Download citation
Download citation
link to html
The peptide bond in the crystal structure of the title compound, C8H16N2O4, deviates substantially from planarity in the same manner as in other L-Ser-L-Xaa dipeptides, where Xaa is a hydro­phobic residue.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104021523/sx1147sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104021523/sx1147Isup2.hkl
Contains datablock I

CCDC reference: 254955

Comment top

The structure of L-Ser-L-Phe, (I), has been investigated as part of a systematic survey of dipeptides with one hydrophobic and one small polar residue (Netland et al., 2004, and references therein). The molecular structure of (I) is shown in Fig. 1. Bond lengths and bond angles are normal, except in the Phe phenyl ring, where the bond lengths, in particular C8—C9 and C9—C10, are shortened significantly (Table 1) as a result of strong librational motion, reflected by the very elongated displacement ellipsoids in Fig. 1.

The peptide bond of (I) is unusually non-planar for a small linear peptide. The associated C1—C3—N2—C4 torsion angle (ω) is 157.51 (17)° (Table 1). Equivalent deviations from 180° occur also for L-Ser-L-Leu, (II) [157.99 (12)°; Słowikowska & Lipkowski, 2001], and L-Ser-L-Val, (III) [157.37 (15)°; Moen et al., 2004], which, despite the shift in space group from P21 for (II) and (III) to P212121 for (I), share the hydrogen-bonding network and general crystal packing arrangement of (I). The conversion to an orthorhombic system, which involves an increase in the length of the c axis from 18.1263 (9) Å for (II) and 15.588 (10) Å for (III) to 36.741 (9) Å for (I), is a prerequisite for the formation of the classical herringbone stacking pattern of aromatic groups seen in Fig. 2, with C9—H91···C9(1/2 + x, −1/2 − y, 1 − z) as the most prominent intermolecular C—H···π interaction (H···C = 3.00 Å). Retention of the monoclinic space group would have given a less favorable, almost coplanar, arrangement of the phenyl rings.

The origin of the low ω values for these structures results, as discussed for (III) (Moen et al., 2004), from the need to fix the side-chain Ser–OH group as well as the C-terminal carboxylate group in favourable positions for the formation of hydrogen bonds (Table 2). Notably, the hydroxy H atom points in the direction of its carboxylate acceptor thanks to a conformation [C1—C2—O1—H5 = 127.4 (17)°; Table 1] that causes an eclipse with one of the H atoms bonded to atom C2 (H21—C2—O1—H5 = 6.5°). The overall molecular geometry of (I) corresponds closely to that observed for (II) and (III). The Phe side chain is in a common trans orientation as defined by the N2—C4—C5—C6 torsion angle.

The hydrophobic layers in the structure of (I) are composed of the benzyl side chains of the Phe residues. Similarly, isobutyl and isopropyl side chains of Leu and Val residues can also form hydrophobic layers on their own, as in the structures of (II) and (III). In contrast, no examples, to the authors' knowledge, have been found of peptide structures with hydrophobic layers composed exclusively of Ala methyl groups, which are apparently too small to fill a layer without leaving large unfavorable voids. Hence, L-Ser-L-Ala, the third peptide in the Cambridge Structural Database (Version 5.25 of November 2003; Allen, 2002) in which an N-terminal Ser residue is coupled with a hydrophobic residue, forms a structure with a three-dimensional hydrogen-bonding pattern that is completely different from that of (I), (II) and (III).

Experimental top

The title compound was obtained from Bachem. Crystals were prepared by slow diffusion of ethanol into an aqueous solution of the peptide at ambient temperature.

Refinement top

Positional parameters were refined for H atoms involved in hydrogen bonds; other H atoms were positioned geometrically (C—H = 0.8381–1.0032 Å) and refined with constraints to keep all C—H distances and C—C—H angles on one C atom the same. Uiso(H) values were set at 1.2Ueq of the carrier atom, or 1.5Ueq for amine and methyl groups. In the absence of significant anomalous scattering effects, 1012 Friedel pairs were merged. The absolute configuration of the purchased material was known.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. : The molecular structure of L-Ser-L-Phe. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as spheres of arbitrary size.
[Figure 2] Fig. 2. : The molecular packing and unit cell of L-Ser-L-Phe, viewed along the b axis.
L-Seryl-L-phenylalanine top
Crystal data top
C12H16N2O4Dx = 1.339 Mg m3
Mr = 252.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3760 reflections
a = 5.3382 (13) Åθ = 2.2–26.7°
b = 6.3827 (16) ŵ = 0.10 mm1
c = 36.741 (9) ÅT = 105 K
V = 1251.8 (5) Å3Needle, colourless
Z = 40.75 × 0.15 × 0.10 mm
F(000) = 536
Data collection top
Siemens SMART CCD
diffractometer
1592 independent reflections
Radiation source: fine-focus sealed tube1428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 8.3 pixels mm-1θmax = 26.7°, θmin = 2.2°
Sets of exposures each taken over 0.3° ω rotation scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 77
Tmin = 0.894, Tmax = 0.990l = 4546
6723 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.0136P]
where P = (Fo2 + 2Fc2)/3
1592 reflections(Δ/σ)max = 0.002
190 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H16N2O4V = 1251.8 (5) Å3
Mr = 252.27Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.3382 (13) ŵ = 0.10 mm1
b = 6.3827 (16) ÅT = 105 K
c = 36.741 (9) Å0.75 × 0.15 × 0.10 mm
Data collection top
Siemens SMART CCD
diffractometer
1592 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1428 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.990Rint = 0.054
6723 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.28 e Å3
1592 reflectionsΔρmin = 0.23 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Data were collected by measuring five sets of exposures with the detector set at 2θ = 29°, crystal-to-detector distance 5.00 cm. Refinement of F2 against ALL reflections.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0763 (3)0.5056 (2)0.24905 (4)0.0190 (3)
H50.170 (5)0.533 (4)0.2302 (7)0.029*
O20.6408 (3)0.6014 (2)0.33254 (4)0.0201 (3)
O30.6547 (3)0.0811 (2)0.30975 (4)0.0204 (3)
O40.9972 (3)0.0694 (2)0.34486 (4)0.0184 (3)
N10.2372 (3)0.7865 (3)0.30197 (5)0.0158 (4)
H10.399 (5)0.828 (4)0.3016 (7)0.024*
H20.159 (5)0.808 (4)0.2827 (7)0.024*
H30.131 (4)0.877 (4)0.3187 (6)0.024*
N20.4110 (3)0.3350 (3)0.35679 (5)0.0161 (4)
H40.269 (5)0.267 (4)0.3559 (6)0.019*
C10.2235 (4)0.5586 (3)0.31063 (5)0.0151 (4)
H110.068 (5)0.529 (4)0.3212 (6)0.018*
C20.2534 (4)0.4336 (3)0.27505 (5)0.0186 (4)
H210.4200.4510.26570.022*
H220.2270.2870.27970.022*
C30.4448 (4)0.5022 (3)0.33503 (5)0.0143 (4)
C40.6302 (4)0.2236 (3)0.37044 (5)0.0163 (4)
H410.7450.3270.38250.020*
C50.5471 (4)0.0592 (3)0.39892 (6)0.0220 (5)
H510.4190.1220.41480.026*
H520.4700.0600.38620.026*
C60.7605 (4)0.0210 (3)0.42224 (5)0.0213 (5)
C70.8623 (5)0.2192 (4)0.41690 (7)0.0315 (6)
H710.7930.3120.39730.038*
C81.0574 (5)0.2893 (5)0.43838 (9)0.0483 (8)
H811.1240.4210.43440.058*
C91.1536 (6)0.1652 (6)0.46566 (8)0.0531 (10)
H911.2700.2090.47890.064*
C101.0563 (6)0.0314 (6)0.47099 (7)0.0494 (9)
H1011.1250.1200.48970.059*
C110.8601 (5)0.1041 (4)0.44959 (6)0.0345 (6)
H1110.7960.2360.45360.055 (10)*
C120.7725 (4)0.1166 (3)0.33893 (5)0.0152 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0226 (8)0.0219 (7)0.0126 (7)0.0003 (6)0.0039 (6)0.0000 (6)
O20.0181 (7)0.0222 (8)0.0200 (7)0.0013 (6)0.0035 (6)0.0031 (6)
O30.0234 (7)0.0219 (7)0.0159 (7)0.0007 (7)0.0041 (6)0.0031 (6)
O40.0188 (7)0.0186 (8)0.0178 (7)0.0014 (6)0.0012 (6)0.0011 (6)
N10.0177 (9)0.0166 (8)0.0131 (8)0.0028 (7)0.0047 (7)0.0005 (7)
N20.0159 (8)0.0171 (9)0.0154 (9)0.0011 (7)0.0001 (7)0.0005 (6)
C10.0169 (9)0.0154 (10)0.0132 (9)0.0000 (8)0.0014 (8)0.0004 (7)
C20.0235 (10)0.0180 (10)0.0142 (9)0.0032 (9)0.0033 (8)0.0003 (8)
C30.0171 (9)0.0164 (9)0.0096 (9)0.0020 (8)0.0011 (7)0.0025 (8)
C40.0182 (10)0.0174 (10)0.0134 (9)0.0002 (9)0.0015 (8)0.0015 (7)
C50.0233 (10)0.0259 (11)0.0168 (10)0.0007 (10)0.0021 (8)0.0090 (9)
C60.0229 (10)0.0273 (11)0.0137 (9)0.0028 (9)0.0008 (8)0.0076 (8)
C70.0371 (13)0.0268 (12)0.0307 (12)0.0018 (11)0.0026 (11)0.0095 (10)
C80.0373 (15)0.0483 (17)0.059 (2)0.0102 (15)0.0007 (15)0.0318 (15)
C90.0289 (13)0.092 (3)0.0386 (16)0.0057 (16)0.0098 (13)0.0450 (17)
C100.0449 (17)0.085 (3)0.0179 (12)0.0200 (19)0.0090 (12)0.0063 (14)
C110.0439 (15)0.0439 (15)0.0156 (11)0.0069 (13)0.0004 (11)0.0037 (10)
C120.0196 (9)0.0122 (9)0.0139 (9)0.0030 (8)0.0001 (8)0.0028 (7)
Geometric parameters (Å, º) top
O1—C21.420 (2)C4—C121.544 (3)
O1—H50.87 (3)C4—C51.547 (3)
O2—C31.226 (2)C4—H411.0010
O3—C121.264 (2)C5—C61.515 (3)
O4—C121.255 (3)C5—H510.9822
N1—C11.490 (3)C5—H520.9822
N1—H10.90 (3)C6—C111.389 (3)
N1—H20.83 (3)C6—C71.391 (3)
N1—H31.02 (2)C7—C81.381 (4)
N2—C31.345 (3)C7—H711.0032
N2—C41.458 (3)C8—C91.377 (5)
N2—H40.87 (3)C8—H810.9238
C1—C31.526 (3)C9—C101.372 (5)
C1—C21.540 (3)C9—H910.8381
C1—H110.94 (2)C10—C111.390 (4)
C2—H210.9603C10—H1010.9613
C2—H220.9603C11—H1110.9195
C2—O1—H5102.7 (17)C12—C4—H41108.8
C1—N1—H1109.7 (17)C5—C4—H41108.8
C1—N1—H2108.7 (18)C6—C5—C4113.32 (18)
H1—N1—H2114 (2)C6—C5—H51108.9
C1—N1—H3113.5 (14)C4—C5—H51108.9
H1—N1—H3112 (2)C6—C5—H52108.9
H2—N1—H398 (2)C4—C5—H52108.9
C3—N2—C4118.92 (17)H51—C5—H52107.7
C3—N2—H4119.3 (16)C11—C6—C7118.4 (2)
C4—N2—H4117.7 (16)C11—C6—C5120.2 (2)
N1—C1—C3108.55 (16)C7—C6—C5121.4 (2)
N1—C1—C2108.63 (15)C8—C7—C6120.6 (3)
C3—C1—C2107.23 (15)C8—C7—H71119.7
N1—C1—H11109.1 (15)C6—C7—H71119.7
C3—C1—H11113.3 (14)C9—C8—C7120.7 (3)
C2—C1—H11109.9 (15)C9—C8—H81119.7
O1—C2—C1109.55 (16)C7—C8—H81119.7
O1—C2—H21109.8C10—C9—C8119.2 (3)
C1—C2—H21109.8C10—C9—H91120.4
O1—C2—H22109.8C8—C9—H91120.4
C1—C2—H22109.8C9—C10—C11120.7 (3)
H21—C2—H22108.2C9—C10—H101119.7
O2—C3—N2124.65 (18)C11—C10—H101119.7
O2—C3—C1119.62 (17)C6—C11—C10120.4 (3)
N2—C3—C1115.63 (17)C6—C11—H111119.8
N2—C4—C12110.65 (16)C10—C11—H111119.8
N2—C4—C5109.46 (17)O4—C12—O3125.4 (2)
C12—C4—C5110.39 (17)O4—C12—C4116.48 (17)
N2—C4—H41108.8O3—C12—C4118.08 (18)
N1—C1—C3—N2154.21 (16)C3—N2—C4—C5171.98 (17)
C4—N2—C3—C1157.51 (17)C12—C4—C5—C674.3 (2)
C3—N2—C4—C1266.2 (2)C11—C6—C7—C80.1 (3)
N2—C4—C12—O321.2 (3)C5—C6—C7—C8179.8 (2)
N1—C1—C2—O153.3 (2)C6—C7—C8—C90.5 (4)
C1—C2—O1—H5127.4 (17)C7—C8—C9—C101.1 (4)
N2—C4—C5—C6163.69 (17)C8—C9—C10—C111.1 (4)
C4—C5—C6—C7105.0 (2)C7—C6—C11—C100.1 (3)
C4—C5—C6—C1174.7 (3)C5—C6—C11—C10179.8 (2)
C3—C1—C2—O1170.44 (15)C9—C10—C11—C60.5 (4)
C4—N2—C3—O218.8 (3)N2—C4—C12—O4159.76 (17)
N1—C1—C3—O229.3 (2)C5—C4—C12—O478.9 (2)
C2—C1—C3—O287.9 (2)C5—C4—C12—O3100.1 (2)
C2—C1—C3—N288.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.90 (3)2.14 (3)2.930 (2)146 (2)
N1—H2···O1ii0.84 (3)2.13 (3)2.876 (2)149 (2)
N1—H3···O4iii1.01 (2)1.71 (3)2.718 (2)168 (2)
N2—H4···O4iv0.87 (3)1.97 (3)2.819 (2)165 (2)
O1—H5···O3v0.87 (3)1.77 (3)2.638 (2)176 (2)
C1—H11···O2iv0.94 (2)2.36 (2)3.225 (3)153 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x1, y+1, z; (iv) x1, y, z; (v) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H16N2O4
Mr252.27
Crystal system, space groupOrthorhombic, P212121
Temperature (K)105
a, b, c (Å)5.3382 (13), 6.3827 (16), 36.741 (9)
V3)1251.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.75 × 0.15 × 0.10
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.894, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
6723, 1592, 1428
Rint0.054
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.07
No. of reflections1592
No. of parameters190
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.23

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 2001), SAINT-Plus, SHELXTL (Bruker, 2000), SHELXTL.

Selected geometric parameters (Å, º) top
O1—C21.420 (2)C4—C121.544 (3)
O2—C31.226 (2)C4—C51.547 (3)
O3—C121.264 (2)C5—C61.515 (3)
O4—C121.255 (3)C6—C111.389 (3)
N1—C11.490 (3)C6—C71.391 (3)
N2—C31.345 (3)C7—C81.381 (4)
N2—C41.458 (3)C8—C91.377 (5)
C1—C31.526 (3)C9—C101.372 (5)
C1—C21.540 (3)C10—C111.390 (4)
N1—C1—C3—N2154.21 (16)C1—C2—O1—H5127.4 (17)
C4—N2—C3—C1157.51 (17)N2—C4—C5—C6163.69 (17)
C3—N2—C4—C1266.2 (2)C4—C5—C6—C7105.0 (2)
N2—C4—C12—O321.2 (3)C4—C5—C6—C1174.7 (3)
N1—C1—C2—O153.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.90 (3)2.14 (3)2.930 (2)146 (2)
N1—H2···O1ii0.84 (3)2.13 (3)2.876 (2)149 (2)
N1—H3···O4iii1.01 (2)1.71 (3)2.718 (2)168 (2)
N2—H4···O4iv0.87 (3)1.97 (3)2.819 (2)165 (2)
O1—H5···O3v0.87 (3)1.77 (3)2.638 (2)176 (2)
C1—H11···O2iv0.94 (2)2.36 (2)3.225 (3)153 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2; (iii) x1, y+1, z; (iv) x1, y, z; (v) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds