Download citation
Download citation
link to html
The title compound, poly[[cobalt(II)-[mu]-(hexaoxodivanadium-O:O')]-[mu]-bipyridine-N:N'], [CoV2O6(C10H8N2)], has been prepared hydro­thermally and characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction. The structure consists of bimetallic oxide layers, [Co2V4O12], linked through 4,4'-bipyridine ligands into a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101014822/ta1336sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101014822/ta1336Isup2.hkl
Contains datablock I

CCDC reference: 179251

Comment top

Considerable attention has been focused on inorganic/organic hybrid materials, owing to their rich structural chemistry (Hagrman et al., 1999) and unique electrochemical and magnetic properties (Leroux et al., 1996; Lira-Cantú & Gómez-Romero, 1998). Of these materials, vanadate/MLn (M is Co, Ni, Cu, Zn etc; L is an organic ligand) compounds are regarded as V/M-bimetallic oxides coordinated by L, showing one-dimensional, two-dimensional and three-dimensional extended network structures, with different coordination numbers and geometries for M and different shapes for L. Four examples in the vanadate/CoLn system are known, [{Co(3,3'-bipy)2}2V4O12] (LaDuca et al., 2000), [Co(Hdpa)2V4O12] (LaDuca et al., 2001), [{Co(phen)2}2V6O7]n (Zhang et al., 2000) and [Co(2,2'-bipy)]2[V12O32] (Ollivier et al., 1998) (3,3'-bypy is 3,3'-bipyridine, Hdpa is?, phen is 1,10-phenanthroline and 2,2'-bipy is 2,2'-bipyridine. Query.). All the CoII atoms in these complexes achieve octahedral sixfold coordination with O and N atoms. We report here the crystal structure of the title complex, [Co(4,4'-bipy)V2O6], (I), which is the first example of CoII in a trigonal-bipyramidal pentacoordinate geometry in the vanadate/CoLn system. \sch

The structure of (I) is composed of bimetallic oxide [Co2V4O12] layers of corner-shared V-centred tetrahedra and Co-centred trigonal bipyramids (Figs. 1, 2 and 3). Within the layers are infinite chains of the type –O—Co—O—V—O—V–, which are cross-linked to other similar chains by O bridges, leaving only one terminal O atom (O3 of the V2 tetrahedron). This gives rise to four distinct centrosymmetric rings; two 12-membered [Co2V4O6] rings (Co—V1—V2iii—Coiii—V1iii—V2 and Co—V2—V1ii—Coii—V2i—V1i) and two eight-membered [V4O4] and [Co2V2O4] rings (V2—V1iii—V2ii—V1ii and Co—V1i—Coi—V1, respectively) [symmetry codes: (i) -x, -1 - y, -2 - z; (ii) x, 1 + y, z; (iii) 1 - x, -1 - y, -2 - z]. The apical positions of the Co trigonal bipyramid are occupied by atoms N1 and N2 from different bipyridyl ligands, which thereby join the polyhedral layers.

In the trigonal bipyramid, the mean axial Co—N bond length (2.139 Å) is significantly longer than the mean basal Co—O distance (1.984 Å). The axial N1—Co—N2 angle is almost linear [179.3 (1)°]. The O—Co—O angles lie between 109.8 (1) and 128.7 (1)°. The O—Co—N bond angles vary between 88.5 (1) and 91.8 (1)°. The V1O4 tetrahedron corner-shares atoms O1 and O5i from two CoN2O3 polyhedra, and O4 and O6 from two V2O4 tetrahedra. The V2O4 tetrahedron is corner-shared with two V1O4 tetrahedra and only one CoN2O3 polyhedron through atom O2 and this leaves one terminal atom, O3.

Similar [V4O12] rings have also been observed in other vanadate/CoLn complexes, where every VO4 group has one terminal O atom. Bimetallic oxide [Co2V4O12] layers with a different structure have been observed in [{Co(3,3'-bipy)2}2V4O12] (LaDuca et al., 2000), where the layers are composed of CoN4O2 octahedra and [V4O12] groups, forming large 24-membered [Co4V8O12] rings. As shown in Figs. 1 and 3, atoms Co and Covi [with a Co—Covi separation of 11.38 Å; symmetry code: (vi) x - 1, y, 1 + z] in two adjacent layers of the bimetallic oxide are cross-linked by a 4,4'-bipyridyl ligand to form a three-dimensional network (Fig. 3). The two pyridine rings, N1,C1—C5 and N2vi,C6vi—C9vi,C10, in the 4,4'-bipyridyl ligand are twisted relative to each other by 37.9 (2)° (Fig.1).

Related literature top

For related literature, see: Hagrman et al. (1999); LaDuca, Brodkin, Finn & Zubieta (2000); LaDuca, Rarig & Zubieta (2001); Leroux et al. (1996); Lira-Cantú & Gómez-Romero (1998); Ollivier et al. (1998); Zhang et al. (2000).

Experimental top

All reagents were of analytical grade and used without further purification. Hydrothermal reaction of CoCl2 (0.0962 g), NH4VO3 (0.0433 g), 4,4'-bipyridine (0.1157 g), (CH3)4NOH (0.0338 g) and H2O (10 ml) in a 20 ml Teflon-lined steel autoclave at 453 K for 72 h gave black plate-shaped crystals of (I) (yield 0.04 g). Found: H 1.92, C 28.75, N 6.67, V 24.82, Co 15.24%; calculated for CoV2O6C10N2H8: H 1.95, C 29.08, N 6.78, V 24.67, Co 14.27%. The IR spectrum exhibits bands in the range 1000–1610 cm-1, corresponding to 4,4'-bipyridyl, and other bands in the range 920–500 cm-1, attributed to VO or V—O—V stretching. The thermogravimetric analysis shows a weight loss of 44.48% in the range 301–703 K, corresponding to the decomposition of 4,4'-bipyridine.

Refinement top

All H atoms in the 4,4'-bipy group were placed in fixed positions with ideal C—H distances (1.07–1.08 Å) and constant Uiso parameters (0.033 Å2).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN (Molecular Structure Corporation, 1985); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN (Molecular Structure Corporation, 1999).

Figures top
[Figure 1] Fig. 1. The molecular view of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted [symmetry codes: (i) -x, -1 - y, -2 - z; (ii) x, 1 + y, z; (iii) 1 - x, -1 - y, -2 - z; (iv) 1 + x, y, z - 1; (v) x, y - 1, z; (vi) x - 1, y, 1 + z].
[Figure 2] Fig. 2. A ball-and-stick model of the [Co2V4O12] layer in (I). Symmetry codes are as in Fig. 1.
[Figure 3] Fig. 3. A perspective view of (I). H atoms have been omitted.
(I) top
Crystal data top
[Co(C10H8N2)V2O6]Z = 2
Mr = 412.99F(000) = 406
Triclinic, P1Dx = 2.055 Mg m3
a = 8.1634 (9) ÅMo Kα radiation, λ = 0.7107 Å
b = 8.572 (1) ÅCell parameters from 3503 reflections
c = 10.171 (1) Åθ = 3.1–27.5°
α = 87.079 (5)°µ = 2.63 mm1
β = 75.833 (4)°T = 296 K
γ = 75.233 (6)°Plate, black
V = 667.2 (2) Å30.2 × 0.2 × 0.1 mm
Data collection top
Rigaku RAXIS-RAPID imaging-plate
diffractometer
2174 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.032
ω scansθmax = 27.5°
Absorption correction: multi-scan
(software?; Higashi, 1995)
h = 1010
Tmin = 0.597, Tmax = 0.769k = 1110
3920 measured reflectionsl = 1313
2961 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + {0.085[Max(Fo2,0) + 2Fc2]/3}2]
wR(F2) = 0.174(Δ/σ)max = 0.002
S = 1.92Δρmax = 0.93 e Å3
2340 reflectionsΔρmin = 0.82 e Å3
190 parameters
Crystal data top
[Co(C10H8N2)V2O6]γ = 75.233 (6)°
Mr = 412.99V = 667.2 (2) Å3
Triclinic, P1Z = 2
a = 8.1634 (9) ÅMo Kα radiation
b = 8.572 (1) ŵ = 2.63 mm1
c = 10.171 (1) ÅT = 296 K
α = 87.079 (5)°0.2 × 0.2 × 0.1 mm
β = 75.833 (4)°
Data collection top
Rigaku RAXIS-RAPID imaging-plate
diffractometer
2961 independent reflections
Absorption correction: multi-scan
(software?; Higashi, 1995)
2174 reflections with F2 > 2σ(F2)
Tmin = 0.597, Tmax = 0.769Rint = 0.032
3920 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044190 parameters
wR(F2) = 0.174H-atom parameters constrained
S = 1.92Δρmax = 0.93 e Å3
2340 reflectionsΔρmin = 0.82 e Å3
Special details top

Refinement. Refinement using reflections with F2 > 1.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.15624 (4)0.33906 (5)0.94205 (3)0.0149 (1)
V10.23138 (5)0.77366 (6)0.96987 (4)0.0161 (1)
V20.37325 (5)0.09006 (6)0.80229 (4)0.0150 (1)
O10.2178 (2)0.5793 (3)0.9527 (2)0.0230 (5)
O20.2707 (2)0.1978 (3)0.8703 (2)0.0219 (5)
O30.3483 (3)0.1289 (3)0.6422 (2)0.0261 (5)
O40.2811 (2)0.8774 (3)0.8225 (2)0.0219 (5)
O50.0414 (2)0.2058 (3)1.0122 (2)0.0241 (5)
O60.3953 (2)0.8565 (3)1.1148 (2)0.0227 (5)
N10.0205 (3)0.3466 (3)0.7485 (2)0.0220 (6)
N20.3334 (3)0.3351 (3)1.1342 (2)0.0170 (5)
C10.0876 (4)0.4734 (4)0.7077 (3)0.0285 (8)
C20.2165 (4)0.4741 (4)0.5889 (3)0.0244 (7)
C30.2807 (3)0.3344 (4)0.5066 (3)0.0206 (7)
C40.2121 (4)0.2035 (4)0.5482 (3)0.0254 (7)
C50.0828 (4)0.2136 (4)0.6687 (3)0.0231 (7)
C60.3272 (4)0.2039 (4)1.2104 (3)0.0230 (7)
C70.4490 (4)0.1956 (4)1.3333 (3)0.0238 (7)
C80.4621 (3)0.4661 (4)1.1791 (3)0.0209 (7)
C90.5889 (3)0.4702 (4)1.3004 (3)0.0235 (7)
C100.4169 (3)0.3331 (4)0.3789 (3)0.0198 (7)
H10.26290.58020.55820.0330*
H20.25160.10510.47630.0330*
H30.02390.11380.69840.0330*
H40.05470.57250.77780.0330*
H50.46020.56931.11430.0330*
H60.68110.58721.32140.0330*
H70.43860.08081.38310.0330*
H80.23790.08891.17870.0330*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0141 (2)0.0166 (3)0.0124 (2)0.0029 (2)0.0006 (2)0.0019 (2)
V10.0128 (2)0.0169 (3)0.0162 (2)0.0014 (2)0.0008 (2)0.0009 (2)
V20.0148 (2)0.0174 (3)0.0114 (2)0.0019 (2)0.0020 (2)0.0023 (2)
O10.0258 (9)0.0143 (8)0.023 (1)0.0009 (8)0.0014 (8)0.0019 (9)
O20.0197 (10)0.025 (1)0.024 (1)0.0109 (8)0.0035 (8)0.0053 (9)
O30.039 (1)0.023 (1)0.0127 (8)0.0044 (9)0.0040 (8)0.0018 (9)
O40.0249 (10)0.017 (1)0.0222 (9)0.0016 (8)0.0097 (8)0.0005 (8)
O50.0164 (9)0.030 (1)0.023 (1)0.0017 (8)0.0035 (7)0.0026 (9)
O60.0172 (8)0.024 (1)0.0241 (10)0.0036 (8)0.0005 (7)0.0078 (9)
N10.0178 (10)0.032 (1)0.0139 (10)0.0067 (9)0.0023 (7)0.0068 (10)
N20.0144 (9)0.020 (1)0.0157 (10)0.0087 (8)0.0038 (7)0.0019 (8)
C10.027 (1)0.031 (2)0.024 (1)0.013 (1)0.010 (1)0.014 (1)
C20.032 (1)0.019 (2)0.021 (1)0.014 (1)0.0043 (10)0.001 (1)
C30.017 (1)0.030 (2)0.012 (1)0.006 (1)0.0017 (9)0.002 (1)
C40.022 (1)0.026 (2)0.024 (1)0.007 (1)0.0046 (9)0.006 (1)
C50.028 (1)0.011 (1)0.024 (1)0.006 (1)0.0051 (10)0.001 (1)
C60.024 (1)0.019 (1)0.021 (1)0.001 (1)0.0024 (9)0.0037 (10)
C70.027 (1)0.021 (2)0.021 (1)0.005 (1)0.0017 (10)0.001 (1)
C80.018 (1)0.022 (2)0.018 (1)0.0050 (10)0.0048 (9)0.004 (1)
C90.014 (1)0.032 (2)0.020 (1)0.005 (1)0.0041 (9)0.000 (1)
C100.015 (1)0.030 (2)0.013 (1)0.005 (1)0.0001 (8)0.007 (1)
Geometric parameters (Å, º) top
Co—O11.994 (3)C1—C21.396 (5)
Co—O21.968 (3)C1—H41.074
Co—O51.990 (3)C2—C31.406 (6)
Co—N12.145 (3)C2—H11.075
Co—N22.132 (3)C3—C41.382 (6)
V1—O11.657 (3)C3—C101.487 (5)
V1—O41.783 (3)C4—C51.398 (5)
V1—O5i1.658 (3)C4—H21.076
V1—O61.768 (3)C5—H31.080
V2—O21.666 (3)C6—C71.405 (6)
V2—O31.619 (3)C6—H81.076
V2—O4ii1.809 (3)C7—C10iv1.398 (5)
V2—O6iii1.819 (3)C7—H71.077
N1—C11.342 (6)C8—C91.398 (5)
N1—C51.347 (5)C8—H51.077
N2—C61.330 (6)C9—C10iv1.384 (6)
N2—C81.338 (5)C9—H61.084
O1—Co—O2128.8 (1)C6—N2—C8117.5 (3)
O1—Co—O5121.4 (1)N1—C1—C2123.8 (4)
O1—Co—N189.8 (1)N1—C1—H4117.6
O1—Co—N289.5 (1)C2—C1—H4117.9
O2—Co—O5109.8 (1)C1—C2—C3118.6 (4)
O2—Co—N191.9 (1)C1—C2—H1121.2
O2—Co—N288.5 (1)C3—C2—H1120.2
O5—Co—N189.4 (1)C2—C3—C4117.9 (4)
O5—Co—N291.2 (1)C2—C3—C10119.4 (4)
N1—Co—N2179.2 (1)C4—C3—C10122.7 (4)
O1—V1—O4109.2 (1)C3—C4—C5119.7 (4)
O1—V1—O5i108.8 (1)C3—C4—H2115.6
O1—V1—O6110.7 (1)C5—C4—H2124.2
O4—V1—O5i109.9 (1)N1—C5—C4123.0 (4)
O4—V1—O6109.5 (1)N1—C5—H3117.2
O5i—V1—O6108.7 (1)C4—C5—H3119.7
O2—V2—O3109.3 (2)N2—C6—C7123.7 (4)
O2—V2—O4ii109.6 (1)N2—C6—H8123.3
O2—V2—O6iii109.5 (1)C7—C6—H8112.6
O3—V2—O4ii109.0 (1)C6—C7—C10iv118.3 (4)
O3—V2—O6iii109.3 (1)C6—C7—H7117.8
O4ii—V2—O6iii110.1 (1)C10iv—C7—H7123.8
Co—O1—V1168.6 (2)N2—C8—C9123.2 (4)
Co—O2—V2175.6 (2)N2—C8—H5114.5
V1—O4—V2v128.9 (2)C9—C8—H5122.3
Co—O5—V1i136.5 (2)C8—C9—C10iv119.2 (4)
V1—O6—V2iii147.3 (2)C8—C9—H6112.9
Co—N1—C1122.9 (3)C10iv—C9—H6127.9
Co—N1—C5119.6 (3)C3—C10—C7vi122.0 (4)
C1—N1—C5117.1 (3)C3—C10—C9vi119.8 (4)
Co—N2—C6122.7 (3)C7vi—C10—C9vi118.2 (4)
Co—N2—C8119.8 (3)
Symmetry codes: (i) x, y1, z2; (ii) x, y+1, z; (iii) x+1, y1, z2; (iv) x+1, y, z1; (v) x, y1, z; (vi) x1, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C10H8N2)V2O6]
Mr412.99
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.1634 (9), 8.572 (1), 10.171 (1)
α, β, γ (°)87.079 (5), 75.833 (4), 75.233 (6)
V3)667.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.63
Crystal size (mm)0.2 × 0.2 × 0.1
Data collection
DiffractometerRigaku RAXIS-RAPID imaging-plate
diffractometer
Absorption correctionMulti-scan
(software?; Higashi, 1995)
Tmin, Tmax0.597, 0.769
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
3920, 2961, 2174
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.174, 1.92
No. of reflections2340
No. of parameters190
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.82

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, TEXSAN (Molecular Structure Corporation, 1999), SIR92 (Altomare et al., 1994), TEXSAN (Molecular Structure Corporation, 1985), ORTEPII (Johnson, 1976).

Selected bond lengths (Å) top
Co—O11.994 (3)V1—O5i1.658 (3)
Co—O21.968 (3)V1—O61.768 (3)
Co—O51.990 (3)V2—O21.666 (3)
Co—N12.145 (3)V2—O31.619 (3)
Co—N22.132 (3)V2—O4ii1.809 (3)
V1—O11.657 (3)V2—O6iii1.819 (3)
V1—O41.783 (3)
Symmetry codes: (i) x, y1, z2; (ii) x, y+1, z; (iii) x+1, y1, z2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds