C11.332 (3)C13—C141.513 (3)
N1—C121.355 (3)C13—H13A0.92 (2)
N2—C101.324 (3)C13—H13B0.97 (3)
N2—C111.363 (3)C15—C161.515 (3)
N3—C171.464 (3)C15—H15A1.01 (2)
N3—C151.465 (3)C15—H15B0.96 (2)
N3—C131.473 (3)C17—C181.513 (3)
C1—C21.395 (4)C17—H17B0.95 (3)
C1—H10.96 (3)C17—H17A1.02 (3)
C2—C31.357 (5)
O3—Fe—O5120.80 (7)C6—C5—C4121.5 (3)
O3—Fe—O1114.48 (6)C6—C5—H5122 (2)
O5—Fe—O199.09 (7)C4—C5—H5117 (2)
O3—Fe—O779.28 (7)C5—C6—C7121.1 (3)
O5—Fe—O783.76 (7)C5—C6—H6121.3 (16)
O1—Fe—O7160.68 (8)C7—C6—H6117.6 (16)
O3—Fe—N281.03 (7)C11—C7—C8117.5 (2)
O5—Fe—N2155.35 (7)C11—C7—C6118.8 (3)
O1—Fe—N279.45 (7)C8—C7—C6123.7 (3)
O7—Fe—N290.01 (7)C9—C8—C7119.3 (3)
O3—Fe—N1147.42 (6)C9—C8—H8118.9 (16)
O5—Fe—N181.66 (7)C7—C8—H8121.9 (16)
O1—Fe—N181.16 (6)C8—C9—C10119.9 (3)
O7—Fe—N180.37 (8)C8—C9—H9121.3 (18)
N2—Fe—N173.79 (7)C10—C9—H9118.7 (18)
O3—Fe—N373.07 (6)N2—C10—C9122.7 (3)
O5—Fe—N372.78 (6)N2—C10—H10116.0 (15)
O1—Fe—N372.51 (6)C9—C10—H10121.2 (15)
O7—Fe—N3126.11 (8)N2—C11—C7122.8 (2)
N2—Fe—N3128.58 (6)N2—C11—C12117.1 (2)
N1—Fe—N3139.31 (6)C7—C11—C12120.1 (2)
C14—O1—Fe120.96 (14)N1—C12—C4123.2 (2)
C16—O3—Fe123.84 (14)N1—C12—C11117.4 (2)
C18—O5—Fe122.78 (14)C4—C12—C11119.4 (2)
Fe—O7—H22119 (2)N3—C13—C14108.38 (18)
Fe—O7—H23113 (2)N3—C13—H13A109.4 (16)
H22—O7—H23111 (3)C14—C13—H13A105.9 (16)
H20—O8—H21109 (3)N3—C13—H13B112.9 (16)
C1—N1—C12118.0 (2)C14—C13—H13B109.6 (16)
C1—N1—Fe126.30 (19)H13A—C13—H13B110 (2)
C12—N1—Fe115.67 (14)O2—C14—O1124.2 (2)
C10—N2—C11117.7 (2)O2—C14—C13119.8 (2)
C10—N2—Fe126.26 (17)O1—C14—C13115.98 (19)
C11—N2—Fe115.68 (15)N3—C15—C16108.7 (2)
C17—N3—C15113.89 (19)N3—C15—H15A110.4 (14)
C17—N3—C13111.76 (18)C16—C15—H15A106.4 (13)
C15—N3—C13113.18 (18)N3—C15—H15B113.0 (14)
C17—N3—Fe108.72 (13)C16—C15—H15B111.5 (14)
C15—N3—Fe105.03 (13)H15A—C15—H15B106.6 (19)
C13—N3—Fe103.37 (14)O4—C16—O3124.4 (2)
N1—C1—C2122.8 (3)O4—C16—C15121.3 (2)
N1—C1—H1115.7 (16)O3—C16—C15114.33 (19)
C2—C1—H1121.5 (16)N3—C17—C18110.55 (19)
C3—C2—C1119.2 (3)N3—C17—H17B113.4 (15)
C3—C2—H2119 (2)C18—C17—H17B108.9 (16)
C1—C2—H2122 (2)N3—C17—H17A108.2 (14)
C2—C3—C4120.2 (3)C18—C17—H17A107.8 (14)
C2—C3—H3123.8 (19)H17B—C17—H17A108 (2)
C4—C3—H3116.1 (19)O6—C18—O5125.0 (2)
C12—C4—C3116.7 (3)O6—C18—C17118.9 (2)
C12—C4—C5119.2 (3)O5—C18—C17116.09 (19)
C3—C4—C5124.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H20···O60.82 (3)2.00 (3)2.818 (3)176 (4)
O8—H21···O3i0.83 (3)2.16 (3)2.971 (3)164 (4)
O7—H22···O2ii0.92 (3)1.79 (3)2.696 (2)168 (3)
O7—H23···O8iii0.78 (4)1.95 (4)2.734 (3)176 (4)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C6H6NO6)(C12H8N2)(H2O)].H2O
Mr460.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.7051 (5), 8.0381 (3), 19.8739 (7)
β (°) 92.879 (2)
V3)1867.51 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.86
Crystal size (mm)0.27 × 0.16 × 0.11
Data collection
DiffractometerNONIUS KappaCCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(Blessing, 1995, 1997)
Tmin, Tmax0.789, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
24260, 4467, 3086
Rint0.066
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 1.02
No. of reflections4467
No. of parameters343
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.50, 0.42

Computer programs: KappaCCD (Nonius B. V., 1998), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO (Otwinowski & Minor, 1997) & maXus (Mackay et al., 1998), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), Bruker SHELXTL V5.1 (Sheldrick, 1998).

Selected bond lengths (Å) top
Fe—O32.0054 (15)Fe—N22.2311 (19)
Fe—O52.0208 (15)Fe—N12.2370 (19)
Fe—O12.0316 (15)Fe—N32.3381 (19)
Fe—O72.0744 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H20···O60.82 (3)2.00 (3)2.818 (3)176 (4)
O8—H21···O3i0.83 (3)2.16 (3)2.971 (3)164 (4)
O7—H22···O2ii0.92 (3)1.79 (3)2.696 (2)168 (3)
O7—H23···O8iii0.78 (4)1.95 (4)2.734 (3)176 (4)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds