Download citation
Download citation
link to html
The crystal structures of the Tutton salts (NH4)2-[Cu(H2O)6](SO4)2, diammonium hexaaquacopper disulfate, formed with normal water and isotopically substituted H218O, have been determined by X-ray diffraction at 9.5 K and are very similar, with Cu-O(7) the longest of the Cu-O bonds of the Jahn-Teller distorted octahedral [Cu(H2O)6]2+ complex. It is known that structural differences accompany deuteration of (NH4)2[Cu(H2O)6](SO4)2, the most dramatic of which is a switch to Cu-O(8) as the longest such bond. The present result suggests that the structural differences are associated with hydrogen-bonding effects rather than with increased mass of the water ligands affecting the Jahn-Teller coupling. The Jahn-Teller distortions and hydrogen-bonding contacts in the compounds are compared with those reported for other Tutton salts at ambient and high pressure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768100000963/ta0006sup1.cif
Contains datablocks sn, so

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100000963/ta0006snsup2.hkl
Contains datablock ltcutsn

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768100000963/ta0006sosup3.hkl
Contains datablock ltcutso

Computing details top

For both compounds, data collection: Local diffractometer control software; cell refinement: Local diffractometer control software; data reduction: PROFIT (Streltsov & Zavodnik, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1983); software used to prepare material for publication: SHELXTL (Sheldrick, 1983).

Figures top
[Figure 1] Fig. 1.  
(sn) top
Crystal data top
(NH4)2[Cu(H2O)6](SO4)2F(000) = 414
Mr = 399.84Dx = 1.961 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 12 reflections
a = 9.0964 (9) Åθ = 20.8–23.4°
b = 12.2225 (11) ŵ = 1.99 mm1
c = 6.3447 (7) ÅT = 10 K
β = 106.295 (7)°Plate, lightblue
V = 677.07 (12) Å30.57 × 0.50 × 0.20 mm
Z = 2
Data collection top
Huber 512
diffractometer
1930 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.039
None monochromatorθmax = 30.1°, θmin = 2.9°
ω/2θ scansh = 1212
Absorption correction: gaussian
?
k = 1717
Tmin = 0.336, Tmax = 0.713l = 08
4295 measured reflections3 standard reflections every 100 reflections
1988 independent reflections intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.031P)2 + 0.228P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1988 reflectionsΔρmax = 0.65 e Å3
129 parametersΔρmin = 0.67 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0162 (18)
Crystal data top
(NH4)2[Cu(H2O)6](SO4)2V = 677.07 (12) Å3
Mr = 399.84Z = 2
Monoclinic, P21/aMo Kα radiation
a = 9.0964 (9) ŵ = 1.99 mm1
b = 12.2225 (11) ÅT = 10 K
c = 6.3447 (7) Å0.57 × 0.50 × 0.20 mm
β = 106.295 (7)°
Data collection top
Huber 512
diffractometer
1930 reflections with I > 2σ(I)
Absorption correction: gaussian
?
Rint = 0.039
Tmin = 0.336, Tmax = 0.7133 standard reflections every 100 reflections
4295 measured reflections intensity decay: 0.5%
1988 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.65 e Å3
1988 reflectionsΔρmin = 0.67 e Å3
129 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.00000.00000.00000.00280 (8)
S10.41985 (3)0.13459 (2)0.74317 (4)0.00309 (8)
O30.42991 (9)0.22753 (7)0.59587 (14)0.00541 (15)
O40.55809 (9)0.06696 (7)0.78323 (14)0.00638 (16)
O50.28391 (9)0.06777 (6)0.63161 (13)0.00535 (16)
O60.40174 (9)0.17903 (7)0.95209 (14)0.00577 (15)
O70.18660 (10)0.11856 (7)0.17780 (15)0.00650 (16)
O80.15738 (9)0.10924 (7)0.02938 (14)0.00562 (16)
O90.00600 (9)0.06422 (7)0.28289 (14)0.00563 (15)
N10.14204 (11)0.34170 (8)0.35777 (17)0.00646 (18)
H110.085 (2)0.3280 (17)0.227 (4)0.011 (4)*
H120.221 (2)0.3020 (19)0.391 (4)0.018 (5)*
H130.087 (2)0.3260 (19)0.443 (4)0.018 (5)*
H140.167 (3)0.414 (2)0.377 (4)0.024 (5)*
H150.220 (2)0.0935 (19)0.305 (4)0.019 (5)*
H160.244 (3)0.1235 (19)0.118 (4)0.023 (6)*
H170.239 (3)0.095 (2)0.051 (4)0.024 (5)*
H180.136 (2)0.1668 (19)0.003 (4)0.016 (5)*
H190.084 (3)0.055 (2)0.309 (4)0.024 (5)*
H200.018 (3)0.128 (2)0.313 (4)0.023 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.00378 (11)0.00131 (11)0.00427 (11)0.00049 (5)0.00270 (7)0.00056 (6)
S10.00381 (13)0.00137 (12)0.00480 (13)0.00014 (8)0.00237 (9)0.00018 (8)
O30.0079 (3)0.0024 (3)0.0069 (3)0.0004 (3)0.0037 (3)0.0015 (3)
O40.0049 (3)0.0045 (3)0.0099 (3)0.0017 (3)0.0025 (3)0.0001 (3)
O50.0051 (3)0.0037 (3)0.0074 (3)0.0020 (3)0.0022 (3)0.0014 (3)
O60.0088 (3)0.0043 (3)0.0053 (3)0.0001 (3)0.0038 (3)0.0009 (3)
O70.0069 (3)0.0068 (3)0.0066 (4)0.0010 (3)0.0034 (3)0.0001 (3)
O80.0052 (3)0.0028 (3)0.0094 (4)0.0005 (3)0.0029 (3)0.0003 (3)
O90.0070 (3)0.0039 (3)0.0077 (3)0.0012 (3)0.0048 (3)0.0012 (3)
N10.0076 (4)0.0047 (4)0.0083 (4)0.0001 (3)0.0042 (3)0.0001 (3)
Geometric parameters (Å, º) top
Cu—O9i1.9737 (9)O7—H150.83 (2)
Cu—O91.9737 (9)O7—H160.73 (3)
Cu—O8i2.0042 (8)O8—H170.79 (2)
Cu—O82.0042 (8)O8—H180.76 (2)
Cu—O72.2758 (9)O9—H190.78 (3)
Cu—O7i2.2758 (9)O9—H200.81 (2)
S1—O41.4662 (8)N1—H110.87 (2)
S1—O61.4839 (8)N1—H120.84 (2)
S1—O51.4853 (8)N1—H130.85 (2)
S1—O31.4900 (8)N1—H140.91 (2)
O9i—Cu—O9180.00 (5)O4—S1—O3109.75 (5)
O9i—Cu—O8i88.72 (4)O6—S1—O3108.85 (5)
O9—Cu—O8i91.28 (4)O5—S1—O3108.05 (5)
O9i—Cu—O891.28 (4)Cu—O7—H15105.2 (15)
O9—Cu—O888.72 (4)Cu—O7—H16109.8 (18)
O8i—Cu—O8180.00 (6)H15—O7—H16114 (2)
O9i—Cu—O789.45 (3)Cu—O8—H17111.0 (18)
O9—Cu—O790.55 (3)Cu—O8—H18111.2 (16)
O8i—Cu—O791.00 (3)H17—O8—H18108 (2)
O8—Cu—O789.00 (3)Cu—O9—H19113.2 (18)
O9i—Cu—O7i90.55 (3)Cu—O9—H20121.2 (17)
O9—Cu—O7i89.45 (3)H19—O9—H20107 (2)
O8i—Cu—O7i89.00 (3)H11—N1—H12112 (2)
O8—Cu—O7i91.00 (3)H11—N1—H13105.5 (18)
O7—Cu—O7i180.00 (6)H12—N1—H13109 (2)
O4—S1—O6110.87 (5)H11—N1—H14112 (2)
O4—S1—O5109.36 (5)H12—N1—H14111 (2)
O6—S1—O5109.92 (5)H13—N1—H14107 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O6ii0.87 (2)2.05 (2)2.8827 (13)162 (2)
N1—H12···O30.84 (2)2.18 (2)2.9776 (13)158 (2)
N1—H13···O3iii0.85 (2)2.05 (2)2.8909 (13)169 (2)
N1—H14···O5iv0.91 (2)1.94 (2)2.8403 (13)171 (2)
O7—H15···O50.83 (2)2.02 (2)2.8336 (13)166 (2)
O7—H16···O6v0.73 (3)2.12 (3)2.8283 (12)166 (2)
O8—H17···O4vi0.79 (2)1.88 (2)2.6715 (12)174 (2)
O8—H18···O6ii0.76 (2)1.96 (2)2.7156 (12)173 (2)
O9—H19···O5vii0.78 (3)1.97 (3)2.7307 (11)167 (2)
O9—H20···O3viii0.81 (2)1.88 (3)2.6928 (12)175 (2)
Symmetry codes: (ii) x1/2, y+1/2, z1; (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1; (v) x, y, z1; (vi) x1, y, z1; (vii) x, y, z+1; (viii) x+1/2, y1/2, z+1.
(so) top
Crystal data top
(NH4)2[Cu(H218O)6](SO4)2F(000) = 414
Mr = 411.84Dx = 2.022 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2acCell parameters from 12 reflections
a = 9.0921 (6) Åθ = 20.8–23.4°
b = 12.2195 (8) ŵ = 2.00 mm1
c = 6.3442 (5) ÅT = 10 K
β = 106.277 (5)°Prism, lightblue
V = 676.59 (8) Å30.70 × 0.53 × 0.40 mm
Z = 2
Data collection top
Huber 512
diffractometer
1949 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.013
None monochromatorθmax = 30.1°, θmin = 2.9°
ω/2θ scansh = 012
Absorption correction: gaussian
?
k = 1717
Tmin = 0.405, Tmax = 0.517l = 88
4102 measured reflections3 standard reflections every 100 reflections
1986 independent reflections intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0285P)2 + 0.388P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
1986 reflectionsΔρmax = 0.49 e Å3
129 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.050 (2)
Crystal data top
(NH4)2[Cu(H218O)6](SO4)2V = 676.59 (8) Å3
Mr = 411.84Z = 2
Monoclinic, P21/aMo Kα radiation
a = 9.0921 (6) ŵ = 2.00 mm1
b = 12.2195 (8) ÅT = 10 K
c = 6.3442 (5) Å0.70 × 0.53 × 0.40 mm
β = 106.277 (5)°
Data collection top
Huber 512
diffractometer
1949 reflections with I > 2σ(I)
Absorption correction: gaussian
?
Rint = 0.013
Tmin = 0.405, Tmax = 0.5173 standard reflections every 100 reflections
4102 measured reflections intensity decay: 0.5%
1986 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.49 e Å3
1986 reflectionsΔρmin = 0.46 e Å3
129 parameters
Special details top

Experimental. Prepared from 18-O enriched water.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.00000.00000.00000.00300 (8)
S10.41999 (3)0.13461 (2)0.74317 (4)0.00333 (8)
O30.43010 (9)0.22763 (7)0.59597 (13)0.00560 (15)
O40.55825 (9)0.06705 (7)0.78309 (14)0.00667 (16)
O50.28403 (9)0.06783 (6)0.63190 (13)0.00544 (16)
O60.40192 (9)0.17916 (7)0.95197 (13)0.00589 (15)
O70.18678 (10)0.11864 (7)0.17781 (15)0.00661 (16)
O80.15725 (10)0.10919 (7)0.02927 (14)0.00568 (16)
O90.00620 (10)0.06428 (7)0.28256 (14)0.00572 (15)
N10.14189 (12)0.34172 (8)0.35758 (17)0.00676 (18)
H110.088 (2)0.3284 (17)0.221 (3)0.014 (4)*
H120.215 (3)0.2988 (19)0.385 (3)0.021 (5)*
H130.081 (2)0.3250 (18)0.443 (3)0.018 (5)*
H140.162 (3)0.414 (2)0.367 (4)0.026 (5)*
H150.219 (2)0.0963 (18)0.299 (4)0.019 (5)*
H160.248 (2)0.1212 (17)0.124 (4)0.016 (5)*
H170.238 (3)0.0957 (19)0.047 (4)0.020 (5)*
H180.139 (2)0.1732 (19)0.005 (3)0.017 (5)*
H190.087 (3)0.057 (2)0.313 (4)0.029 (6)*
H200.012 (3)0.1308 (19)0.301 (4)0.023 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.00314 (11)0.00297 (11)0.00320 (11)0.00050 (5)0.00140 (7)0.00052 (5)
S10.00326 (12)0.00311 (12)0.00373 (13)0.00005 (8)0.00116 (9)0.00011 (8)
O30.0073 (3)0.0042 (3)0.0056 (3)0.0006 (3)0.0024 (3)0.0015 (3)
O40.0044 (3)0.0064 (4)0.0089 (4)0.0017 (3)0.0014 (3)0.0000 (3)
O50.0043 (3)0.0054 (4)0.0063 (4)0.0017 (3)0.0009 (3)0.0009 (3)
O60.0080 (4)0.0061 (3)0.0041 (3)0.0001 (3)0.0026 (3)0.0011 (3)
O70.0061 (4)0.0082 (4)0.0057 (4)0.0006 (3)0.0020 (3)0.0005 (3)
O80.0043 (3)0.0046 (4)0.0081 (4)0.0004 (3)0.0017 (3)0.0001 (3)
O90.0064 (4)0.0055 (4)0.0063 (3)0.0014 (3)0.0035 (3)0.0015 (3)
N10.0069 (4)0.0060 (4)0.0078 (4)0.0001 (3)0.0026 (3)0.0001 (3)
Geometric parameters (Å, º) top
Cu—O91.9724 (8)O7—H150.79 (2)
Cu—O9i1.9724 (8)O7—H160.73 (2)
Cu—O82.0019 (8)O8—H170.78 (2)
Cu—O8i2.0019 (8)O8—H180.82 (2)
Cu—O7i2.2769 (9)O9—H190.82 (3)
Cu—O72.2769 (9)O9—H200.83 (2)
S1—O41.4655 (8)N1—H110.89 (2)
S1—O61.4832 (8)N1—H120.82 (2)
S1—O51.4843 (8)N1—H130.90 (2)
S1—O31.4902 (8)N1—H140.90 (3)
O9—Cu—O9i180.00 (7)O4—S1—O3109.72 (5)
O9—Cu—O888.74 (3)O6—S1—O3108.75 (5)
O9i—Cu—O891.26 (3)O5—S1—O3108.10 (5)
O9—Cu—O8i91.26 (3)Cu—O7—H15106.5 (16)
O9i—Cu—O8i88.74 (3)Cu—O7—H16110.8 (17)
O8—Cu—O8i180.00 (5)H15—O7—H16110 (2)
O9—Cu—O7i89.39 (3)Cu—O8—H17112.2 (17)
O9i—Cu—O7i90.61 (3)Cu—O8—H18115.3 (15)
O8—Cu—O7i91.00 (3)H17—O8—H18107 (2)
O8i—Cu—O7i89.00 (3)Cu—O9—H19115.4 (17)
O9—Cu—O790.61 (3)Cu—O9—H20117.6 (16)
O9i—Cu—O789.39 (3)H19—O9—H20104 (2)
O8—Cu—O789.00 (3)H11—N1—H12106.2 (19)
O8i—Cu—O791.00 (3)H11—N1—H13106.6 (18)
O7i—Cu—O7180.00 (6)H12—N1—H13109 (2)
O4—S1—O6110.90 (5)H11—N1—H14107.0 (19)
O4—S1—O5109.40 (5)H12—N1—H14118 (2)
O6—S1—O5109.91 (5)H13—N1—H14109 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O6ii0.89 (2)2.04 (2)2.8810 (13)158 (2)
N1—H12···O30.82 (2)2.22 (2)2.9792 (13)154 (2)
N1—H13···O3iii0.90 (2)2.00 (2)2.8890 (13)171 (2)
N1—H14···O5iv0.90 (3)1.94 (3)2.8402 (13)175 (2)
O7—H15···O50.79 (2)2.06 (2)2.8353 (12)168 (2)
O7—H16···O6v0.73 (2)2.12 (2)2.8279 (12)162 (2)
O8—H17···O4vi0.78 (2)1.90 (2)2.6704 (12)176 (2)
O8—H18···O6ii0.82 (2)1.89 (2)2.7141 (12)179 (2)
O9—H19···O5vii0.82 (3)1.92 (3)2.7287 (12)169 (2)
O9—H20···O3viii0.83 (2)1.87 (2)2.6906 (12)168 (2)
Symmetry codes: (ii) x1/2, y+1/2, z1; (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1; (v) x, y, z1; (vi) x1, y, z1; (vii) x, y, z+1; (viii) x+1/2, y1/2, z+1.

Experimental details

(sn)(so)
Crystal data
Chemical formula(NH4)2[Cu(H2O)6](SO4)2(NH4)2[Cu(H218O)6](SO4)2
Mr399.84411.84
Crystal system, space groupMonoclinic, P21/aMonoclinic, P21/a
Temperature (K)1010
a, b, c (Å)9.0964 (9), 12.2225 (11), 6.3447 (7)9.0921 (6), 12.2195 (8), 6.3442 (5)
β (°) 106.295 (7) 106.277 (5)
V3)677.07 (12)676.59 (8)
Z22
Radiation typeMo KαMo Kα
µ (mm1)1.992.00
Crystal size (mm)0.57 × 0.50 × 0.200.70 × 0.53 × 0.40
Data collection
DiffractometerHuber 512
diffractometer
Huber 512
diffractometer
Absorption correctionGaussianGaussian
Tmin, Tmax0.336, 0.7130.405, 0.517
No. of measured, independent and
observed [I > 2σ(I)] reflections
4295, 1988, 1930 4102, 1986, 1949
Rint0.0390.013
(sin θ/λ)max1)0.7050.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.060, 1.12 0.020, 0.054, 1.18
No. of reflections19881986
No. of parameters129129
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.670.49, 0.46

Computer programs: Local diffractometer control software, PROFIT (Streltsov & Zavodnik, 1989), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1983).

Selected geometric parameters (Å, º) for (sn) top
Cu—O9i1.9737 (9)O7—H150.83 (2)
Cu—O91.9737 (9)O7—H160.73 (3)
Cu—O8i2.0042 (8)O8—H170.79 (2)
Cu—O82.0042 (8)O8—H180.76 (2)
Cu—O72.2758 (9)O9—H190.78 (3)
Cu—O7i2.2758 (9)O9—H200.81 (2)
S1—O41.4662 (8)N1—H110.87 (2)
S1—O61.4839 (8)N1—H120.84 (2)
S1—O51.4853 (8)N1—H130.85 (2)
S1—O31.4900 (8)N1—H140.91 (2)
O9i—Cu—O9180.00 (5)O4—S1—O3109.75 (5)
O9i—Cu—O8i88.72 (4)O6—S1—O3108.85 (5)
O9—Cu—O8i91.28 (4)O5—S1—O3108.05 (5)
O9i—Cu—O891.28 (4)Cu—O7—H15105.2 (15)
O9—Cu—O888.72 (4)Cu—O7—H16109.8 (18)
O8i—Cu—O8180.00 (6)H15—O7—H16114 (2)
O9i—Cu—O789.45 (3)Cu—O8—H17111.0 (18)
O9—Cu—O790.55 (3)Cu—O8—H18111.2 (16)
O8i—Cu—O791.00 (3)H17—O8—H18108 (2)
O8—Cu—O789.00 (3)Cu—O9—H19113.2 (18)
O9i—Cu—O7i90.55 (3)Cu—O9—H20121.2 (17)
O9—Cu—O7i89.45 (3)H19—O9—H20107 (2)
O8i—Cu—O7i89.00 (3)H11—N1—H12112 (2)
O8—Cu—O7i91.00 (3)H11—N1—H13105.5 (18)
O7—Cu—O7i180.00 (6)H12—N1—H13109 (2)
O4—S1—O6110.87 (5)H11—N1—H14112 (2)
O4—S1—O5109.36 (5)H12—N1—H14111 (2)
O6—S1—O5109.92 (5)H13—N1—H14107 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) for (sn) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O6ii0.87 (2)2.05 (2)2.8827 (13)162 (2)
N1—H12···O30.84 (2)2.18 (2)2.9776 (13)158 (2)
N1—H13···O3iii0.85 (2)2.05 (2)2.8909 (13)169 (2)
N1—H14···O5iv0.91 (2)1.94 (2)2.8403 (13)171 (2)
O7—H15···O50.83 (2)2.02 (2)2.8336 (13)166 (2)
O7—H16···O6v0.73 (3)2.12 (3)2.8283 (12)166 (2)
O8—H17···O4vi0.79 (2)1.88 (2)2.6715 (12)174 (2)
O8—H18···O6ii0.76 (2)1.96 (2)2.7156 (12)173 (2)
O9—H19···O5vii0.78 (3)1.97 (3)2.7307 (11)167 (2)
O9—H20···O3viii0.81 (2)1.88 (3)2.6928 (12)175 (2)
Symmetry codes: (ii) x1/2, y+1/2, z1; (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1; (v) x, y, z1; (vi) x1, y, z1; (vii) x, y, z+1; (viii) x+1/2, y1/2, z+1.
Selected geometric parameters (Å, º) for (so) top
Cu—O91.9724 (8)O7—H150.79 (2)
Cu—O9i1.9724 (8)O7—H160.73 (2)
Cu—O82.0019 (8)O8—H170.78 (2)
Cu—O8i2.0019 (8)O8—H180.82 (2)
Cu—O7i2.2769 (9)O9—H190.82 (3)
Cu—O72.2769 (9)O9—H200.83 (2)
S1—O41.4655 (8)N1—H110.89 (2)
S1—O61.4832 (8)N1—H120.82 (2)
S1—O51.4843 (8)N1—H130.90 (2)
S1—O31.4902 (8)N1—H140.90 (3)
O9—Cu—O9i180.00 (7)O4—S1—O3109.72 (5)
O9—Cu—O888.74 (3)O6—S1—O3108.75 (5)
O9i—Cu—O891.26 (3)O5—S1—O3108.10 (5)
O9—Cu—O8i91.26 (3)Cu—O7—H15106.5 (16)
O9i—Cu—O8i88.74 (3)Cu—O7—H16110.8 (17)
O8—Cu—O8i180.00 (5)H15—O7—H16110 (2)
O9—Cu—O7i89.39 (3)Cu—O8—H17112.2 (17)
O9i—Cu—O7i90.61 (3)Cu—O8—H18115.3 (15)
O8—Cu—O7i91.00 (3)H17—O8—H18107 (2)
O8i—Cu—O7i89.00 (3)Cu—O9—H19115.4 (17)
O9—Cu—O790.61 (3)Cu—O9—H20117.6 (16)
O9i—Cu—O789.39 (3)H19—O9—H20104 (2)
O8—Cu—O789.00 (3)H11—N1—H12106.2 (19)
O8i—Cu—O791.00 (3)H11—N1—H13106.6 (18)
O7i—Cu—O7180.00 (6)H12—N1—H13109 (2)
O4—S1—O6110.90 (5)H11—N1—H14107.0 (19)
O4—S1—O5109.40 (5)H12—N1—H14118 (2)
O6—S1—O5109.91 (5)H13—N1—H14109 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) for (so) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O6ii0.89 (2)2.04 (2)2.8810 (13)158 (2)
N1—H12···O30.82 (2)2.22 (2)2.9792 (13)154 (2)
N1—H13···O3iii0.90 (2)2.00 (2)2.8890 (13)171 (2)
N1—H14···O5iv0.90 (3)1.94 (3)2.8402 (13)175 (2)
O7—H15···O50.79 (2)2.06 (2)2.8353 (12)168 (2)
O7—H16···O6v0.73 (2)2.12 (2)2.8279 (12)162 (2)
O8—H17···O4vi0.78 (2)1.90 (2)2.6704 (12)176 (2)
O8—H18···O6ii0.82 (2)1.89 (2)2.7141 (12)179 (2)
O9—H19···O5vii0.82 (3)1.92 (3)2.7287 (12)169 (2)
O9—H20···O3viii0.83 (2)1.87 (2)2.6906 (12)168 (2)
Symmetry codes: (ii) x1/2, y+1/2, z1; (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1; (v) x, y, z1; (vi) x1, y, z1; (vii) x, y, z+1; (viii) x+1/2, y1/2, z+1.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds