Download citation
Download citation
link to html
From the reduction of heptamolybdate, a polyoxomolybdate was obtained with the formula [Na_{6}^{+}(H2O)16(NH2CH2­COO)_{2}^{-}]4+·{Na+[H9Mo_{10}^{\rm VI}Mo_{8}^{\rm V}O56(NH2CH2COO)_{2}^{-}]5-}4-­·20H2O, i.e. hepta­sodium nona­hydrogen tetra­car­bam­ate hexa­deca­aqua­hexa­penta­conta­oxa­octa­deca­molyb­date(V,VI) icosa­hydrate. The 18 Mo atoms are connected by bridging O atoms to form a centrosymmetric girdle-like structure, in which MoV-MoV units are found. An Na+ cation occupies the central hole of the girdle, while four Na+ cations are bonded to the O atoms on the girdle edge. The girdles are linked into a one-dimensional chain by the other Na+ cations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101017206/ta1340sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101017206/ta1340Isup2.hkl
Contains datablock I

CCDC reference: 181989

Comment top

Polyoxometalates are molecular metal-oxygen clusters that are of fundamental and practical interest (Pope, 1983; Pope & Müller, 1994). One large branch of these are polyoxomolybdates. Traditional high-nuclearity oxomolybdenum complexes contain MoVI centers only (iso- and heteropolymolybdates) or both MoV and MoVI centers with delocalized d-electrons (heteropoly blues) (Chae et al., 1993). However, a new family of polyoxomolybdates whose MoV d-electrons are localized in MoV—MoV single bonds has emerged in recent years (Chae et al., 1993; Müller et al., 1998; Müller et al., 1999). Chae et al. (1993) concluded that all these compounds have [MoV2O8]6- units (Scheme I). Within this unit, the MoV—MoV bond distance lies in the 2.5–2.7 Å range, while MoV—O bond distances are in the 1.6–1.8 Å range for Oa, the 1.9–2.0 Å range for Ob, and the 2.0–2.2 Å range for Oc. Frequently, but not always, a sixth oxygen ligand is weakly bonded to each MoV center trans to the Oa ligand. From the reduction of heptamolybdate in aqueous solution of glycine, we have synthesized several oxomolybdenum compounds containing [MoV2O8]6- units (Liu, Wei et al., 2000a), among which are two interesting 18-Mo polyanions [Ca2+4(H2O)22(NH2CH2COO-)2]6+. {Ca2+[MoVI10MoV8O52(OH)4(NH3+CH2COO-)2]8-}6-. 20H2O (2) and [Ca2+3(H2O)13(NH3+CH2COO-)3]6+. {Ca2+[MoVI10MoV8O52(OH)4(NH3+CH2COO-)2]8-}6-. 19H2O (3) (Liu, Wei et al., 2000a). Here we report the structure of a new member of this family, [Na+6(H2O)16(NH2CH2COO-)2]4+. {Na+[H9MoVI10MoV8O56(NH2CH2COO-)2]5-}4-. 20H2O (1).

Compound (1) has an 18-Mo centrosymmetric girdle-like structure (Fig. 1). The Mo—O framework of the polyanion is approximately same as those of (2) and (3). Every Mo atom is coordinated by six oxygen atoms and sits in the center of a distorted octahedron. Eight Mo—O octahedra share edges and vertexes with each other to form an octagonal ring. Two octagonal rings, which are related by a symmetry center, overlap together through sixteen µ3-O atoms to form a slightly ramped girdle. Two Mo centers are situated on the outer edges of the girdle and connect to other Mo centers through four µ-oxygen atoms. A characteristic of this complex is the existence of Mo—Mo single bonds between Mo1 and Mo2, Mo3 and Mo4 as well as their symmetrically equivalent ones. The bond distances are in the range given by Chae et al. (1993). The bond-valence sums of these eight Mo atoms are calculated as 5 according to bond-valence theory (Brown, 1981). The coordination environment of these MoV centers are also the same as Chae et al. (1993) described, showing [MoV2O10]10- units which can be divided into [MoV2O8]6- units and weakly coordinated oxygen atoms trans to the terminal oxygen atoms. Two glycine molecules connect Mo1 and Mo4 of the other ring in a µ2-bridging mode with their carboxyl group. The structural characteristics described above are similar to those of (2) and (3) and can be regarded as common characteristics of this series of compounds.

There are seven Na+ cations in (1). One Na+ (Na1) is located at the centre of symmetry in the central hole of the girdle and is coordinated by six oxygen atoms of the MoV centers. The other six are on the periphery. Na3 is captured by the terminal oxygen atom (O21) of Mo7 and Na4 is captured by the terminal oxygen atom (O23) of Mo9. They stretch out of the girdle but are almost on the ring planes. Na3 and Na4 are connected by two µ2-O atoms while coordinated by three water molecules each. Na2 sits above the ring plane and is coordinated by six oxygen atoms, two (O18, O20) from one polyanion, two (O19, O25) from another polyanion, and two (O32 and its symmetrically equivalent one) from the glycine molecules that also coordinate to Na1. The four terminal oxygen atoms coordinate to one Na2 cation each, but O32 bridges two adjacent Na2 in a µ2 mode. Thus, there are two Na2 cations between two polyanions and these Na+ cations link the girdles into a one-dimensional chain (Fig 2).

The position of Na1 in (1) is the same as that of Ca1 in (2) and (3). Generally speaking, Na2 occupies a similar position to Ca2, while Na3 and Na4 occupy the similar positions of Ca3, but the number and coordination details of them are obviously different. However, the oxygen atoms of the polyanion that coordinate to them are similar. O18 and O25, the ones above the ring planes, as well as O21 and O23, the ones stretching out of the girdle but almost on the ring planes, all take part in the coordination to Na+ or Ca2+ cations. These terminal oxygen atoms can be regarded as the active positions of the polyanions. The similarity of a girdle-like backbone and active positions of these three compounds shows that they can be classified into a structural type with a formula of [MoVI10MoV8O56(glycine)2]14-. This type of structure, like the famous structural types of Keggin and Dawson anions, can be modified by cations and organic acids while keeping its main structure unchanged.

There are ten water molecules not connected to metal ions per asymmetric unit. One of these waters of hydration is divided between 2 sites (OW14 and OW15, 1.54 Å apart) with occupancies that were fixed at 0.75 and 1/4, respectively, during refinement. No H atoms, except those of the methylene C atom of glycine, were included in this structure determination.

Experimental top

0.70 g (0.57 mmol) (NH4)6Mo7O24·4H2O, 3.04 g (40.5 mmol) NH2CH2COOH, 2.00 g (34.2) mmol NaCl and 0.20 g (1.5 mmol) N2H4·H2SO4 were added into 60 ml (3.3 mol) water and the solution was stirred for 10 minutes while a color change occurred from yellow to green. The solution was stood without disturbance for one day while the color changed to red. Red crystals were obtained after half a month with the coexistence of a red precipitation. The crystals were carefully selected out and washed quickly with cold water and dried in air at room temperature.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); data reduction: TEXSAN (Molecular Structure Corporation, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Siemens, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The structure of (I) omitting some water molecules and all H atoms. Mo (large hatched spheres), Na (crossed), O (shaded), C (small hatched) and N (stippled).
[Figure 2] Fig. 2. The linking of girdles into one-dimensional chains.
(I) top
Crystal data top
C8H97Mo18N4Na7O100Z = 1
Mr = 3737.75F(000) = 1806
Triclinic, P1Dx = 2.573 Mg m3
a = 11.913 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.027 (3) ÅCell parameters from 25 reflections
c = 15.466 (3) Åθ = 5.0–11.2°
α = 114.37 (3)°µ = 2.42 mm1
β = 99.00 (3)°T = 293 K
γ = 99.17 (3)°Planar, red-brown
V = 2412.6 (8) Å30.40 × 0.25 × 0.05 mm
Data collection top
AFC6S
diffractometer
6755 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 25.0°, θmin = 1.5°
2θ scansh = 1413
Absorption correction: psi scan
Coppens et al. (1965)
k = 017
Tmin = 0.494, Tmax = 0.886l = 1816
8848 measured reflections3 standard reflections every 400 reflections
8499 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: hydrogen atoms are generated by HFIX instructions
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.1074P)2 + 22.8082P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.004
8499 reflectionsΔρmax = 2.36 e Å3
592 parametersΔρmin = 2.03 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00063 (17)
Crystal data top
C8H97Mo18N4Na7O100γ = 99.17 (3)°
Mr = 3737.75V = 2412.6 (8) Å3
Triclinic, P1Z = 1
a = 11.913 (2) ÅMo Kα radiation
b = 15.027 (3) ŵ = 2.42 mm1
c = 15.466 (3) ÅT = 293 K
α = 114.37 (3)°0.40 × 0.25 × 0.05 mm
β = 99.00 (3)°
Data collection top
AFC6S
diffractometer
6755 reflections with I > 2σ(I)
Absorption correction: psi scan
Coppens et al. (1965)
Rint = 0.033
Tmin = 0.494, Tmax = 0.8863 standard reflections every 400 reflections
8848 measured reflections intensity decay: 1%
8499 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1074P)2 + 22.8082P]
where P = (Fo2 + 2Fc2)/3
8499 reflectionsΔρmax = 2.36 e Å3
592 parametersΔρmin = 2.03 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.45544 (7)0.20523 (6)0.41646 (6)0.0200 (2)
Mo20.34451 (7)0.23688 (6)0.27704 (6)0.0194 (2)
Mo30.39151 (7)0.48204 (6)0.24202 (6)0.0192 (2)
Mo40.54359 (7)0.65407 (6)0.34949 (6)0.0202 (2)
Mo50.18376 (7)0.20589 (6)0.44240 (6)0.0229 (2)
Mo60.04084 (7)0.23893 (6)0.26445 (6)0.0227 (2)
Mo70.08759 (7)0.47684 (6)0.23182 (6)0.0223 (2)
Mo80.27859 (8)0.69214 (6)0.37146 (6)0.0230 (2)
Mo90.19091 (8)0.27778 (6)0.11418 (6)0.0227 (2)
Na10.50000.50000.50000.0234 (11)
Na20.0193 (4)0.6066 (4)0.4837 (3)0.0364 (10)
Na30.1946 (6)0.3886 (5)0.0111 (4)0.0639 (16)
Na40.0920 (7)0.1558 (5)0.1174 (5)0.081 (2)
O10.2953 (6)0.1412 (5)0.3319 (5)0.0214 (14)
O20.3409 (6)0.3537 (5)0.2465 (5)0.0199 (14)
O30.5696 (6)0.2914 (5)0.5514 (5)0.0201 (14)
O40.2157 (5)0.3017 (5)0.3682 (5)0.0193 (14)
O50.3897 (6)0.6234 (5)0.2605 (5)0.0246 (15)
O60.3450 (5)0.2730 (5)0.5125 (5)0.0205 (14)
O70.2234 (6)0.4220 (5)0.1462 (5)0.0218 (14)
O80.0921 (6)0.3446 (5)0.2281 (5)0.0243 (15)
O90.2608 (6)0.5299 (5)0.3369 (5)0.0198 (14)
O100.5069 (6)0.5307 (5)0.3633 (5)0.0201 (14)
O110.4717 (6)0.3238 (5)0.3922 (5)0.0211 (14)
O120.1759 (6)0.1899 (5)0.1787 (5)0.0203 (14)
O130.0662 (7)0.1454 (5)0.3186 (5)0.0295 (16)
O140.1575 (6)0.6113 (5)0.2512 (5)0.0246 (15)
O150.0668 (7)0.1576 (6)0.1627 (6)0.039 (2)
O160.5455 (6)0.1385 (5)0.3588 (5)0.0282 (16)
O170.4089 (7)0.1694 (6)0.1909 (5)0.0343 (18)
O180.0072 (7)0.5069 (6)0.3169 (6)0.0348 (18)
O190.1131 (7)0.2829 (6)0.5172 (6)0.0336 (17)
O200.1972 (7)0.7089 (6)0.4563 (6)0.0356 (18)
O210.0093 (7)0.4395 (6)0.1229 (5)0.0349 (18)
O220.4623 (7)0.4430 (6)0.1519 (5)0.0342 (18)
O230.0584 (7)0.2315 (6)0.0302 (5)0.0371 (19)
O240.1623 (8)0.0999 (6)0.4621 (6)0.042 (2)
O250.0326 (7)0.3065 (6)0.3456 (6)0.0335 (17)
O260.3000 (8)0.8011 (6)0.3580 (6)0.041 (2)
O270.6462 (7)0.6394 (6)0.2828 (6)0.0339 (17)
O280.2882 (7)0.2366 (6)0.0439 (6)0.0365 (18)
O290.5689 (6)0.8066 (5)0.3650 (5)0.0247 (15)
O300.4198 (6)0.0970 (5)0.4743 (5)0.0260 (15)
C10.4089 (9)0.1115 (8)0.5588 (8)0.025 (2)
C20.3630 (11)0.0183 (8)0.5699 (8)0.033 (3)
H2A0.28960.02040.52120.080*
H2B0.41870.02330.55800.080*
N10.3437 (10)0.0431 (7)0.6682 (8)0.044 (3)
O310.6987 (6)0.5019 (5)0.5047 (5)0.0257 (15)
O320.1356 (7)0.5209 (6)0.5371 (6)0.0354 (18)
C30.7563 (9)0.4678 (8)0.4436 (7)0.025 (2)
C40.6899 (11)0.4069 (13)0.3367 (8)0.057 (4)
H30.62990.35110.33030.080*
H40.65080.44930.31610.080*
N20.7656 (8)0.3674 (8)0.2725 (7)0.039 (2)
OW10.0816 (10)0.3236 (9)0.1116 (8)0.067 (3)
OW20.1966 (11)0.2371 (10)0.0303 (11)0.082 (4)
OW30.1612 (10)0.5559 (8)0.0221 (8)0.063 (3)
OW40.3741 (11)0.3253 (10)0.1074 (9)0.076 (3)
OW50.2671 (13)0.4722 (11)0.1542 (11)0.098 (4)*
OW60.1303 (18)0.0181 (10)0.0618 (12)0.128 (7)
OW70.2476 (13)0.0742 (11)0.2612 (11)0.097 (4)*
OW80.0365 (15)0.0607 (13)0.1996 (13)0.118 (5)*
OW90.8268 (11)1.1280 (9)0.3740 (10)0.091 (4)
OW100.3233 (13)0.1564 (11)0.2121 (12)0.098 (4)
OW110.5499 (15)0.2530 (15)0.0782 (15)0.126 (6)
OW120.4416 (16)0.8863 (12)0.1906 (12)0.121 (6)
OW130.085 (2)0.3152 (18)0.7134 (15)0.154 (8)
OW140.624 (3)0.663 (2)0.074 (2)0.161 (11)*0.75
OW150.533 (5)0.561 (4)0.035 (4)0.089 (15)*0.25
OW160.204 (2)0.181 (2)0.744 (2)0.204 (11)*
OW170.400 (3)0.950 (3)0.035 (3)0.270 (16)*
OW180.272 (3)0.049 (3)0.121 (3)0.269 (16)*
OW190.039 (5)0.106 (4)0.579 (4)0.42 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0232 (5)0.0173 (4)0.0168 (4)0.0034 (3)0.0015 (3)0.0068 (3)
Mo20.0218 (4)0.0172 (4)0.0160 (4)0.0032 (3)0.0016 (3)0.0062 (3)
Mo30.0216 (4)0.0196 (4)0.0147 (4)0.0036 (3)0.0018 (3)0.0075 (3)
Mo40.0221 (4)0.0196 (4)0.0167 (4)0.0024 (3)0.0021 (3)0.0080 (3)
Mo50.0217 (5)0.0241 (4)0.0213 (4)0.0014 (3)0.0021 (3)0.0114 (4)
Mo60.0195 (4)0.0252 (5)0.0188 (4)0.0011 (3)0.0004 (3)0.0086 (4)
Mo70.0207 (4)0.0242 (5)0.0181 (4)0.0044 (3)0.0001 (3)0.0078 (3)
Mo80.0235 (5)0.0206 (4)0.0207 (4)0.0059 (3)0.0002 (3)0.0072 (3)
Mo90.0266 (5)0.0222 (4)0.0132 (4)0.0031 (3)0.0002 (3)0.0050 (3)
Na10.024 (3)0.027 (3)0.020 (3)0.006 (2)0.006 (2)0.011 (2)
Na20.031 (2)0.043 (3)0.029 (2)0.010 (2)0.0078 (19)0.010 (2)
Na30.065 (4)0.068 (4)0.052 (3)0.010 (3)0.004 (3)0.029 (3)
Na40.081 (5)0.064 (4)0.062 (4)0.004 (3)0.016 (4)0.011 (3)
O10.017 (3)0.018 (3)0.024 (4)0.001 (3)0.002 (3)0.009 (3)
O20.018 (3)0.018 (3)0.026 (4)0.004 (3)0.005 (3)0.015 (3)
O30.019 (3)0.022 (3)0.021 (3)0.009 (3)0.006 (3)0.010 (3)
O40.013 (3)0.020 (3)0.023 (3)0.001 (3)0.005 (3)0.010 (3)
O50.031 (4)0.023 (4)0.017 (3)0.011 (3)0.003 (3)0.007 (3)
O60.015 (3)0.024 (3)0.020 (3)0.003 (3)0.003 (3)0.009 (3)
O70.019 (3)0.020 (3)0.018 (3)0.002 (3)0.004 (3)0.005 (3)
O80.032 (4)0.021 (3)0.019 (3)0.008 (3)0.004 (3)0.009 (3)
O90.021 (3)0.015 (3)0.019 (3)0.001 (3)0.001 (3)0.007 (3)
O100.021 (3)0.017 (3)0.021 (3)0.008 (3)0.006 (3)0.012 (3)
O110.027 (4)0.018 (3)0.017 (3)0.002 (3)0.004 (3)0.010 (3)
O120.019 (3)0.022 (3)0.019 (3)0.001 (3)0.004 (3)0.010 (3)
O130.039 (4)0.022 (4)0.018 (4)0.000 (3)0.004 (3)0.007 (3)
O140.026 (4)0.023 (4)0.025 (4)0.004 (3)0.002 (3)0.013 (3)
O150.027 (4)0.042 (5)0.031 (4)0.006 (3)0.008 (3)0.009 (4)
O160.029 (4)0.028 (4)0.032 (4)0.012 (3)0.009 (3)0.016 (3)
O170.039 (4)0.032 (4)0.024 (4)0.010 (3)0.006 (3)0.005 (3)
O180.038 (4)0.035 (4)0.029 (4)0.008 (3)0.012 (3)0.012 (3)
O190.027 (4)0.044 (5)0.036 (4)0.011 (3)0.014 (3)0.020 (4)
O200.033 (4)0.036 (4)0.029 (4)0.010 (3)0.003 (3)0.007 (3)
O210.036 (4)0.038 (4)0.023 (4)0.001 (3)0.006 (3)0.013 (3)
O220.047 (5)0.027 (4)0.022 (4)0.006 (3)0.008 (3)0.006 (3)
O230.038 (5)0.039 (4)0.021 (4)0.004 (4)0.007 (3)0.007 (3)
O240.044 (5)0.042 (5)0.043 (5)0.006 (4)0.004 (4)0.026 (4)
O250.034 (4)0.042 (4)0.028 (4)0.012 (3)0.011 (3)0.017 (4)
O260.046 (5)0.031 (4)0.039 (5)0.013 (4)0.006 (4)0.011 (4)
O270.038 (4)0.035 (4)0.028 (4)0.005 (3)0.010 (3)0.014 (3)
O280.045 (5)0.037 (4)0.025 (4)0.013 (4)0.010 (4)0.010 (3)
O290.028 (4)0.014 (3)0.033 (4)0.007 (3)0.004 (3)0.016 (3)
O300.023 (4)0.023 (4)0.032 (4)0.004 (3)0.008 (3)0.013 (3)
C10.024 (5)0.025 (5)0.028 (6)0.008 (4)0.000 (4)0.014 (5)
C20.047 (7)0.027 (6)0.038 (6)0.015 (5)0.014 (5)0.023 (5)
N10.069 (8)0.033 (5)0.037 (6)0.001 (5)0.019 (5)0.023 (5)
O310.023 (4)0.034 (4)0.017 (3)0.008 (3)0.004 (3)0.009 (3)
O320.029 (4)0.042 (5)0.031 (4)0.013 (3)0.009 (3)0.010 (4)
C30.022 (5)0.030 (5)0.020 (5)0.004 (4)0.004 (4)0.011 (4)
C40.024 (6)0.102 (12)0.019 (6)0.018 (7)0.010 (5)0.001 (7)
N20.025 (5)0.061 (7)0.023 (5)0.017 (5)0.009 (4)0.008 (5)
OW10.077 (8)0.075 (7)0.050 (6)0.012 (6)0.004 (5)0.035 (6)
OW20.063 (8)0.079 (8)0.112 (11)0.009 (6)0.004 (7)0.059 (8)
OW30.082 (8)0.068 (7)0.049 (6)0.019 (6)0.009 (5)0.037 (5)
OW40.081 (8)0.086 (8)0.060 (7)0.006 (7)0.002 (6)0.044 (7)
OW60.194 (19)0.055 (8)0.089 (11)0.003 (10)0.022 (12)0.004 (7)
OW90.074 (8)0.064 (8)0.092 (9)0.018 (6)0.038 (7)0.001 (7)
OW100.096 (10)0.096 (10)0.122 (12)0.030 (8)0.043 (9)0.058 (9)
OW110.097 (12)0.141 (15)0.164 (17)0.046 (11)0.041 (12)0.082 (14)
OW120.131 (14)0.094 (11)0.109 (12)0.017 (10)0.026 (10)0.042 (10)
OW130.18 (2)0.21 (2)0.140 (17)0.092 (18)0.082 (16)0.116 (17)
Geometric parameters (Å, º) top
Mo1—O161.691 (7)Mo9—O121.960 (6)
Mo1—O111.954 (6)Mo9—O71.969 (7)
Mo1—O11.967 (6)Mo9—O22.228 (7)
Mo1—O32.050 (7)Mo9—O82.250 (7)
Mo1—O302.173 (7)Na1—O31i2.352 (7)
Mo1—O62.182 (7)Na1—O312.352 (7)
Mo1—Mo22.6033 (13)Na1—O10i2.352 (6)
Mo2—O171.687 (8)Na1—O102.352 (6)
Mo2—O111.943 (7)Na1—O11i2.409 (7)
Mo2—O22.001 (6)Na1—O112.409 (7)
Mo2—O12.006 (7)Na2—O322.313 (9)
Mo2—O122.134 (7)Na2—O32ii2.315 (9)
Mo2—O42.305 (6)Na2—O182.354 (9)
Mo2—Mo93.2038 (15)Na2—O25ii2.379 (9)
Mo3—O221.687 (8)Na2—O19ii2.469 (9)
Mo3—O101.920 (7)Na2—O202.611 (9)
Mo3—O21.960 (6)Na2—Na2ii3.416 (10)
Mo3—O52.028 (7)Na3—OW42.350 (13)
Mo3—O72.101 (6)Na3—O212.371 (9)
Mo3—O92.301 (7)Na3—OW22.411 (13)
Mo3—Mo42.5974 (18)Na3—OW32.412 (12)
Mo3—Mo93.196 (2)Na3—OW52.424 (17)
Mo4—O271.703 (8)Na3—OW12.461 (14)
Mo4—O101.943 (6)Na3—Na43.750 (10)
Mo4—O51.971 (7)Na4—OW72.371 (17)
Mo4—O6i2.059 (7)Na4—O232.376 (10)
Mo4—O292.169 (6)Na4—OW82.409 (19)
Mo4—O3i2.191 (6)Na4—OW12.469 (14)
Mo5—O191.701 (8)Na4—OW62.554 (19)
Mo5—O241.728 (8)Na4—OW22.709 (17)
Mo5—O61.927 (6)O3—Mo8i1.922 (6)
Mo5—O131.942 (7)O3—Mo4i2.191 (6)
Mo5—O42.205 (6)O6—Mo4i2.059 (7)
Mo5—O12.320 (7)O19—Na2ii2.469 (9)
Mo6—O151.702 (7)O25—Na2ii2.379 (9)
Mo6—O251.717 (8)O29—C1i1.255 (12)
Mo6—O81.936 (7)O30—C11.266 (12)
Mo6—O131.949 (7)C1—O29i1.255 (12)
Mo6—O42.209 (6)C1—C21.507 (14)
Mo6—O122.264 (7)C2—N11.474 (15)
Mo7—O211.700 (7)C2—H2A0.9700
Mo7—O181.701 (8)C2—H2B0.9700
Mo7—O141.937 (7)O31—C31.242 (12)
Mo7—O81.973 (7)O32—C3i1.243 (12)
Mo7—O92.211 (6)O32—Na2ii2.315 (9)
Mo7—O72.291 (7)C3—O32i1.243 (12)
Mo8—O201.711 (8)C3—C41.519 (15)
Mo8—O261.719 (8)C4—N21.456 (14)
Mo8—O3i1.922 (7)C4—N21.456 (14)
Mo8—O141.938 (7)C4—H30.9700
Mo8—O92.236 (6)C4—H40.9700
Mo8—O52.333 (7)OW14—OW151.54 (6)
Mo9—O231.710 (8)OW15—OW15iii1.67 (11)
Mo9—O281.725 (8)
O16—Mo1—O11106.3 (3)O23—Mo9—O886.5 (3)
O16—Mo1—O1107.5 (3)O28—Mo9—O8169.9 (3)
O11—Mo1—O194.2 (3)O12—Mo9—O874.2 (3)
O16—Mo1—O398.7 (3)O7—Mo9—O875.1 (3)
O11—Mo1—O389.4 (3)O2—Mo9—O881.0 (2)
O1—Mo1—O3151.3 (3)O23—Mo9—Mo3141.0 (3)
O16—Mo1—O3087.7 (3)O28—Mo9—Mo386.7 (3)
O11—Mo1—O30165.2 (3)O12—Mo9—Mo3112.75 (19)
O1—Mo1—O3085.9 (3)O7—Mo9—Mo339.72 (19)
O3—Mo1—O3083.6 (3)O2—Mo9—Mo337.25 (16)
O16—Mo1—O6166.4 (3)O8—Mo9—Mo385.20 (18)
O11—Mo1—O686.1 (3)O23—Mo9—Mo2141.6 (3)
O1—Mo1—O676.4 (3)O28—Mo9—Mo287.1 (3)
O3—Mo1—O675.5 (2)O12—Mo9—Mo240.48 (19)
O30—Mo1—O679.5 (3)O7—Mo9—Mo2112.27 (19)
O16—Mo1—Mo2100.5 (2)O2—Mo9—Mo238.18 (16)
O11—Mo1—Mo247.9 (2)O8—Mo9—Mo285.06 (17)
O1—Mo1—Mo249.70 (19)Mo3—Mo9—Mo275.24 (4)
O3—Mo1—Mo2136.64 (18)O31i—Na1—O31180.0
O30—Mo1—Mo2135.43 (19)O31i—Na1—O10i83.0 (2)
O6—Mo1—Mo291.91 (17)O31—Na1—O10i97.0 (2)
O17—Mo2—O11105.7 (3)O31i—Na1—O1097.0 (2)
O17—Mo2—O2100.1 (3)O31—Na1—O1083.0 (2)
O11—Mo2—O289.1 (3)O10i—Na1—O10180.0
O17—Mo2—O1102.0 (3)O31i—Na1—O11i82.7 (2)
O11—Mo2—O193.3 (3)O31—Na1—O11i97.3 (2)
O2—Mo2—O1156.3 (3)O10i—Na1—O11i87.4 (2)
O17—Mo2—O1294.8 (3)O10—Na1—O11i92.6 (2)
O11—Mo2—O12157.3 (3)O31i—Na1—O1197.3 (2)
O2—Mo2—O1277.5 (3)O31—Na1—O1182.7 (2)
O1—Mo2—O1292.0 (3)O10i—Na1—O1192.6 (2)
O17—Mo2—O4166.2 (3)O10—Na1—O1187.4 (2)
O11—Mo2—O488.0 (3)O11i—Na1—O11180.0
O2—Mo2—O482.4 (2)O32—Na2—O32ii84.8 (3)
O1—Mo2—O474.2 (3)O32—Na2—O1894.0 (3)
O12—Mo2—O472.4 (2)O32ii—Na2—O1884.9 (3)
O17—Mo2—Mo195.9 (3)O32—Na2—O25ii81.3 (3)
O11—Mo2—Mo148.26 (18)O32ii—Na2—O25ii91.8 (3)
O2—Mo2—Mo1137.21 (19)O18—Na2—O25ii174.5 (4)
O1—Mo2—Mo148.42 (18)O32—Na2—O19ii160.8 (3)
O12—Mo2—Mo1140.39 (17)O32ii—Na2—O19ii91.4 (3)
O4—Mo2—Mo191.31 (16)O18—Na2—O19ii104.4 (3)
O17—Mo2—Mo988.3 (3)O25ii—Na2—O19ii80.0 (3)
O11—Mo2—Mo9132.54 (19)O32—Na2—O2092.2 (3)
O2—Mo2—Mo943.47 (19)O32ii—Na2—O20162.7 (3)
O1—Mo2—Mo9128.59 (19)O18—Na2—O2078.3 (3)
O12—Mo2—Mo936.61 (17)O25ii—Na2—O20104.6 (3)
O4—Mo2—Mo984.21 (16)O19ii—Na2—O2096.8 (3)
Mo1—Mo2—Mo9175.35 (4)O32—Na2—Na2ii42.5 (2)
O22—Mo3—O10106.6 (3)O32ii—Na2—Na2ii42.4 (2)
O22—Mo3—O298.7 (3)O18—Na2—Na2ii89.2 (3)
O10—Mo3—O289.7 (3)O25ii—Na2—Na2ii85.4 (3)
O22—Mo3—O5101.9 (3)O19ii—Na2—Na2ii130.9 (3)
O10—Mo3—O592.8 (3)O20—Na2—Na2ii132.3 (3)
O2—Mo3—O5157.6 (3)OW4—Na3—O21175.2 (5)
O22—Mo3—O794.5 (3)OW4—Na3—OW296.3 (5)
O10—Mo3—O7156.9 (3)O21—Na3—OW280.4 (4)
O2—Mo3—O777.8 (3)OW4—Na3—OW395.0 (4)
O5—Mo3—O791.8 (3)O21—Na3—OW388.5 (4)
O22—Mo3—O9167.2 (3)OW2—Na3—OW3168.4 (5)
O10—Mo3—O986.1 (3)OW4—Na3—OW598.0 (5)
O2—Mo3—O983.0 (3)O21—Na3—OW585.8 (5)
O5—Mo3—O974.9 (3)OW2—Na3—OW595.1 (5)
O7—Mo3—O973.3 (2)OW3—Na3—OW580.6 (5)
O22—Mo3—Mo495.5 (3)OW4—Na3—OW193.3 (5)
O10—Mo3—Mo448.12 (18)O21—Na3—OW183.0 (4)
O2—Mo3—Mo4137.8 (2)OW2—Na3—OW186.4 (5)
O5—Mo3—Mo448.55 (19)OW3—Na3—OW195.8 (4)
O7—Mo3—Mo4140.31 (18)OW5—Na3—OW1168.4 (5)
O9—Mo3—Mo491.53 (16)OW4—Na3—Na492.6 (4)
O22—Mo3—Mo987.6 (3)O21—Na3—Na482.6 (3)
O10—Mo3—Mo9133.04 (18)OW2—Na3—Na446.1 (4)
O2—Mo3—Mo943.46 (19)OW3—Na3—Na4136.1 (4)
O5—Mo3—Mo9128.6 (2)OW5—Na3—Na4140.8 (4)
O7—Mo3—Mo936.80 (18)OW1—Na3—Na440.5 (3)
O9—Mo3—Mo985.03 (16)OW7—Na4—O23176.6 (6)
Mo4—Mo3—Mo9176.17 (4)OW7—Na4—OW891.7 (6)
O27—Mo4—O10105.4 (3)O23—Na4—OW889.1 (5)
O27—Mo4—O5108.2 (3)OW7—Na4—OW193.2 (5)
O10—Mo4—O593.9 (3)O23—Na4—OW189.4 (4)
O27—Mo4—O6i98.6 (3)OW8—Na4—OW1117.4 (6)
O10—Mo4—O6i90.7 (3)OW7—Na4—OW695.7 (6)
O5—Mo4—O6i150.5 (3)O23—Na4—OW681.1 (5)
O27—Mo4—O2987.2 (3)OW8—Na4—OW683.6 (6)
O10—Mo4—O29166.3 (3)OW1—Na4—OW6157.0 (6)
O5—Mo4—O2986.9 (3)OW7—Na4—OW2104.8 (5)
O6i—Mo4—O2982.1 (3)O23—Na4—OW273.4 (4)
O27—Mo4—O3i167.3 (3)OW8—Na4—OW2155.6 (6)
O10—Mo4—O3i85.9 (3)OW1—Na4—OW280.0 (4)
O5—Mo4—O3i76.2 (3)OW6—Na4—OW277.2 (5)
O6i—Mo4—O3i75.1 (2)OW7—Na4—Na398.3 (4)
O29—Mo4—O3i81.0 (3)O23—Na4—Na382.2 (3)
O27—Mo4—Mo399.3 (3)OW8—Na4—Na3155.8 (5)
O10—Mo4—Mo347.4 (2)OW1—Na4—Na340.4 (3)
O5—Mo4—Mo350.4 (2)OW6—Na4—Na3117.0 (5)
O6i—Mo4—Mo3137.53 (19)OW2—Na4—Na339.9 (3)
O29—Mo4—Mo3136.85 (19)Mo1—O1—Mo281.9 (2)
O3i—Mo4—Mo392.64 (18)Mo1—O1—Mo5101.4 (3)
O19—Mo5—O24104.6 (4)Mo2—O1—Mo5110.4 (3)
O19—Mo5—O6100.9 (3)Mo3—O2—Mo2160.9 (4)
O24—Mo5—O6102.1 (3)Mo3—O2—Mo999.3 (3)
O19—Mo5—O13100.5 (4)Mo2—O2—Mo998.3 (3)
O24—Mo5—O1395.5 (4)Mo8i—O3—Mo1143.0 (3)
O6—Mo5—O13147.7 (3)Mo8i—O3—Mo4i108.5 (3)
O19—Mo5—O493.3 (3)Mo1—O3—Mo4i104.4 (3)
O24—Mo5—O4160.1 (3)Mo5—O4—Mo695.3 (2)
O6—Mo5—O482.6 (3)Mo5—O4—Mo2104.1 (3)
O13—Mo5—O472.3 (3)Mo6—O4—Mo2105.7 (3)
O19—Mo5—O1163.3 (3)Mo4—O5—Mo381.0 (2)
O24—Mo5—O192.1 (3)Mo4—O5—Mo8101.5 (3)
O6—Mo5—O173.9 (3)Mo3—O5—Mo8109.8 (3)
O13—Mo5—O178.7 (3)Mo5—O6—Mo4i143.2 (4)
O4—Mo5—O170.4 (2)Mo5—O6—Mo1107.8 (3)
O15—Mo6—O25104.4 (4)Mo4i—O6—Mo1104.4 (3)
O15—Mo6—O8100.7 (3)Mo9—O7—Mo3103.5 (3)
O25—Mo6—O895.0 (3)Mo9—O7—Mo7103.0 (3)
O15—Mo6—O1398.0 (4)Mo3—O7—Mo7109.4 (3)
O25—Mo6—O1397.8 (3)Mo6—O8—Mo7150.4 (4)
O8—Mo6—O13153.9 (3)Mo6—O8—Mo9104.7 (3)
O15—Mo6—O4158.3 (3)Mo7—O8—Mo9104.4 (3)
O25—Mo6—O496.1 (3)Mo7—O9—Mo894.5 (2)
O8—Mo6—O484.0 (3)Mo7—O9—Mo3105.2 (3)
O13—Mo6—O472.1 (3)Mo8—O9—Mo3103.9 (3)
O15—Mo6—O1289.0 (3)Mo3—O10—Mo484.5 (3)
O25—Mo6—O12164.3 (3)Mo3—O10—Na1130.2 (3)
O8—Mo6—O1274.3 (3)Mo4—O10—Na1132.6 (3)
O13—Mo6—O1288.1 (3)Mo2—O11—Mo183.8 (3)
O4—Mo6—O1271.8 (2)Mo2—O11—Na1128.2 (3)
O21—Mo7—O18105.3 (4)Mo1—O11—Na1131.7 (3)
O21—Mo7—O1497.1 (3)Mo9—O12—Mo2102.9 (3)
O18—Mo7—O1499.1 (3)Mo9—O12—Mo6103.4 (3)
O21—Mo7—O8100.3 (3)Mo2—O12—Mo6109.8 (3)
O18—Mo7—O894.5 (3)Mo5—O13—Mo6114.0 (3)
O14—Mo7—O8154.2 (3)Mo7—O14—Mo8114.8 (3)
O21—Mo7—O9157.3 (3)Mo7—O18—Na2143.3 (5)
O18—Mo7—O996.5 (3)Mo5—O19—Na2ii140.6 (4)
O14—Mo7—O972.6 (3)Mo8—O20—Na2138.8 (4)
O8—Mo7—O984.3 (3)Mo7—O21—Na3157.5 (5)
O21—Mo7—O788.1 (3)Mo9—O23—Na4164.0 (5)
O18—Mo7—O7163.9 (3)Mo6—O25—Na2ii141.7 (4)
O14—Mo7—O787.7 (3)C1i—O29—Mo4129.4 (6)
O8—Mo7—O774.0 (3)C1—O30—Mo1129.6 (6)
O9—Mo7—O771.6 (2)O29i—C1—O30128.5 (9)
O20—Mo8—O26106.0 (4)O29i—C1—C2115.5 (9)
O20—Mo8—O3i100.7 (3)O30—C1—C2116.0 (9)
O26—Mo8—O3i101.1 (3)N1—C2—C1112.1 (9)
O20—Mo8—O14100.6 (3)N1—C2—H2A109.2
O26—Mo8—O1496.3 (3)C1—C2—H2A109.2
O3i—Mo8—O14147.4 (3)N1—C2—H2B109.2
O20—Mo8—O992.1 (3)C1—C2—H2B109.2
O26—Mo8—O9160.1 (3)H2A—C2—H2B107.9
O3i—Mo8—O982.9 (3)C3—O31—Na1136.0 (6)
O14—Mo8—O972.0 (3)C3i—O32—Na2131.6 (7)
O20—Mo8—O5162.2 (3)C3i—O32—Na2ii132.5 (7)
O26—Mo8—O591.7 (4)Na2—O32—Na2ii95.2 (3)
O3i—Mo8—O573.7 (3)O31—C3—O32i125.2 (9)
O14—Mo8—O578.5 (3)O31—C3—C4117.7 (9)
O9—Mo8—O570.6 (2)O32i—C3—C4117.1 (9)
O23—Mo9—O28103.6 (4)N2—C4—C3112.9 (9)
O23—Mo9—O12101.3 (3)N2—C4—H3109.0
O28—Mo9—O12103.6 (3)C3—C4—H3109.0
O23—Mo9—O7101.4 (3)N2—C4—H4109.0
O28—Mo9—O7102.2 (3)C3—C4—H4109.0
O12—Mo9—O7140.1 (3)H3—C4—H4107.8
O23—Mo9—O2167.5 (3)Na3—OW1—Na499.1 (5)
O28—Mo9—O288.9 (3)Na3—OW2—Na494.0 (5)
O12—Mo9—O276.1 (2)OW14—OW15—OW15iii159 (6)
O7—Mo9—O274.6 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H97Mo18N4Na7O100
Mr3737.75
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.913 (2), 15.027 (3), 15.466 (3)
α, β, γ (°)114.37 (3), 99.00 (3), 99.17 (3)
V3)2412.6 (8)
Z1
Radiation typeMo Kα
µ (mm1)2.42
Crystal size (mm)0.40 × 0.25 × 0.05
Data collection
DiffractometerAFC6S
diffractometer
Absorption correctionPsi scan
Coppens et al. (1965)
Tmin, Tmax0.494, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
8848, 8499, 6755
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.179, 1.08
No. of reflections8499
No. of parameters592
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1074P)2 + 22.8082P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.36, 2.03

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994), TEXSAN (Molecular Structure Corporation, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Siemens, 1990).

Selected bond lengths (Å) top
Mo1—O161.691 (7)Mo5—O61.927 (6)
Mo1—O111.954 (6)Mo5—O131.942 (7)
Mo1—O11.967 (6)Mo5—O42.205 (6)
Mo1—O32.050 (7)Mo5—O12.320 (7)
Mo1—O302.173 (7)Mo6—O151.702 (7)
Mo1—O62.182 (7)Mo6—O251.717 (8)
Mo1—Mo22.6033 (13)Mo6—O81.936 (7)
Mo2—O171.687 (8)Mo6—O131.949 (7)
Mo2—O111.943 (7)Mo6—O42.209 (6)
Mo2—O22.001 (6)Mo6—O122.264 (7)
Mo2—O12.006 (7)Mo7—O211.700 (7)
Mo2—O122.134 (7)Mo7—O181.701 (8)
Mo2—O42.305 (6)Mo7—O141.937 (7)
Mo2—Mo93.2038 (15)Mo7—O81.973 (7)
Mo3—O221.687 (8)Mo7—O92.211 (6)
Mo3—O101.920 (7)Mo7—O72.291 (7)
Mo3—O21.960 (6)Mo8—O201.711 (8)
Mo3—O52.028 (7)Mo8—O261.719 (8)
Mo3—O72.101 (6)Mo8—O3i1.922 (7)
Mo3—O92.301 (7)Mo8—O141.938 (7)
Mo3—Mo42.5974 (18)Mo8—O92.236 (6)
Mo4—O271.703 (8)Mo8—O52.333 (7)
Mo4—O101.943 (6)Mo9—O231.710 (8)
Mo4—O51.971 (7)Mo9—O281.725 (8)
Mo4—O6i2.059 (7)Mo9—O121.960 (6)
Mo4—O292.169 (6)Mo9—O71.969 (7)
Mo4—O3i2.191 (6)Mo9—O22.228 (7)
Mo5—O191.701 (8)Mo9—O82.250 (7)
Mo5—O241.728 (8)
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds