Download citation
Download citation
link to html
The crystal structure of 4,10,11[alpha]-tri­methyl-3-oxocostuslactone, C15H20O3, a new compound isolated from the dried root of Vladimiria souliei Liarke, has been determined and the compound has been named costuslactone B. The ten-membered ring takes a slightly distorted boat-chair-chair conformation typical of the substituents.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199015723/ta1253sup1.cif
Contains datablocks I, Muxiang

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199015723/ta1253Isup2.hkl
Contains datablock I

CCDC reference: 143263

Comment top

This work forms part of a series of research on traditional Chinese medicinal herbs aimed at looking for bioactive drugs. The title compound, (I), was extracted from the dried root of Vladimiria Soulilei Liarke, which is widespread in the west of Sichuan province and the south of neighbouring Gansu province. The herb is used for relieving uneasiness and stomach ache in traditional Chinese medicine, and it also has some antitumour function. Similar structures of sesquiterpene lactones have been reported (Breton et al., 1985; Gomez-Rodriguez et al., 1985). \scheme

The conformation of the ten-membered ring of (I) is boat-chair-chair (Fig. 1), and it is slightly distorted owing to the influence of the substituents. The dihedral angles between the planes 1 (C3/C2/C4) and 2 (C1/C2/C4/C5), 2 and 3 (C10/C1/C5/C6), 3 and 4 (C9/C10/C6/C7), and 4 and 5 (C8/C7/C9) are 64.2 (3), 46.2 (1), 63.2 (1) and 62.9 (2)°, respectively. The lactone ring has an envelope conformation.

Experimental top

The air-dried, powdered roots of Vladimiria Soulilei Liarke (4.5 kg) were extracted with Et2O for 7 d. When this Et2O extract was concentrated, crystals of (I) were precipitated. The experimental sample was recrystallized from ethyl alcohol/acetone mixed solvent.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989?); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990?); program(s) used to solve structure: SHELX97 (Sheldrick, 1997); program(s) used to refine structure: SHELX97; molecular graphics: XP (Siemens, 1994?).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the labelling of the non-H atoms. Displacement ellipsoids are shown at the 50% probability level and H atoms are drawn as small circles of arbitrary radius.
3,6,10-trimethyl-2,3,3a,4,5,8,9,11a-octahydrocyclodeca[1,2-b]furan-2,9-dione top
Crystal data top
C15H20O3Dx = 1.153 Mg m3
Mr = 248.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 5.553 (1) Åθ = 10–20°
b = 12.340 (1) ŵ = 0.08 mm1
c = 20.875 (2) ÅT = 293 K
V = 1430.4 (3) Å3Block, colourless
Z = 40.5 × 0.5 × 0.4 mm
F(000) = 536
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 30.6°, θmin = 1.9°
Graphite monochromatorh = 07
ω/2θ scansk = 017
2409 measured reflectionsl = 029
2409 independent reflections3 standard reflections every 60 min
2194 reflections with I > 2σ(I) intensity decay: <0.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.137Calculated w = 1/[σ2(Fo2) + (0.0644P)2 + 0.1316P]
where P = (Fo2 + 2Fc2)/3
S = 1.24(Δ/σ)max < 0.001
2409 reflectionsΔρmax = 0.14 e Å3
164 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELX97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (5)
Crystal data top
C15H20O3V = 1430.4 (3) Å3
Mr = 248.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.553 (1) ŵ = 0.08 mm1
b = 12.340 (1) ÅT = 293 K
c = 20.875 (2) Å0.5 × 0.5 × 0.4 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
2409 measured reflections3 standard reflections every 60 min
2409 independent reflections intensity decay: <0.1%
2194 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.24Δρmax = 0.14 e Å3
2409 reflectionsΔρmin = 0.14 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1530 (3)0.98913 (11)0.84433 (6)0.0505 (3)
O20.2772 (3)0.84783 (15)0.90175 (10)0.0757 (5)
O30.0377 (3)1.24741 (12)0.72391 (9)0.0688 (5)
C10.4442 (4)1.24714 (17)0.81895 (12)0.0593 (5)
H10.54881.19910.81760.050*
C20.3663 (5)1.28685 (17)0.75380 (11)0.0622 (5)
H2A0.29741.35770.75650.050*
H2B0.47071.27940.72270.050*
C30.1630 (4)1.21412 (16)0.73249 (9)0.0519 (4)
C40.2205 (4)1.09607 (15)0.72418 (9)0.0521 (4)
C50.1687 (4)1.02388 (14)0.76916 (8)0.0473 (4)
H50.20650.94980.76380.050*
C60.0679 (3)1.05086 (13)0.83384 (8)0.0441 (4)
H60.00891.12340.83310.050*
C70.2346 (4)1.02105 (15)0.89024 (8)0.0484 (4)
H70.39501.01700.87430.050*
C80.2263 (5)1.10460 (18)0.94451 (9)0.0643 (6)
H8A0.27141.07560.98370.050*
H8B0.06591.12530.94900.050*
C90.3965 (6)1.2015 (2)0.93315 (12)0.0754 (7)
H9A0.39611.24690.96670.050*
H9B0.54221.17280.92530.050*
C100.3330 (5)1.26599 (16)0.87372 (11)0.0628 (5)
C110.1430 (4)0.90767 (18)0.90837 (10)0.0556 (5)
H110.20970.85960.88250.050*
C120.1170 (4)0.90783 (17)0.88695 (10)0.0555 (5)
C130.1707 (6)0.8678 (3)0.97712 (13)0.0848 (8)
H13A0.07020.92171.00790.050*
H13B0.14050.80210.97310.050*
H13C0.33420.87780.99180.050*
C140.3411 (7)1.0670 (2)0.66214 (12)0.0821 (8)
H14A0.35990.98730.65740.050*
H14B0.24421.09190.63310.050*
H14C0.49311.10670.66270.050*
C150.1267 (7)1.3428 (2)0.87983 (15)0.0811 (8)
H15A0.10101.38720.84820.050*
H15B0.20491.39970.91380.050*
H15C0.02171.31360.90070.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0453 (6)0.0494 (6)0.0568 (7)0.0010 (6)0.0020 (6)0.0064 (6)
O20.0613 (9)0.0761 (10)0.0898 (12)0.0113 (9)0.0170 (9)0.0202 (9)
O30.0539 (8)0.0558 (8)0.0965 (12)0.0079 (7)0.0025 (8)0.0204 (8)
C10.0501 (10)0.0521 (9)0.0756 (13)0.0085 (9)0.0063 (10)0.0023 (9)
C20.0628 (12)0.0512 (9)0.0726 (12)0.0036 (10)0.0075 (11)0.0052 (9)
C30.0571 (10)0.0495 (8)0.0490 (8)0.0014 (9)0.0071 (8)0.0124 (7)
C40.0592 (11)0.0498 (8)0.0474 (8)0.0020 (9)0.0028 (8)0.0015 (7)
C50.0540 (9)0.0397 (7)0.0482 (8)0.0028 (8)0.0042 (8)0.0048 (6)
C60.0489 (9)0.0357 (6)0.0478 (8)0.0034 (7)0.0052 (7)0.0010 (6)
C70.0453 (8)0.0550 (9)0.0450 (8)0.0044 (8)0.0003 (7)0.0049 (7)
C80.0826 (16)0.0663 (11)0.0439 (8)0.0007 (13)0.0060 (10)0.0007 (8)
C90.0879 (18)0.0760 (14)0.0623 (12)0.0112 (15)0.0200 (13)0.0122 (11)
C100.0660 (13)0.0487 (9)0.0737 (12)0.0108 (10)0.0103 (11)0.0118 (9)
C110.0536 (10)0.0542 (10)0.0590 (10)0.0074 (9)0.0075 (9)0.0122 (8)
C120.0578 (11)0.0527 (9)0.0559 (9)0.0071 (9)0.0114 (9)0.0064 (8)
C130.0876 (18)0.0940 (18)0.0730 (14)0.0086 (18)0.0084 (15)0.0349 (14)
C140.110 (2)0.0721 (14)0.0640 (12)0.0019 (17)0.0298 (15)0.0013 (11)
C150.0899 (19)0.0623 (12)0.0912 (18)0.0111 (15)0.0061 (17)0.0061 (13)
Geometric parameters (Å, º) top
O1—C121.356 (2)C5—C61.499 (2)
O1—C61.461 (2)C6—C71.542 (3)
O2—C121.198 (3)C7—C81.532 (3)
O3—C31.201 (3)C7—C111.536 (3)
C1—C101.320 (3)C8—C91.542 (4)
C1—C21.509 (3)C9—C101.515 (4)
C2—C31.510 (3)C10—C151.493 (4)
C3—C41.501 (3)C11—C121.511 (3)
C4—C51.326 (3)C11—C131.525 (3)
C4—C141.501 (3)
C12—O1—C6111.12 (15)C8—C7—C6112.69 (16)
C10—C1—C2126.1 (2)C11—C7—C6101.92 (16)
C1—C2—C3106.68 (17)C7—C8—C9112.93 (19)
O3—C3—C4120.8 (2)C10—C9—C8113.0 (2)
O3—C3—C2122.33 (19)C1—C10—C15123.0 (2)
C4—C3—C2116.8 (2)C1—C10—C9120.5 (2)
C5—C4—C14123.20 (19)C15—C10—C9116.2 (2)
C5—C4—C3121.59 (17)C12—C11—C13112.0 (2)
C14—C4—C3115.21 (18)C12—C11—C7104.03 (17)
C4—C5—C6124.73 (15)C13—C11—C7119.5 (2)
O1—C6—C5109.42 (14)O2—C12—O1121.1 (2)
O1—C6—C7105.39 (13)O2—C12—C11129.2 (2)
C5—C6—C7114.25 (15)O1—C12—C11109.63 (18)
C8—C7—C11114.88 (16)

Experimental details

Crystal data
Chemical formulaC15H20O3
Mr248.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.553 (1), 12.340 (1), 20.875 (2)
V3)1430.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.5 × 0.5 × 0.4
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2409, 2409, 2194
Rint0.000
(sin θ/λ)max1)0.717
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.137, 1.24
No. of reflections2409
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.14

Computer programs: CAD-4 Software (Enraf-Nonius, 1989?), CAD-4 Software, MolEN (Fair, 1990?), SHELX97 (Sheldrick, 1997), SHELX97, XP (Siemens, 1994?).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds