Download citation
Download citation
link to html
In the title linear trinuclear compound, [Zn{Zn(CH3COO)(C17H16N2O2)}2], the central Zn2+ ion, which is located on an inversion centre, has a distorted octahedral coordination involving four bridging O atoms from two N,N'-bis­(salicyl­idene)-1,3-propane­diaminate ligands in the equatorial plane and one O atom from each bridging acetate group in the axial positions. The coordination around the terminal Zn2+ ion is irregular square pyramidal, with two O and two N atoms of the ligand in the basal plane and one O atom from an acetate group in the apical position. The acetate bridges linking the central and terminal Zn2+ ions are mutually trans. The Zn...Zn distance is 3.0520 (8) Å. The relationship of this structure to that of [Zn{Cu(CH3COO)(C17H16N2O2)}2] is discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100019983/ta1298sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100019983/ta1298Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270100019983/ta1298sup3.pdf
Supplementary material

CCDC reference: 162557

Comment top

Structural studies and the magnetic properties of trinuclear complexes prepared with the deprotonated N,N'-bis(salicylidene)-1,3-propanediamine (SALPD2-, C17H16N2O2) ligand have been the subject of considerable interest in our laboratory. In these complexes, acetate or nitrite anions constitute the µ-bridging between the three metal ions, which are also doubly oxygen bridged, so that the metal ions used in the synthesis (M is Zn2+, Ni2+, Cd2+, Cu2+ or Co2+) are all triply bridged (Ülkü et al., 1999; Atakol, Arici, Ercan & Ülkü, 1999; Atakol, Arici, Tahir et al., 1999; Atakol, Tatar et al., 1999; Tahir et al., 1998; Ülkü, Ercan et al., 1997; Ülkü, Tahir et al., 1997, and references therein). Since there are three metal ions in these linear complexes, various combinations of metallic ions are possible in the central and terminal locations, so that homonuclear as well as heteronuclear compounds can be synthesized. When the synthesis involves a paramagnetic ion, then the magnetic properties of the compound become interesting, due to the superexchange interaction between the diamagnetic ions of the bridges. The ligand stereochemistry around the metal ions and the structure of the O-atom bridges influence these magnetic exchange interactions, and therefore the structural parameters are important.

The synthesis of similar trinuclear complexes of the general formulae [MCu2(SALPD)2(CH3COO)2] (M is Mn2+, Co2+, Ni2+, Cu2+ or Zn2+) and [MNi2(SALPD)2(CH3COO)2] (M is Mg2+, Mn2+, Co2+ or Ni2+) were reported by Fukuhara et al. (1990). Only the structure of [ZnCu2(SALPD)2(CH3COO)2] in this group of compounds has been determined by X-ray diffraction to date (Fukuhara et al., 1990). Gerli et al. (1991) reported trinuclear structures formulated as [M3{(SALPN)(CH3COO)[(CH3)2NCHO]}2] [M is Co2+ or Fe2+; SALPN is N,N'-bis(salicylidene)-2,2-dimethylpropylenediamine]. We report here a new member of the linear homometallic trinuclear compound family, the title compound, (I), in which the central as well as the terminal metal ion locations are occupied by zinc atoms. \sch

Among the trinuclear complexes cited above, this complex resembles the complex of [Zn{Cu(CH3COO)(C17H16N2O2)}2], (II) (Fukuhara et al., 1990), more than any other trinuclear complex, so that the two are almost identical molecules. In both molecules, the central Zn2+ ion, located on an inversion centre, has as its nearest neighbours four bridging O atoms from two SALPD2- ligands (O1, O2, O1i and O2i) and two O atoms from two bridging acetate groups (O3 and O3i) [symmetry code: (i) -x, -y, -z]. This environment constitutes an irregular octahedral geometry around the Zn ion. The Zn—O bond lengths around the central Zn ion in both complexes have equal values within experimental error.

The coordination polyhedra around the inversion-related terminal ions, Zn in (I) and Cu in (II), are slightly distorted square-pyramids, whose basal plane is made up of the two bridging O atoms and two N atoms of the SALPD2- ligand, while the apical positions are occupied by an O atom of the acetate group. The corresponding M—O and M—N distances within the coordination polyhedra around the terminal ions are different in these two complexes, so that the square pyramid around the Cu ion in (II) is slightly elongated when compared with the square pyramid around the Zn ion in (I).

These two almost identical molecules of (I) and (II) crystallize in the space groups P21/c and P21/a, respectively, and have almost the same unit-cell volume [1771.8 (4) and 1766.7 (9) Å3, respectively]. However, the unit-cell parameters of the Cu—Zn—Cu trimer, (II) [a = 16.228 (5), b = 11.971 (2) and c = 9.239 (3) Å, and β = 100.15 (3)°], are considerably different from the corresponding values of the Zn—Zn—Zn trimer, (I), especially with respect to a and b. This results in different molecular packing, as can be seen in Fig. 2. For clarity reasons H atoms have been omitted and the least overlapping projections are shown in the drawing.

An intermolecular interaction analysis shows that in the Zn—Zn—Zn trimer there is one intermolecular hydrogen bond between atoms C11 and O4ii [symmetry code: (ii) x, -1/2 - y, z - 1/2], with a donor-acceptor distance of 3.475 (7) Å. Several weaker interactions with intermolecular distances of less than 3.5 Å are observed in both structures. In the Zn—Zn—Zn trimer four such interactions exist, between O3 and C16ii [3.238 (7) Å], and O3 and C2ii [3.251 (8) Å]. Two additional interactions are found between C3 and C15iii [3.437 (9) Å; symmetry code: (iii) -x, -y, -1 - z] and between C7 and C7iv [3.431 (8) Å; symmetry code: (iv) 1 - x, -y, -z].

In the Cu—Zn—Cu trimer, the number of intermolecular contacts of less than 3.5 Å is almost twice as many as the number of interactions observed in (I). They are as follows: O2···C2i [3.398 (18) Å], O3···C2i [2.83 (3) Å], C2···C17i [3.49 (2) Å], Cu···C4v [3.287 (17) Å], N1···C4i [3.43 (2) Å], C1···C5v [3.47 (2) Å] and C6···C6v [3.39 (2) Å]. [Symmetry code: (v) -x, -y, 1 - z].

These two almost identical molecules of (I) and (II) crystallize so that they seem to be polymorphs.

NB Each symop definition must be used only once so as not to cause confusion. There were two different definitions of (i) in the original CIF and two of (ii). They have been renumbered, but please check them all carefully.

Related literature top

For related literature, see: Atakol, Arici, Ercan & Ülkü (1999); Atakol, Arici, Tahir, Kurtaran & Ülkü (1999); Atakol, Tatar, Akay & Ülkü (1999); Fukuhara et al. (1990); Gerli et al. (1991); Tahir et al. (1998); Ülkü et al. (1999); Ülkü, Ercan, Atakol & Dinçer (1997); Ülkü, Tahir, Atakol & Nazir (1997).

Experimental top

N,N'-Bis(salicylidene)-1,3-propanediamine (0.564 g, 2 mmol) was dissolved in methanol (250 ml) by heating to boiling point. A solution of Zn(CH3COO)2·2H2O (0.660 g, 3 mmol) in hot methanol (100 ml) was added to the solution. The resulting mixture was set aside for 1 d and the colourless prismatic crystals of (I) which formed were filtered off and dried in air.

Refinement top

The H atoms of C19 were taken from a difference map, while the other H atoms were placed geometrically 0.95 Å from their parent atoms. For all H atoms a riding model was used, with Ueq(H) = 1.3Ueq(C).

Computing details top

Data collection: MolEN (Fair, 1990); cell refinement: MolEN; data reduction: MolEN; program(s) used to solve structure: MolEN; program(s) used to refine structure: MolEN; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: MolEN and PLATON99 (Spek, 1990).

Figures top
[Figure 1]
Fig. 1. The molecular structure (ORTEP-3 for Windows; Farrugia, 1997) of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small circles of arbitrary radii [symmetry code: (i) -x, -y, -z].

Fig. 2. The molecular packing of the two trinuclear complexes, (a) (I) and (b) (II) (PLATON for Windows; Spek, 2000).
(I) top
Crystal data top
[Zn{Zn(CH3COO)(C17H16N2O2)}2]F(000) = 896
Mr = 874.91Dx = 1.640 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.4243 (14) ÅCell parameters from 25 reflections
b = 20.3334 (18) Åθ = 8.6–11.4°
c = 8.3832 (11) ŵ = 2.07 mm1
β = 85.639 (13)°T = 295 K
V = 1771.8 (4) Å3Prismatic, colourless
Z = 20.20 × 0.10 × 0.05 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.033
ω/2θ scansθmax = 26.7°
Absorption correction: ψ-scan
(MolEN; Fair, 1990)
h = 013
Tmin = 0.798, Tmax = 0.902k = 025
4101 measured reflectionsl = 1010
3724 independent reflections3 standard reflections every 120 min
2514 reflections with I > 2σ(I) intensity decay: 0.036%
Refinement top
Refinement on FH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045Weighting scheme based on measured s.u.'s w = 1/[σ2(F) + (0.02F)2 + 0.25]
wR(F2) = 0.056(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.84 e Å3
2514 reflectionsΔρmin = 0.23 e Å3
241 parameters
Crystal data top
[Zn{Zn(CH3COO)(C17H16N2O2)}2]V = 1771.8 (4) Å3
Mr = 874.91Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.4243 (14) ŵ = 2.07 mm1
b = 20.3334 (18) ÅT = 295 K
c = 8.3832 (11) Å0.20 × 0.10 × 0.05 mm
β = 85.639 (13)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2514 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(MolEN; Fair, 1990)
Rint = 0.033
Tmin = 0.798, Tmax = 0.9023 standard reflections every 120 min
4101 measured reflections intensity decay: 0.036%
3724 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045241 parameters
wR(F2) = 0.056H-atom parameters constrained
S = 1.01Δρmax = 0.84 e Å3
2514 reflectionsΔρmin = 0.23 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10000.0331 (3)
Zn20.20732 (6)0.10627 (3)0.01408 (8)0.0318 (2)
O10.1971 (3)0.0079 (2)0.0694 (5)0.0371 (12)
O20.0194 (3)0.1004 (2)0.0623 (5)0.0375 (12)
O30.0485 (4)0.0264 (2)0.2330 (5)0.0414 (12)
O40.1920 (4)0.1076 (2)0.2222 (5)0.0403 (12)
N10.4031 (4)0.0999 (2)0.0678 (5)0.0357 (14)
N20.2087 (4)0.2043 (2)0.0812 (6)0.0344 (12)
C10.2764 (5)0.0260 (3)0.1667 (6)0.0337 (16)
C20.2396 (6)0.0872 (3)0.2279 (7)0.0417 (17)
C30.3210 (7)0.1228 (3)0.3307 (8)0.0488 (19)
C40.4429 (6)0.1007 (3)0.3766 (8)0.0529 (19)
C50.4846 (6)0.0440 (3)0.3142 (8)0.0487 (19)
C60.4047 (5)0.0053 (3)0.2089 (7)0.0368 (17)
C70.4598 (5)0.0535 (3)0.1464 (7)0.0409 (18)
C80.4799 (5)0.1548 (3)0.0147 (8)0.0453 (17)
C90.4490 (5)0.2178 (3)0.0981 (8)0.0469 (19)
C100.3184 (6)0.2473 (3)0.0455 (8)0.0459 (19)
C110.1204 (5)0.2324 (3)0.1555 (7)0.0368 (17)
C120.0010 (5)0.2032 (3)0.2001 (6)0.0335 (17)
C130.0726 (6)0.2437 (3)0.2937 (7)0.0431 (17)
C140.1892 (6)0.2228 (3)0.3416 (7)0.051 (2)
C150.2337 (6)0.1621 (3)0.2938 (7)0.0476 (19)
C160.1652 (5)0.1210 (3)0.2007 (7)0.0420 (17)
C170.0447 (5)0.1405 (3)0.1523 (6)0.0305 (12)
C180.1187 (6)0.0673 (3)0.2970 (7)0.0410 (17)
C190.1194 (9)0.0697 (5)0.4764 (8)0.088 (3)
H20.1560.1040.1970.0532
H30.2920.1630.3720.0646
H40.4970.1250.4510.0671
H50.5700.0290.3430.0633
H70.5500.0580.1660.0519
H110.1350.2770.1850.0494
H130.0410.2860.3240.0557
H140.2380.2500.4070.0659
H150.3150.1480.3260.0633
H160.1990.0790.1690.0545
H810.4620.1600.0970.0595
H820.5690.1450.0370.0595
H910.5130.2490.0780.0621
H920.4510.2090.2100.0621
H1010.3100.2880.0990.0595
H1020.3150.2550.0670.0595
H1910.1760.1040.5050.1039
H1920.1460.0290.5120.1039
H1930.0340.0790.5220.1039
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0265 (4)0.0290 (4)0.0434 (5)0.0062 (4)0.0009 (4)0.0026 (4)
Zn20.0265 (2)0.0285 (3)0.0399 (3)0.0057 (3)0.0002 (2)0.0019 (3)
O10.028 (2)0.029 (2)0.053 (2)0.008 (2)0.006 (2)0.006 (2)
O20.030 (2)0.032 (2)0.051 (2)0.006 (2)0.006 (2)0.013 (2)
O30.043 (2)0.040 (2)0.041 (2)0.004 (2)0.001 (2)0.001 (2)
O40.042 (2)0.033 (2)0.045 (2)0.010 (2)0.003 (2)0.001 (2)
N10.030 (2)0.032 (2)0.044 (2)0.003 (2)0.003 (2)0.003 (2)
N20.029 (2)0.027 (2)0.047 (2)0.007 (2)0.001 (2)0.002 (2)
C10.031 (2)0.035 (3)0.035 (3)0.004 (2)0.002 (2)0.003 (2)
C20.040 (3)0.037 (3)0.048 (3)0.003 (3)0.002 (3)0.003 (3)
C30.058 (4)0.039 (3)0.050 (3)0.006 (3)0.008 (3)0.005 (3)
C40.054 (3)0.051 (4)0.051 (3)0.013 (3)0.013 (3)0.003 (3)
C50.038 (3)0.043 (3)0.063 (4)0.006 (3)0.009 (3)0.006 (3)
C60.034 (3)0.035 (3)0.041 (3)0.003 (2)0.001 (2)0.009 (2)
C70.021 (2)0.047 (3)0.054 (3)0.001 (2)0.000 (2)0.012 (3)
C80.030 (3)0.049 (3)0.057 (3)0.009 (3)0.010 (3)0.000 (3)
C90.033 (3)0.040 (3)0.068 (4)0.014 (3)0.005 (3)0.005 (3)
C100.040 (3)0.037 (3)0.061 (4)0.008 (3)0.006 (3)0.002 (3)
C110.037 (3)0.026 (3)0.046 (3)0.004 (2)0.006 (2)0.003 (2)
C120.038 (3)0.028 (3)0.035 (3)0.003 (2)0.000 (2)0.001 (2)
C130.045 (3)0.038 (3)0.046 (3)0.005 (3)0.002 (3)0.005 (3)
C140.051 (3)0.055 (4)0.047 (3)0.004 (3)0.012 (3)0.012 (3)
C150.035 (3)0.061 (4)0.047 (3)0.001 (3)0.011 (2)0.007 (3)
C160.032 (3)0.042 (3)0.050 (3)0.005 (2)0.003 (2)0.006 (3)
C170.030 (2)0.030 (2)0.031 (2)0.005 (2)0.000 (2)0.003 (2)
C180.041 (3)0.042 (3)0.039 (3)0.004 (3)0.003 (2)0.001 (3)
C190.107 (6)0.113 (6)0.043 (4)0.059 (5)0.000 (4)0.002 (4)
Geometric parameters (Å, º) top
Zn1—Zn23.0520 (8)C6—C71.442 (8)
Zn1—O12.098 (3)C7—H70.95
Zn1—O22.113 (4)C8—C91.507 (9)
Zn1—O32.124 (4)C8—H810.95
Zn2—O12.057 (4)C8—H820.95
Zn2—O22.034 (4)C9—C101.522 (8)
Zn2—O41.975 (4)C9—H910.95
Zn2—N12.060 (4)C9—H920.95
Zn2—N22.071 (4)C10—H1010.95
O1—C11.312 (6)C10—H1020.95
O2—C171.325 (6)C11—C121.453 (8)
O3—C181.254 (7)C11—H110.95
O4—C181.256 (7)C12—C131.405 (8)
N1—C71.271 (7)C12—C171.409 (7)
N1—C81.463 (7)C13—C141.376 (9)
N2—C101.487 (7)C13—H130.95
N2—C111.284 (7)C14—C151.369 (9)
C1—C21.410 (8)C14—H140.95
C1—C61.421 (7)C15—C161.379 (9)
C2—C31.369 (9)C15—H150.95
C2—H20.95C16—C171.407 (8)
C3—C41.376 (9)C16—H160.95
C3—H30.95C18—C191.505 (9)
C4—C51.351 (9)C19—H1910.947
C4—H40.95C19—H1920.934
C5—C61.407 (8)C19—H1930.959
C5—H50.95
O1—Zn1—O277.5 (1)C1—C6—C5119.5 (5)
O1—Zn1—O386.5 (1)C1—C6—C7123.2 (5)
O2—Zn1—O387.6 (2)C5—C6—C7117.2 (5)
O1—Zn1—O1i180.0N1—C7—C6128.4 (5)
O1—Zn1—O2i102.5 (1)N1—C7—H7115.8
O1—Zn1—O3i93.5 (2)C6—C7—H7115.8
O2—Zn1—O2i180.0N1—C8—C9111.5 (5)
O2—Zn1—O3i92.4 (2)N1—C8—H81108.9
O3—Zn1—O3i180.0N1—C8—H82109.0
O1—Zn2—O280.3 (1)C9—C8—H81108.9
O1—Zn2—O4103.7 (2)C9—C8—H82109.0
O1—Zn2—N187.5 (2)H81—C8—H82109.5
O1—Zn2—N2150.9 (2)C8—C9—C10114.8 (5)
O2—Zn2—O4101.2 (2)C8—C9—H91108.1
O2—Zn2—N1155.0 (2)C8—C9—H92108.1
O2—Zn2—N289.4 (2)C10—C9—H91108.2
O4—Zn2—N1102.9 (2)C10—C9—H92108.2
O4—Zn2—N2104.9 (2)H91—C9—H92109.5
N1—Zn2—N290.9 (2)N2—C10—C9113.3 (5)
Zn1—O1—Zn294.5 (1)N2—C10—H101108.5
Zn1—O1—C1133.6 (3)N2—C10—H102108.6
Zn2—O1—C1127.6 (3)C9—C10—H101108.4
Zn1—O2—Zn294.8 (2)C9—C10—H102108.5
Zn1—O2—C17133.8 (3)H101—C10—H102109.5
Zn2—O2—C17127.7 (3)N2—C11—C12127.1 (5)
Zn1—O3—C18138.4 (4)N2—C11—H11116.5
Zn2—O4—C18119.5 (4)C12—C11—H11116.4
O3—C18—O4124.9 (5)C11—C12—C13114.7 (5)
O3—C18—C19119.7 (6)C11—C12—C17125.1 (5)
O4—C18—C19115.4 (6)C13—C12—C17120.2 (5)
Zn2—N1—C7125.0 (4)C12—C13—C14120.9 (6)
Zn2—N1—C8116.2 (3)C12—C13—H13119.4
C7—N1—C8118.7 (4)C14—C13—H13119.7
Zn2—N2—C10120.0 (4)C13—C14—C15118.7 (6)
Zn2—N2—C11124.7 (4)C13—C14—H14120.7
C10—N2—C11115.3 (5)C15—C14—H14120.6
O1—C1—C2121.0 (5)C14—C15—C16122.3 (6)
O1—C1—C6122.4 (5)C14—C15—H15118.8
C2—C1—C6116.5 (5)C16—C15—H15119.0
C1—C2—C3121.6 (5)C15—C16—C17120.3 (5)
C1—C2—H2118.8C15—C16—H16120.1
C3—C2—H2119.6C17—C16—H16119.6
C2—C3—C4121.2 (6)O2—C17—C12123.0 (5)
C2—C3—H3119.3O2—C17—C16119.4 (5)
C4—C3—H3119.5C12—C17—C16117.6 (5)
C3—C4—C5119.3 (6)C18—C19—H191108.9
C3—C4—H4120.3C18—C19—H192108.5
C5—C4—H4120.4C18—C19—H193109.3
C4—C5—C6121.8 (6)H191—C19—H192111.1
C4—C5—H5119.4H191—C19—H193109.0
C6—C5—H5118.9H192—C19—H193110.1
O2—Zn1—O1—Zn226.4 (1)O1—Zn2—N2—C10123.6 (4)
O2—Zn1—O1—C1130.5 (5)O1—Zn2—N2—C1155.6 (6)
O3—Zn1—O1—Zn261.9 (2)O2—Zn2—N2—C10167.9 (4)
O3—Zn1—O1—C1141.2 (5)O2—Zn2—N2—C1112.9 (5)
O1—Zn1—O2—Zn226.7 (2)O4—Zn2—N2—C1066.5 (4)
O1—Zn1—O2—C17131.8 (5)O4—Zn2—N2—C11114.4 (5)
O3—Zn1—O2—Zn260.2 (2)N1—Zn2—N2—C1037.1 (4)
O3—Zn1—O2—C17141.3 (5)N1—Zn2—N2—C11142.1 (5)
O1—Zn1—O3—C1843.8 (6)Zn1—O1—C1—C211.6 (8)
O2—Zn1—O3—C1833.8 (6)Zn1—O1—C1—C6171.9 (4)
O2—Zn2—O1—Zn127.2 (2)Zn2—O1—C1—C2161.9 (4)
O2—Zn2—O1—C1131.7 (4)Zn2—O1—C1—C621.5 (7)
O4—Zn2—O1—Zn172.1 (2)Zn1—O2—C17—C12167.9 (4)
O4—Zn2—O1—C1129.0 (4)Zn1—O2—C17—C1613.5 (7)
N1—Zn2—O1—Zn1174.7 (2)Zn2—O2—C17—C1215.3 (7)
N1—Zn2—O1—C126.3 (4)Zn2—O2—C17—C16166.0 (4)
N2—Zn2—O1—Zn197.9 (3)Zn1—O3—C18—C19177.8 (5)
N2—Zn2—O1—C161.0 (6)Zn2—O4—C18—C19176.7 (5)
O1—Zn2—O2—Zn127.0 (2)C8—N1—C7—C6179.3 (6)
O1—Zn2—O2—C17133.4 (4)Zn2—N1—C8—C964.7 (6)
O4—Zn2—O2—Zn175.2 (2)C7—N1—C8—C9113.3 (6)
O4—Zn2—O2—C17124.3 (4)Zn2—N2—C10—C950.1 (6)
N1—Zn2—O2—Zn189.0 (4)C11—N2—C10—C9129.2 (6)
N1—Zn2—O2—C1771.5 (6)C10—N2—C11—C12177.6 (5)
N2—Zn2—O2—Zn1179.7 (2)O1—C1—C2—C3179.4 (5)
N2—Zn2—O2—C1719.2 (4)O1—C1—C6—C5179.9 (5)
O1—Zn2—O4—C1836.6 (4)C2—C1—C6—C7175.2 (5)
O2—Zn2—O4—C1846.0 (4)C4—C5—C6—C7178.6 (6)
N1—Zn2—O4—C18127.2 (4)C1—C6—C7—N111.4 (9)
N2—Zn2—O4—C18138.4 (4)C5—C6—C7—N1169.9 (6)
O1—Zn2—N1—C716.6 (5)N1—C8—C9—C1071.8 (7)
O1—Zn2—N1—C8165.6 (4)C8—C9—C10—N263.1 (7)
O2—Zn2—N1—C743.9 (7)N2—C11—C12—C13174.5 (6)
O2—Zn2—N1—C8133.9 (4)N2—C11—C12—C177.7 (9)
O4—Zn2—N1—C7120.2 (5)C11—C12—C13—C14178.6 (6)
O4—Zn2—N1—C862.1 (4)C11—C12—C17—C16177.3 (5)
N2—Zn2—N1—C7134.3 (5)C13—C12—C17—O2179.1 (5)
N2—Zn2—N1—C843.5 (4)C15—C16—C17—O2179.7 (5)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Zn{Zn(CH3COO)(C17H16N2O2)}2]
Mr874.91
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.4243 (14), 20.3334 (18), 8.3832 (11)
β (°) 85.639 (13)
V3)1771.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.07
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ-scan
(MolEN; Fair, 1990)
Tmin, Tmax0.798, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
4101, 3724, 2514
Rint0.033
(sin θ/λ)max1)0.632
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.056, 1.01
No. of reflections2514
No. of parameters241
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.23

Computer programs: MolEN (Fair, 1990), ORTEP-3 for Windows (Farrugia, 1997), MolEN and PLATON99 (Spek, 1990).

Selected geometric parameters (Å, º) top
Zn1—Zn23.0520 (8)Zn2—O41.975 (4)
Zn1—O12.098 (3)Zn2—N12.060 (4)
Zn1—O22.113 (4)Zn2—N22.071 (4)
Zn1—O32.124 (4)O3—C181.254 (7)
Zn2—O12.057 (4)O4—C181.256 (7)
Zn2—O22.034 (4)
O1—Zn1—O277.5 (1)O2—Zn2—O4101.2 (2)
O1—Zn1—O386.5 (1)O2—Zn2—N1155.0 (2)
O2—Zn1—O387.6 (2)O2—Zn2—N289.4 (2)
O1—Zn1—O1i180.0O4—Zn2—N1102.9 (2)
O1—Zn1—O2i102.5 (1)O4—Zn2—N2104.9 (2)
O1—Zn1—O3i93.5 (2)N1—Zn2—N290.9 (2)
O2—Zn1—O2i180.0Zn1—O1—Zn294.5 (1)
O2—Zn1—O3i92.4 (2)Zn1—O2—Zn294.8 (2)
O3—Zn1—O3i180.0Zn1—O3—C18138.4 (4)
O1—Zn2—O280.3 (1)Zn2—O4—C18119.5 (4)
O1—Zn2—O4103.7 (2)O3—C18—O4124.9 (5)
O1—Zn2—N187.5 (2)O3—C18—C19119.7 (6)
O1—Zn2—N2150.9 (2)O4—C18—C19115.4 (6)
Symmetry code: (i) x, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds