Download citation
Download citation
link to html
The title compound, [Cu(NCS)2(C17H21N5)], displays a distorted square-pyramidal coordination geometry, where the basal plane is defined by the tridentate ligand and by one of the thio­cyanate ions. The apical position is occupied by the other thio­cyanate ion.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199015711/ta1259sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199015711/ta1259Isup2.hkl
Contains datablock I

CCDC reference: 143230

Comment top

The spectroscopic and chemical properties of copper compounds of pyrazole and its derivatives have been studied intensively during the last two decades (Sheu et al., 1995; Martens et al., 1995; Kitajima et al., 1992; Sorrel et al., 1991) because of their ease of handling and manipulation in making model compounds for biological systems such as haemocyanin and tyrosinase (Solomon et al., 1992). To give more insight into the coordination behaviour of pyrazole based ligands with copper(I) and copper(II) ions, a systematic study has been embarked on in our group (Manikandan et al., 1996, 1998) of the ligand 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine, L, containing one pyridine and two pyrazole donors. Herein, we report the crystal structure of (I), a monomeric copper(II) complex with the ligand L and thiocyanate counter ions. \scheme

The structure of (I) (Fig. 1) consists of a pentacoordinated Cu2+ ion in a distorted square pyramidal geometry, with the three N atoms from the ligand and an N from one of the thiocyanate groups occupying the basal plane. The axial position is occupied by the second thiocyanate N atom. The axial Cu—NCS bond distance is slightly longer (by ca 0.16 Å) than the corresponding equatorial bond (Table 1). The Cu2+ ion is displaced 0.308 Å above the plane formed by N1/N2/N3/N7. The significant deviation of the basal plane is evident also from the angles N1—Cu—N2 and N3—Cu—N7, with values of 169.10 (12) and 153.74 (14)°, respectively. The pyridine and pyrazole rings are planar. The geometries of the two linear thiocyanate ligands are similar, but they differ notably in the angles they make to the copper nucleus [177.7 (4) and 153.4 (3)°]. This dissimilarity destroys the approximate twofold rotational symmetry of the compound.

In order to quantify the distortion of the coordination polyhedron in (I), we have calculated the dihedral angles between the polyhedral faces, and thus the parameters Δ and τ, by following the methods described by Meutterties & Guggenberger (1974) and Addison et al. (1984). The parameters Δ and τ describe the deviation from trigonal bipyramidal geometry and trigonality, respectively. For the regular square pyramid structure, the trigonality parameter, τ, will be zero, and it increases to 1.0 as the trigonal bipyramidal distortion increases. Similarly, Δ is zero for trigonal bipyramidal compounds and increases to 1.0 for square pyramidal geometry. The calculated Δ and τ values for (I) are 0.706 and 0.256, respectively, indicating more trigonal distortion from ideal square pyramidal geometry.

Experimental top

2,6-Bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L) was prepared using the procedure of Manikandan et al. (1996). To a solution of L (0.295 g) in methanol (30 ml) was added Cu(ClO4)2·6H2O (0.37 g) followed by NH4NCS (0.076 g) with vigorous stirring. A green precipitate was formed. The mixture was allowed to stir for a further 1 h to ensure complete conversion and was then filtered. The residue was washed with cold methanol/water mixture (1:1) and recrystallized from acetonitrile. Analysis found: C 47.75, H 4.55, N 20.50%; C19H21N7S2Cu requires: C 48.03, H 4.46, N 20.64%.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai & Pritzkow, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids. H atoms are omitted for clarity.
[2,6-Bis(3,5-dimethylpyrazol-1-ylmethyl-κN2)pyridine-κN] bis(thiocyanato-N)copper(II) top
Crystal data top
[Cu(CNS)2(C17H21N5)]F(000) = 980
Mr = 475.09Dx = 1.478 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 11.382 (5) ÅCell parameters from 25 reflections
b = 12.162 (4) Åθ = 12–15°
c = 15.855 (7) ŵ = 3.44 mm1
β = 103.31 (3)°T = 293 K
V = 2135.8 (14) Å3Prism, dark green
Z = 40.32 × 0.25 × 0.20 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
2649 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 59.9°, θmin = 4.3°
ω/2θ scansh = 012
Absorption correction: ψ-scan
(North et al., 1968)
k = 013
Tmin = 0.337, Tmax = 0.503l = 1717
3237 measured reflections3 standard reflections every 60 min
3057 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135Calculated w = 1/[σ2(Fo2) + (0.0979P)2 + 1.322P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
3057 reflectionsΔρmax = 0.56 e Å3
267 parametersΔρmin = 0.52 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (3)
Crystal data top
[Cu(CNS)2(C17H21N5)]V = 2135.8 (14) Å3
Mr = 475.09Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.382 (5) ŵ = 3.44 mm1
b = 12.162 (4) ÅT = 293 K
c = 15.855 (7) Å0.32 × 0.25 × 0.20 mm
β = 103.31 (3)°
Data collection top
Enraf-Nonius CAD4
diffractometer
2649 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.032
Tmin = 0.337, Tmax = 0.503θmax = 59.9°
3237 measured reflections3 standard reflections every 60 min
3057 independent reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.56 e Å3
3057 reflectionsΔρmin = 0.52 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.22034 (4)0.21151 (3)0.94312 (3)0.0340 (2)
S10.54076 (10)0.27441 (9)0.81456 (7)0.0639 (3)
S20.13722 (11)0.27926 (10)0.71033 (8)0.0797 (4)
N10.1921 (2)0.3436 (2)1.01509 (17)0.0377 (6)
N20.2628 (2)0.0659 (2)0.89347 (16)0.0388 (6)
N30.1595 (2)0.1181 (2)1.03371 (15)0.0335 (6)
N40.0876 (2)0.3453 (2)1.04424 (17)0.0402 (6)
N50.3095 (2)0.0181 (2)0.94761 (16)0.0377 (6)
N60.0659 (3)0.2461 (2)0.8419 (2)0.0494 (7)
N70.3468 (3)0.2804 (2)0.8941 (2)0.0524 (8)
C10.0597 (3)0.1496 (3)1.0601 (2)0.0378 (7)
C20.0166 (3)0.0888 (3)1.1203 (2)0.0486 (9)
H20.05360.11001.13640.058*
C30.0779 (4)0.0025 (3)1.1557 (2)0.0586 (11)
H30.05010.04331.19680.070*
C40.1805 (4)0.0346 (3)1.1309 (2)0.0492 (9)
H40.22330.09641.15510.059*
C50.2187 (3)0.0278 (3)1.06890 (18)0.0362 (7)
C60.3329 (3)0.0003 (3)1.04103 (19)0.0404 (8)
H6A0.39010.06011.05680.048*
H6B0.36870.06531.07110.048*
C70.3311 (3)0.1072 (3)0.9035 (2)0.0445 (8)
C80.2976 (3)0.0800 (3)0.8175 (2)0.0484 (9)
H80.30190.12490.77080.058*
C90.2560 (3)0.0271 (3)0.8135 (2)0.0407 (8)
C100.3812 (5)0.2115 (3)0.9458 (3)0.0736 (14)
H10A0.45810.19740.98430.110*
H10B0.39120.26340.90240.110*
H10C0.32680.24110.97810.110*
C110.2096 (4)0.0941 (3)0.7337 (2)0.0575 (10)
H11A0.12480.10740.72730.086*
H11B0.22220.05480.68410.086*
H11C0.25180.16290.73870.086*
C120.0022 (3)0.2553 (3)1.0236 (2)0.0439 (8)
H12A0.02550.24880.96120.053*
H12B0.06740.27041.04740.053*
C130.2542 (3)0.4326 (3)1.0501 (2)0.0430 (8)
C140.1892 (4)0.4896 (3)1.0998 (2)0.0509 (9)
H140.21240.55461.13000.061*
C150.0853 (3)0.4329 (3)1.0965 (2)0.0452 (8)
C160.3757 (4)0.4604 (3)1.0362 (3)0.0612 (10)
H16A0.42870.39861.05200.092*
H16B0.40770.52261.07140.092*
H16C0.36910.47790.97630.092*
C170.0173 (4)0.4548 (3)1.1383 (3)0.0630 (11)
H17A0.09140.45741.09470.094*
H17B0.00480.52391.16830.094*
H17C0.02180.39711.17870.094*
C180.4273 (4)0.2781 (3)0.8602 (2)0.0442 (8)
C190.0178 (3)0.2614 (3)0.7869 (2)0.0387 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0339 (3)0.0318 (3)0.0364 (3)0.00077 (18)0.0084 (2)0.00114 (17)
S10.0650 (7)0.0783 (7)0.0566 (6)0.0103 (6)0.0307 (5)0.0010 (5)
S20.0695 (8)0.0763 (8)0.0725 (8)0.0029 (6)0.0265 (6)0.0169 (6)
N10.0320 (14)0.0345 (14)0.0471 (15)0.0003 (12)0.0103 (11)0.0008 (12)
N20.0444 (15)0.0382 (14)0.0346 (13)0.0048 (12)0.0110 (11)0.0026 (11)
N30.0360 (14)0.0294 (13)0.0348 (13)0.0036 (11)0.0078 (11)0.0027 (10)
N40.0393 (15)0.0337 (15)0.0495 (15)0.0043 (12)0.0143 (12)0.0020 (12)
N50.0398 (15)0.0354 (14)0.0361 (13)0.0087 (12)0.0054 (11)0.0003 (11)
N60.0487 (17)0.0431 (16)0.0518 (17)0.0050 (14)0.0024 (15)0.0009 (14)
N70.0539 (19)0.0532 (19)0.0545 (18)0.0108 (15)0.0214 (16)0.0027 (14)
C10.0359 (17)0.0364 (17)0.0422 (17)0.0079 (14)0.0114 (14)0.0084 (14)
C20.055 (2)0.043 (2)0.055 (2)0.0173 (18)0.0263 (17)0.0108 (17)
C30.087 (3)0.041 (2)0.057 (2)0.019 (2)0.035 (2)0.0002 (17)
C40.072 (3)0.0334 (18)0.0422 (18)0.0063 (17)0.0144 (17)0.0013 (14)
C50.0429 (18)0.0306 (16)0.0322 (15)0.0053 (14)0.0030 (13)0.0047 (13)
C60.0426 (18)0.0379 (17)0.0360 (16)0.0070 (15)0.0004 (14)0.0016 (14)
C70.0436 (19)0.0406 (18)0.0470 (19)0.0107 (16)0.0056 (15)0.0053 (15)
C80.053 (2)0.051 (2)0.0416 (18)0.0108 (17)0.0099 (15)0.0124 (16)
C90.0399 (18)0.0445 (19)0.0396 (17)0.0035 (15)0.0132 (14)0.0032 (14)
C100.097 (4)0.053 (3)0.063 (3)0.035 (2)0.003 (2)0.0066 (19)
C110.073 (3)0.062 (2)0.0386 (18)0.013 (2)0.0151 (17)0.0032 (17)
C120.0328 (17)0.048 (2)0.053 (2)0.0001 (16)0.0141 (15)0.0015 (17)
C130.0446 (18)0.0335 (18)0.0478 (18)0.0013 (15)0.0039 (15)0.0011 (14)
C140.067 (2)0.0314 (17)0.055 (2)0.0007 (18)0.0148 (18)0.0063 (16)
C150.056 (2)0.0340 (18)0.0466 (18)0.0139 (17)0.0147 (16)0.0021 (14)
C160.052 (2)0.048 (2)0.085 (3)0.0140 (19)0.018 (2)0.013 (2)
C170.079 (3)0.050 (2)0.070 (3)0.015 (2)0.038 (2)0.0027 (19)
C180.049 (2)0.041 (2)0.0419 (18)0.0104 (16)0.0095 (17)0.0008 (14)
C190.045 (2)0.0314 (16)0.0393 (17)0.0018 (15)0.0078 (16)0.0046 (14)
Geometric parameters (Å, º) top
Cu—N71.974 (3)N6—C191.150 (5)
Cu—N12.038 (3)N7—C181.164 (5)
Cu—N22.041 (3)C1—C21.383 (5)
Cu—N32.071 (3)C1—C121.497 (5)
Cu—N62.131 (3)C2—C31.362 (6)
S1—C181.620 (4)C3—C41.371 (6)
S2—C191.615 (4)C4—C51.389 (5)
N1—C131.341 (4)C5—C61.504 (5)
N1—N41.372 (4)C7—C81.369 (5)
N2—C91.338 (4)C7—C101.486 (5)
N2—N51.361 (4)C8—C91.383 (5)
N3—C51.342 (4)C9—C111.495 (5)
N3—C11.354 (4)C13—C141.384 (5)
N4—C151.354 (4)C13—C161.489 (5)
N4—C121.451 (4)C14—C151.360 (5)
N5—C71.343 (4)C15—C171.493 (5)
N5—C61.460 (4)
N7—Cu—N196.27 (12)N3—C1—C2121.2 (3)
N7—Cu—N287.54 (12)N3—C1—C12116.5 (3)
N1—Cu—N2169.02 (10)C2—C1—C12122.2 (3)
N7—Cu—N3153.71 (13)C3—C2—C1119.5 (3)
N1—Cu—N385.59 (10)C2—C3—C4120.1 (3)
N2—Cu—N386.47 (10)C3—C4—C5118.3 (3)
N7—Cu—N699.78 (14)N3—C5—C4122.2 (3)
N1—Cu—N693.28 (11)N3—C5—C6116.4 (3)
N2—Cu—N696.22 (11)C4—C5—C6121.3 (3)
N3—Cu—N6106.31 (12)N5—C6—C5111.3 (2)
C13—N1—N4105.2 (3)N5—C7—C8106.3 (3)
C13—N1—Cu137.1 (2)N5—C7—C10123.4 (3)
N4—N1—Cu117.47 (19)C8—C7—C10130.2 (3)
C9—N2—N5105.2 (3)C7—C8—C9106.7 (3)
C9—N2—Cu134.8 (2)N2—C9—C8110.1 (3)
N5—N2—Cu120.03 (18)N2—C9—C11122.8 (3)
C5—N3—C1118.7 (3)C8—C9—C11127.0 (3)
C5—N3—Cu121.5 (2)N4—C12—C1110.5 (3)
C1—N3—Cu119.8 (2)N1—C13—C14109.9 (3)
C15—N4—N1111.1 (3)N1—C13—C16122.7 (3)
C15—N4—C12128.7 (3)C14—C13—C16127.4 (3)
N1—N4—C12120.0 (3)C15—C14—C13107.4 (3)
C7—N5—N2111.6 (2)N4—C15—C14106.4 (3)
C7—N5—C6129.7 (3)N4—C15—C17122.6 (3)
N2—N5—C6118.6 (2)C14—C15—C17131.0 (3)
C19—N6—Cu178.0 (3)N7—C18—S1179.1 (4)
C18—N7—Cu153.4 (3)N6—C19—S2178.2 (3)
N7—Cu—N1—C1323.2 (3)N3—C1—C2—C32.2 (5)
N2—Cu—N1—C1386.6 (6)C12—C1—C2—C3175.4 (3)
N3—Cu—N1—C13130.4 (3)C1—C2—C3—C40.9 (5)
N6—Cu—N1—C13123.5 (3)C2—C3—C4—C50.5 (5)
N7—Cu—N1—N4163.0 (2)C1—N3—C5—C40.4 (4)
N2—Cu—N1—N487.1 (6)Cu—N3—C5—C4178.7 (2)
N3—Cu—N1—N443.3 (2)C1—N3—C5—C6176.6 (3)
N6—Cu—N1—N462.8 (2)Cu—N3—C5—C61.8 (3)
N7—Cu—N2—C964.5 (3)C3—C4—C5—N30.8 (5)
N1—Cu—N2—C9175.2 (5)C3—C4—C5—C6177.6 (3)
N3—Cu—N2—C9141.1 (3)C7—N5—C6—C5121.5 (3)
N6—Cu—N2—C935.0 (3)N2—N5—C6—C561.2 (4)
N7—Cu—N2—N5115.7 (2)N3—C5—C6—N560.1 (3)
N1—Cu—N2—N55.0 (7)C4—C5—C6—N5122.9 (3)
N3—Cu—N2—N538.7 (2)N2—N5—C7—C80.2 (4)
N6—Cu—N2—N5144.8 (2)C6—N5—C7—C8177.2 (3)
N7—Cu—N3—C537.9 (4)N2—N5—C7—C10179.5 (4)
N1—Cu—N3—C5133.1 (2)C6—N5—C7—C103.0 (6)
N2—Cu—N3—C539.3 (2)N5—C7—C8—C90.1 (4)
N6—Cu—N3—C5134.7 (2)C10—C7—C8—C9179.6 (4)
N7—Cu—N3—C1140.4 (3)N5—N2—C9—C80.2 (4)
N1—Cu—N3—C145.2 (2)Cu—N2—C9—C8179.6 (2)
N2—Cu—N3—C1142.4 (2)N5—N2—C9—C11179.7 (3)
N6—Cu—N3—C147.0 (2)Cu—N2—C9—C110.5 (5)
C13—N1—N4—C150.4 (3)C7—C8—C9—N20.1 (4)
Cu—N1—N4—C15175.2 (2)C7—C8—C9—C11179.8 (4)
C13—N1—N4—C12175.5 (3)C15—N4—C12—C1113.3 (4)
Cu—N1—N4—C120.0 (4)N1—N4—C12—C161.0 (4)
C9—N2—N5—C70.2 (4)N3—C1—C12—N458.4 (4)
Cu—N2—N5—C7179.6 (2)C2—C1—C12—N4119.3 (3)
C9—N2—N5—C6177.5 (3)N4—N1—C13—C140.4 (4)
Cu—N2—N5—C62.6 (4)Cu—N1—C13—C14174.6 (2)
N7—Cu—N6—C19115 (8)N4—N1—C13—C16178.6 (3)
N1—Cu—N6—C19149 (8)Cu—N1—C13—C164.4 (5)
N2—Cu—N6—C1926 (8)N1—C13—C14—C151.0 (4)
N3—Cu—N6—C1962 (8)C16—C13—C14—C15177.9 (4)
N1—Cu—N7—C18161.7 (7)N1—N4—C15—C141.0 (4)
N2—Cu—N7—C188.0 (7)C12—N4—C15—C14175.7 (3)
N3—Cu—N7—C1868.9 (8)N1—N4—C15—C17179.3 (3)
N6—Cu—N7—C18103.9 (7)C12—N4—C15—C174.7 (5)
C5—N3—C1—C21.9 (4)C13—C14—C15—N41.2 (4)
Cu—N3—C1—C2179.8 (2)C13—C14—C15—C17179.1 (4)
C5—N3—C1—C12175.8 (3)Cu—N7—C18—S183 (19)
Cu—N3—C1—C122.6 (4)Cu—N6—C19—S233 (18)

Experimental details

Crystal data
Chemical formula[Cu(CNS)2(C17H21N5)]
Mr475.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.382 (5), 12.162 (4), 15.855 (7)
β (°) 103.31 (3)
V3)2135.8 (14)
Z4
Radiation typeCu Kα
µ (mm1)3.44
Crystal size (mm)0.32 × 0.25 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.337, 0.503
No. of measured, independent and
observed [I > 2σ(I)] reflections
3237, 3057, 2649
Rint0.032
θmax (°)59.9
(sin θ/λ)max1)0.561
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.135, 1.04
No. of reflections3057
No. of parameters267
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.52

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, MolEN (Fair, 1990), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai & Pritzkow, 1994), SHELXL97.

Selected geometric parameters (Å, º) top
Cu—N71.974 (3)Cu—N32.071 (3)
Cu—N12.038 (3)Cu—N62.131 (3)
Cu—N22.041 (3)
N7—Cu—N196.27 (12)N7—Cu—N699.78 (14)
N7—Cu—N287.54 (12)N1—Cu—N693.28 (11)
N1—Cu—N2169.02 (10)N2—Cu—N696.22 (11)
N7—Cu—N3153.71 (13)N3—Cu—N6106.31 (12)
N1—Cu—N385.59 (10)N7—C18—S1179.1 (4)
N2—Cu—N386.47 (10)N6—C19—S2178.2 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds