Download citation
Download citation
link to html
In methyl [5-methoxy-4-(4-methoxy­phenyl)­isochroman-3-yl]­acetate, C20H22O5, (I), and methyl [4-(2,5-di­methoxy­phenyl)-8-methoxy­isochroman-3-yl]­acetate, C21H24O6, (II), the heterocyclic rings adopt half-chair conformations. The substituents at the 3- and 4-positions are in a trans configuration in both (I) and (II), being in an axial conformation in (I) and in an equatorial conformation in (II). The crystal structure of (I) is stabilized by weak C-H...O hydrogen bonding, leading to the formation of an infinite three-dimensional network. Compound (II) crystallizes in a chiral space group. This feature, which was also found in previously investigated isochroman derivatives, is related to the arrangement of substituents attached to the isochroman moiety.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104003087/sx1129sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104003087/sx1129Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104003087/sx1129IIsup3.hkl
Contains datablock II

CCDC references: 237929; 237930

Comment top

Some members of the benzo[c]pyran family have been found in nature and shown to possess a variety of biological properties (Moore, 1977; Moore & Czerniak, 1981). The title compounds, (I) and (II), were synthesized while searching for new precursors for this type of antibiotic. The present work is a continuation of systematic X-ray investigations of isochroman derivatives (Palusiak et al., 2002a,b, 2003a,b).

In the molecules of the title compounds, the base isochroman moiety is a system of two condensed rings, viz. a benzene ring and a heterocyclic ring with an O atom at the 2-position. In both compounds, there is a methoxycarbonyl methyl substituent at the 3-position. The molecules differ from one another in the positions of the methoxy groups attached to the benzene ring of the isochroman moiety and in the kind of the substituent at the 4-position. In each case, the heterocyclic ring adopts a half-chair conformation, with a twofold axis passing through the midpoint of the O2—C3 bond. The asymmetry parameter (Nardelli, 1983) Δ2(O2—C3) is 0.0446 (6) and 0.0124 (7) for (I) and (II), respectively. The puckering parameters (Cremer & Pople, 1975) Q, ϕ2 and θ2 corresponding to the sequence of atoms O2/C3/C4/C10/C9/C1 are 0.487 (2) Å, 17.7 (2)° and 51.9 (2)° for molecules of (I), and 0.506 (2) Å, 32.64 (3)° and 50.6 (2)° for molecules of (II). Likewise in the previously investigated isochromans, substituents at the 3- and 4-positions are in a trans configuration, being in an axial conformation in (I) and in an equatorial conformation in (II). Torsion angles describing these features are presented in Table 2.

Molecules of both of the examined isochromans have two chiral centers, at atoms C3 and C4. In the case of (I), which crystallizes in a centrosymmetric space group, the relative stereochemistry is 3S,4R and the crystals contain a racemic mixture. In the case of (II), owing to the chiral space group, the absolute configuration of the molecules is 3S,4S or its enantiomorph 3R,4R. The absence of a strong anomalous scatterer in the crystal does not allow unequivocal determination of the absolute configuration.

Both in (I) and (II), the phenyl substituent at atom C4 and the aromatic ring in the isochroman moiety are oriented almost perpendicular to one another. The dihedral angles between the planes of these rings are 84.45 (3) and 75.21 (5)° for (I) and (II), respectively. The non-H atoms of the methoxy groups do not deviate significantly from the planes of the rings to which they are attached, the maximum deviation being 0.215 (2) Å for atom C440 in (I) and 0.026 (4) Å for atom O45 in (II). As expected, the methoxycarbonyl methyl substituents are planar. In the molecule of (I), the C31/C32/O30/O31/C310 plane makes a dihedral angle of 16.95 (3)° with the flat fragment of the isochroman moiety (C5–C10/C1/C4). In the molecule of (II), this dihedral angle is 60.06 (5)°.

There is no typical H-atom donor system in molecules of the title compounds. Therefore there is no possibility of forming typical inter- or intramolecular hydrogen bonds. Only C—H···X interactions, usually defined as weak, can be found in the crystal structures of (I) and (II). Analysis of the packing suggests the presence of such interactions in the crystal of (I). There are two weak interactions in which aromatic C atoms act as H-atom donors, with O atoms playing the roles of acceptors. In one of these bonds, C7—H7···O2(1 − x, 0.5 + y, 0.5 − z), the linked molecules, related via a 21 symmetry operation, form chains. This topological motif corresponds to the first-level graph-set descriptor C(6) (Bernstein et al., 1994). In the second interaction, C46—H46···O5(−1 + x, y, z), C(7) chains generated from a translation operation along the [100] direction are formed by adjacent molecules. The crystal structure is thereby stabilized by an infinite three-dimensional network of weak hydrogen bonds. In (II), the number of short contacts (less than 4 Å) is greater than in (I). Nevertheless, none of these interactions can be recognized as hydrogen bonds.

Compound (II) crystallizes in a chiral space group, in spite of its non-stereospecific synthesis in which both trans stereoisomers were obtained (Epsztajn et al., 2001). A similar situation has been found in the cases of two previously examined crystal structures of isochroman derivatives crystallizing in chiral space groups (Palusiak et al., 2002a, 2003b). The scheme in Fig. 3 shows the correlation between the arrangement of substituents attached to the isochroman moiety and the space group of previously investigated isochroman derivatives. Analysis of the arrangement of the substituents in comparison with their space group suggests that isochroman molecules, in which a methoxy group is attached at the 8-position, have a tendency to crystallize in a chiral space group. As shown, this effect exists for derivatives containing a hydroxy group at the 3-position and our results now demonstrate that this group can be replaced by a methoxycarbonyl methyl substituent. It is thus possible to speculate that these observations must be related to advantageous packing of molecules in a chiral space group. In addition, the melting points for both compounds were determined by DSC measurements. Interestingly, the melting point is considerably higher in the case of (II), being 426.01 K for (II) and 361.63 K for (I). Such a large difference cannot be explained solely on the basis of a difference in molecular mass and may, in part, be related to the close C—H···O interactions observed in (II), which crystallizes in a chiral space group.

Experimental top

The syntheses of (I) and (II) were described by Epsztajn et al. (2001). Single crystals were obtained by slow evaporation from methanol solution at room temperature.

Refinement top

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å. For methoxy H atoms, Uiso(H) values were taken to be 1.5Ueq(C); for all other H atoms, Uiso(H) was set to 1.2Ueq(C). In the refinement of (II), data were merged using MERG4 in SHELXL97, according to the standard procedure for X-ray Mo Kα measurements of chemical compounds without heavy atoms.

Computing details top

For both compounds, data collection: Stoe & Cie (1998); cell refinement: Stoe & Cie; data reduction: Stoe & Cie; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: PARST (Nardelli, 1996).

Figures top
[Figure 1] Fig. 1. A view of (I) (40% probability displacement ellipsoids). H atoms hsve been omitted for clarity.
[Figure 2] Fig. 2. A view of (II) (40% probability displacement ellipsoids). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Molecular schemes of previously investigated isochroman derivatives (space-groups are also given): (1) R1 = –OH, R2 = 4-methoxyphenyl, R3 = –OMe, R4 = –H, P-1 (Palusiak et al., 2003a); (2) R1 = –OH, R2 = 2,5-dimethoxyphenyl, R3 = –H, R4 = –OMe, P 212121 (Palusiak et al., 2002a); (3) R1 = –OH, R2 = 4-methoxyphenyl, R3 = –H, R4 = –OMe, P21 (Palusiak et al., 2003b); (4) R1 = –CH2COOCH3, R2 = 3-methoxyphenyl, R3 = –OMe, R4 = –H, P-1 (Palusiak et al., 2002b).
(I) top
Crystal data top
C20H22O5F(000) = 728
Mr = 342.38Dx = 1.332 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8000 reflections
a = 5.6432 (3) Åθ = 2.4–25.9°
b = 14.5521 (8) ŵ = 0.10 mm1
c = 20.9417 (12) ÅT = 173 K
β = 96.799 (7)°Prism, colourless
V = 1707.65 (16) Å30.5 × 0.5 × 0.4 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
Rint = 0.057
Graphite monochromatorθmax = 25.9°, θmin = 2.4°
rotation scansh = 66
17008 measured reflectionsk = 1717
3267 independent reflectionsl = 2525
2607 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.051P)2 + 0.1166P]
where P = (Fo2 + 2Fc2)/3'
wR(F2) = 0.088(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.26 e Å3
3267 reflectionsΔρmin = 0.13 e Å3
229 parameters
Crystal data top
C20H22O5V = 1707.65 (16) Å3
Mr = 342.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6432 (3) ŵ = 0.10 mm1
b = 14.5521 (8) ÅT = 173 K
c = 20.9417 (12) Å0.5 × 0.5 × 0.4 mm
β = 96.799 (7)°
Data collection top
Stoe IPDS
diffractometer
2607 reflections with I > 2σ(I)
17008 measured reflectionsRint = 0.057
3267 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
3267 reflectionsΔρmin = 0.13 e Å3
229 parameters
Special details top

Experimental. Melting points were measured on a METTER TOLEDO DSC 30.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4971 (2)0.19887 (8)0.29842 (6)0.0280 (3)
H1A0.32520.21290.2880.034*
H1B0.54830.22270.34220.034*
C30.7710 (2)0.07290 (8)0.29666 (6)0.0255 (3)
H30.77250.00420.2980.031*
C40.85622 (19)0.10130 (8)0.23213 (6)0.0235 (2)
H41.03340.09320.23630.028*
C50.92358 (19)0.25310 (8)0.17530 (6)0.0239 (2)
C60.8805 (2)0.34663 (8)0.16540 (6)0.0269 (3)
H60.96510.38020.13640.032*
C70.7120 (2)0.39062 (8)0.19842 (6)0.0292 (3)
H70.68130.45430.19160.035*
C80.5894 (2)0.34244 (8)0.24094 (6)0.0274 (3)
H80.47480.37290.26320.033*
C90.63407 (19)0.24867 (8)0.25126 (6)0.0243 (2)
C100.80281 (19)0.20278 (7)0.21918 (6)0.0227 (2)
C310.9335 (2)0.10639 (8)0.35644 (6)0.0290 (3)
H31A1.0960.08060.35650.035*
H31B0.94510.17430.35610.035*
C320.8260 (2)0.07462 (9)0.41533 (6)0.0317 (3)
C3100.6060 (3)0.12039 (11)0.49882 (8)0.0528 (4)
H3110.56050.17620.52060.079*
H3120.70230.0810.52970.079*
H3130.4620.08730.4810.079*
C410.74726 (19)0.03757 (8)0.17866 (5)0.0233 (2)
C420.8746 (2)0.03916 (8)0.16135 (6)0.0281 (3)
H421.03050.05020.18240.034*
C430.7772 (2)0.09943 (8)0.11396 (6)0.0325 (3)
H430.86570.15170.10340.039*
C440.5505 (2)0.08383 (8)0.08184 (6)0.0312 (3)
C450.4174 (2)0.00975 (9)0.09990 (6)0.0308 (3)
H450.26020.00040.07940.037*
C460.5166 (2)0.04959 (8)0.14834 (6)0.0275 (3)
H460.42380.09950.16090.033*
C4400.2522 (3)0.12766 (11)0.00377 (7)0.0466 (4)
H4410.22990.17080.03990.07*
H4420.24780.06450.02020.07*
H4430.12420.13610.02350.07*
C501.2068 (2)0.25283 (9)0.09839 (6)0.0316 (3)
H531.30410.20960.07680.047*
H511.31030.29950.1210.047*
H521.09130.28270.06640.047*
O20.52791 (14)0.10126 (5)0.29880 (4)0.0280 (2)
O300.80634 (19)0.00461 (6)0.43029 (5)0.0446 (3)
O310.74400 (18)0.14517 (6)0.44728 (5)0.0396 (2)
O440.47692 (18)0.14436 (7)0.03305 (5)0.0440 (3)
O51.08180 (14)0.20398 (5)0.14384 (4)0.0288 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0267 (6)0.0255 (6)0.0329 (7)0.0017 (4)0.0085 (5)0.0003 (5)
C30.0262 (6)0.0221 (5)0.0289 (6)0.0000 (4)0.0065 (5)0.0013 (5)
C40.0213 (5)0.0226 (6)0.0272 (6)0.0004 (4)0.0052 (4)0.0005 (5)
C50.0215 (5)0.0252 (6)0.0247 (6)0.0012 (4)0.0018 (4)0.0023 (5)
C60.0289 (6)0.0233 (6)0.0286 (6)0.0034 (4)0.0039 (5)0.0026 (5)
C70.0319 (6)0.0202 (5)0.0351 (7)0.0002 (5)0.0020 (5)0.0005 (5)
C80.0263 (6)0.0250 (6)0.0312 (6)0.0020 (4)0.0049 (5)0.0042 (5)
C90.0214 (5)0.0255 (6)0.0260 (6)0.0011 (4)0.0025 (4)0.0016 (5)
C100.0226 (5)0.0214 (5)0.0239 (6)0.0016 (4)0.0019 (4)0.0013 (4)
C310.0305 (6)0.0292 (6)0.0279 (6)0.0005 (5)0.0052 (5)0.0008 (5)
C320.0372 (7)0.0310 (7)0.0262 (6)0.0020 (5)0.0012 (5)0.0018 (5)
C3100.0758 (11)0.0472 (9)0.0411 (8)0.0011 (8)0.0303 (8)0.0062 (7)
C410.0256 (5)0.0217 (5)0.0238 (6)0.0008 (4)0.0081 (4)0.0024 (4)
C420.0270 (6)0.0283 (6)0.0299 (6)0.0034 (4)0.0065 (5)0.0014 (5)
C430.0397 (7)0.0255 (6)0.0341 (7)0.0040 (5)0.0115 (5)0.0022 (5)
C440.0399 (7)0.0268 (6)0.0280 (6)0.0085 (5)0.0084 (5)0.0019 (5)
C450.0269 (6)0.0338 (6)0.0315 (6)0.0031 (5)0.0023 (5)0.0004 (5)
C460.0266 (6)0.0255 (6)0.0313 (6)0.0021 (4)0.0069 (5)0.0002 (5)
C4400.0466 (8)0.0564 (9)0.0366 (8)0.0208 (7)0.0043 (6)0.0084 (7)
C500.0304 (6)0.0349 (7)0.0311 (6)0.0014 (5)0.0112 (5)0.0046 (5)
O20.0262 (4)0.0247 (4)0.0345 (5)0.0024 (3)0.0096 (3)0.0008 (4)
O300.0689 (7)0.0313 (5)0.0364 (5)0.0041 (5)0.0175 (5)0.0045 (4)
O310.0555 (6)0.0326 (5)0.0338 (5)0.0003 (4)0.0174 (4)0.0047 (4)
O440.0538 (6)0.0384 (5)0.0388 (5)0.0079 (4)0.0012 (5)0.0127 (4)
O50.0292 (4)0.0273 (4)0.0319 (5)0.0019 (3)0.0124 (4)0.0031 (3)
Geometric parameters (Å, º) top
C1—H1A0.99C41—C41.5261 (16)
C1—H1B0.99C41—C461.3903 (16)
C31—C31.5407 (17)C42—C411.3987 (16)
C31—H31A0.99C42—C431.3883 (18)
C31—H31B0.99C42—H420.95
C3—C41.5434 (16)C43—C441.3913 (19)
C3—H31C43—H430.95
C4—H41C45—C441.3917 (18)
C6—C51.3938 (16)C45—H450.95
C6—C71.3957 (17)C46—C451.3975 (17)
C6—H60.95C46—H460.95
C7—C81.3817 (18)C440—H4410.98
C7—H70.95C440—H4420.98
C8—H80.95C440—H4430.98
C9—C11.5095 (16)C50—H530.98
C9—C81.3997 (16)C50—H510.98
C10—C41.5250 (15)C50—H520.98
C10—C51.4119 (16)O2—C11.4309 (14)
C10—C91.3985 (15)O2—C31.4385 (13)
C32—C311.5100 (17)O31—C3101.4491 (17)
C32—O301.2034 (16)O44—C441.3756 (15)
C32—O311.3377 (15)O44—C4401.4251 (19)
C310—H3110.98O5—C51.3716 (13)
C310—H3120.98O5—C501.4380 (14)
C310—H3130.98
O2—C1—C9114.15 (9)O30—C32—C31124.37 (12)
O2—C1—H1B108.7O31—C32—C31111.70 (10)
C9—C1—H1B108.7O31—C310—H311109.5
O2—C1—H1A108.7O31—C310—H312109.5
C9—C1—H1A108.7H311—C310—H312109.5
H1B—C1—H1A107.6O31—C310—H313109.5
O2—C3—C31111.22 (9)H311—C310—H313109.5
O2—C3—C4110.34 (9)H312—C310—H313109.5
C31—C3—C4114.18 (9)C42—C41—C4120.03 (10)
O2—C3—H3106.9C46—C41—C4122.19 (10)
C31—C3—H3106.9C46—C41—C42117.66 (11)
C4—C3—H3106.9C43—C42—C41121.16 (11)
C10—C4—C41113.83 (9)C43—C42—H42119.4
C10—C4—C3109.85 (9)C41—C42—H42119.4
C41—C4—C3109.85 (9)C42—C43—C44120.41 (11)
C10—C4—H4107.7C42—C43—H43119.8
C41—C4—H4107.7C44—C43—H43119.8
C3—C4—H4107.7O44—C44—C43115.73 (11)
O5—C5—C6123.34 (10)O44—C44—C45124.94 (12)
O5—C5—C10115.73 (10)C43—C44—C45119.33 (11)
C6—C5—C10120.94 (10)C44—C45—C46119.56 (11)
C5—C6—C7119.43 (11)C44—C45—H45120.2
C5—C6—H6120.3C46—C45—H45120.2
C7—C6—H6120.3C41—C46—C45121.77 (11)
C8—C7—C6120.60 (11)C41—C46—H46119.1
C8—C7—H7119.7C45—C46—H46119.1
C6—C7—H7119.7O44—C440—H441109.5
C7—C8—C9119.96 (11)O44—C440—H442109.5
C7—C8—H8120H441—C440—H442109.5
C9—C8—H8120O44—C440—H443109.5
C10—C9—C8120.79 (10)H441—C440—H443109.5
C10—C9—C1121.03 (10)H442—C440—H443109.5
C8—C9—C1118.18 (10)O5—C50—H53109.5
C9—C10—C5118.26 (10)O5—C50—H51109.5
C9—C10—C4120.56 (10)H53—C50—H51109.5
C5—C10—C4121.17 (10)O5—C50—H52109.5
C32—C31—C3107.98 (10)H53—C50—H52109.5
C32—C31—H31A110.1H51—C50—H52109.5
C3—C31—H31A110.1C1—O2—C3113.60 (8)
C32—C31—H31B110.1C32—O31—C310115.45 (11)
C3—C31—H31B110.1C44—O44—C440117.64 (11)
H31A—C31—H31B108.4C5—O5—C50117.29 (9)
O30—C32—O31123.85 (12)
O2—C3—C4—C1050.63 (12)O30—C32—O31—C3105.8 (2)
C31—C3—C4—C1075.50 (12)C31—C32—O31—C310171.09 (12)
O2—C3—C4—C4175.31 (11)O30—C32—C31—C365.13 (16)
C31—C3—C4—C41158.56 (9)O31—C32—C31—C3111.73 (11)
C7—C6—C5—O5178.46 (11)C46—C41—C4—C1042.26 (14)
C7—C6—C5—C101.31 (17)C42—C41—C4—C10141.70 (11)
C5—C6—C7—C80.43 (18)C46—C41—C4—C381.38 (13)
C6—C7—C8—C90.08 (18)C42—C41—C4—C394.66 (12)
C10—C9—C1—O29.41 (16)C42—C41—C46—C453.16 (17)
C8—C9—C1—O2171.22 (10)C4—C41—C46—C45179.29 (11)
C1—C9—C8—C7179.65 (11)C43—C42—C41—C462.20 (17)
C10—C9—C8—C70.28 (17)C43—C42—C41—C4178.41 (11)
C9—C10—C4—C41104.65 (12)C41—C42—C43—C440.97 (18)
C5—C10—C4—C4176.12 (13)C42—C43—C44—O44176.06 (11)
C9—C10—C4—C318.99 (14)C42—C43—C44—C453.23 (19)
C5—C10—C4—C3160.24 (10)C46—C45—C44—O44176.94 (11)
C9—C10—C5—O5178.14 (10)C46—C45—C44—C432.28 (18)
C4—C10—C5—O52.60 (16)C41—C46—C45—C440.96 (18)
C9—C10—C5—C61.64 (17)C3—O2—C1—C943.10 (13)
C4—C10—C5—C6177.61 (10)C1—O2—C3—C3162.53 (12)
C5—C10—C9—C81.12 (17)C1—O2—C3—C465.25 (12)
C4—C10—C9—C8178.13 (10)C440—O44—C44—C43176.20 (11)
C5—C10—C9—C1179.52 (10)C440—O44—C44—C453.04 (18)
C4—C10—C9—C11.22 (16)C50—O5—C5—C60.24 (16)
C32—C31—C3—O253.59 (12)C50—O5—C5—C10179.54 (10)
C32—C31—C3—C4179.26 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.952.463.354 (1)156 (1)
C46—H46···O5ii0.952.453.320 (1)152 (1)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z.
(II) top
Crystal data top
C21H24O6F(000) = 792
Mr = 372.4Dx = 1.323 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 8000 reflections
a = 6.4796 (4) Åθ = 2.8–25.9°
b = 17.9680 (9) ŵ = 0.10 mm1
c = 16.0587 (9) ÅT = 173 K
V = 1869.64 (18) Å3Cut block, colourless
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Stoe IPDS
diffractometer
Rint = 0.031
Graphite monochromatorθmax = 25.9°, θmin = 2.8°
rotation scansh = 77
13101 measured reflectionsk = 2021
2076 independent reflectionsl = 1919
1862 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0497P)2]
where P = (Fo2 + 2Fc2)/3'
wR(F2) = 0.068(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.20 e Å3
2076 reflectionsΔρmin = 0.11 e Å3
256 parameters
Crystal data top
C21H24O6V = 1869.64 (18) Å3
Mr = 372.4Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.4796 (4) ŵ = 0.10 mm1
b = 17.9680 (9) ÅT = 173 K
c = 16.0587 (9) Å0.3 × 0.2 × 0.2 mm
Data collection top
Stoe IPDS
diffractometer
1862 reflections with I > 2σ(I)
13101 measured reflectionsRint = 0.031
2076 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
2076 reflectionsΔρmin = 0.11 e Å3
256 parameters
Special details top

Experimental. Melting points were measured on a METTER TOLEDO DSC 30.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7099 (3)0.09936 (10)0.61604 (10)0.0280 (4)
H1A0.78180.06720.65680.034*
H1B0.690.14880.6420.034*
C30.5334 (3)0.00051 (9)0.55225 (10)0.0249 (4)
H30.628 (3)0.0329 (9)0.5816 (10)0.013 (4)*
C40.6157 (3)0.01478 (9)0.46362 (10)0.0243 (4)
H40.508 (3)0.0375 (10)0.4334 (11)0.022 (5)*
C50.9249 (3)0.07834 (9)0.39649 (11)0.0273 (4)
H50.89650.05150.34680.033*
C61.0896 (3)0.12715 (9)0.39886 (11)0.0299 (4)
H61.17180.1340.35050.036*
C71.1369 (3)0.16662 (9)0.47126 (11)0.0288 (4)
H71.25110.19970.47280.035*
C81.0127 (3)0.15631 (9)0.54113 (11)0.0258 (4)
C90.8430 (3)0.10769 (9)0.53940 (10)0.0240 (3)
C100.7996 (3)0.06795 (9)0.46650 (10)0.0238 (3)
C310.3207 (3)0.03561 (10)0.55077 (11)0.0276 (4)
H31A0.21860.00240.53370.033*
H31B0.31880.07570.50850.033*
C320.2568 (3)0.06764 (9)0.63375 (11)0.0273 (4)
C3100.0318 (3)0.10050 (13)0.71698 (12)0.0406 (5)
H3110.18290.09980.71510.049*
H3120.01590.07280.76590.049*
H3130.01660.15210.72050.049*
C410.6691 (3)0.05888 (9)0.42113 (10)0.0244 (3)
C420.5433 (3)0.09040 (9)0.35916 (10)0.0263 (4)
C430.5985 (3)0.15846 (10)0.32391 (11)0.0306 (4)
H430.51410.17960.28170.037*
C440.7758 (3)0.19613 (10)0.34965 (11)0.0314 (4)
H440.8110.24270.32550.038*
C450.9003 (3)0.16504 (9)0.41061 (11)0.0278 (4)
C460.8450 (3)0.09698 (9)0.44561 (10)0.0266 (4)
H460.93040.0760.48760.032*
C4200.2430 (3)0.07891 (11)0.27275 (11)0.0324 (4)
H4210.12530.04550.26410.039*
H4220.32370.08220.22130.039*
H4230.19270.12850.2880.039*
C4501.1414 (4)0.26602 (11)0.40898 (15)0.0448 (5)
H4511.03870.30340.42510.054*
H4521.15050.26370.34810.054*
H4531.27620.27980.4320.054*
C801.2159 (3)0.23990 (11)0.62293 (12)0.0379 (5)
H811.34170.21160.61110.045*
H821.22320.26020.67950.045*
H831.20290.28080.58290.045*
O20.51358 (19)0.06791 (7)0.59744 (7)0.0288 (3)
O300.3710 (2)0.09358 (8)0.68540 (8)0.0368 (3)
O310.0499 (2)0.06618 (7)0.64218 (8)0.0340 (3)
O420.3699 (2)0.05043 (7)0.33801 (8)0.0339 (3)
O451.0816 (2)0.19517 (7)0.44057 (9)0.0374 (3)
O81.0410 (2)0.19208 (7)0.61618 (7)0.0314 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0280 (9)0.0318 (8)0.0241 (8)0.0040 (8)0.0007 (7)0.0039 (7)
C30.0249 (8)0.0271 (8)0.0227 (8)0.0007 (7)0.0008 (7)0.0019 (7)
C40.0239 (9)0.0261 (8)0.0229 (8)0.0013 (7)0.0020 (7)0.0001 (7)
C50.0302 (9)0.0275 (8)0.0242 (8)0.0036 (7)0.0001 (7)0.0019 (7)
C60.0298 (9)0.0327 (9)0.0272 (8)0.0028 (7)0.0078 (8)0.0027 (7)
C70.0249 (9)0.0278 (8)0.0338 (9)0.0021 (7)0.0019 (8)0.0035 (7)
C80.0286 (9)0.0236 (8)0.0254 (8)0.0017 (7)0.0019 (7)0.0009 (6)
C90.0252 (8)0.0229 (7)0.0239 (8)0.0016 (7)0.0005 (7)0.0013 (6)
C100.0233 (8)0.0217 (7)0.0263 (8)0.0030 (7)0.0019 (7)0.0020 (6)
C310.0266 (9)0.0300 (8)0.0262 (8)0.0013 (7)0.0015 (7)0.0019 (7)
C320.0273 (9)0.0275 (8)0.0271 (9)0.0033 (7)0.0008 (7)0.0047 (7)
C3100.0334 (11)0.0545 (12)0.0340 (10)0.0087 (10)0.0083 (8)0.0021 (9)
C410.0252 (8)0.0265 (8)0.0216 (7)0.0026 (7)0.0027 (7)0.0008 (6)
C420.0259 (9)0.0297 (8)0.0232 (8)0.0012 (7)0.0001 (7)0.0002 (7)
C430.0333 (10)0.0321 (9)0.0263 (9)0.0043 (8)0.0034 (8)0.0033 (7)
C440.0374 (10)0.0258 (8)0.0311 (9)0.0006 (8)0.0023 (8)0.0044 (7)
C450.0276 (9)0.0269 (8)0.0288 (9)0.0006 (7)0.0007 (7)0.0036 (7)
C460.0257 (9)0.0286 (8)0.0253 (8)0.0041 (7)0.0027 (7)0.0011 (7)
C4200.0309 (10)0.0381 (10)0.0282 (9)0.0003 (8)0.0071 (8)0.0022 (7)
C4500.0493 (13)0.0326 (9)0.0523 (12)0.0144 (10)0.0080 (11)0.0013 (9)
C800.0420 (12)0.0360 (10)0.0356 (10)0.0146 (9)0.0020 (9)0.0019 (8)
O20.0252 (6)0.0326 (6)0.0286 (6)0.0031 (5)0.0032 (5)0.0068 (5)
O300.0326 (7)0.0449 (7)0.0328 (7)0.0010 (6)0.0014 (6)0.0069 (6)
O310.0268 (7)0.0467 (8)0.0284 (6)0.0056 (6)0.0029 (5)0.0026 (6)
O420.0337 (7)0.0350 (6)0.0329 (6)0.0040 (6)0.0110 (6)0.0077 (5)
O450.0355 (7)0.0318 (6)0.0448 (7)0.0076 (6)0.0081 (6)0.0045 (6)
O80.0344 (7)0.0329 (6)0.0270 (6)0.0104 (6)0.0002 (5)0.0027 (5)
Geometric parameters (Å, º) top
C1—O21.424 (2)C310—H3130.98
C1—C91.510 (2)C310—H3110.98
C1—H1A0.99C310—H3120.98
C1—H1B0.99C41—C461.386 (2)
C3—O21.433 (2)C41—C421.405 (2)
C3—C311.516 (2)C42—O421.376 (2)
C3—C41.544 (2)C42—C431.394 (2)
C3—H30.970 (18)C43—C441.396 (3)
C4—C101.528 (2)C43—H430.95
C4—C411.529 (2)C44—C451.386 (3)
C4—H40.94 (2)C44—H440.95
C5—C61.381 (3)C45—O451.380 (2)
C5—C101.399 (2)C45—C461.393 (2)
C5—H50.95C46—H460.95
C6—C71.396 (3)C420—O421.427 (2)
C6—H60.95C420—H4220.98
C7—C81.393 (3)C420—H4210.98
C7—H70.95C420—H4230.98
C8—O81.378 (2)C450—O451.424 (2)
C8—C91.405 (2)C450—H4510.98
C9—C101.400 (2)C450—H4530.98
C31—C321.509 (2)C450—H4520.98
C31—H31A0.99C80—O81.426 (2)
C31—H31B0.99C80—H810.98
C32—O301.205 (2)C80—H820.98
C32—O311.348 (2)C80—H830.98
C310—O311.450 (2)
O2—C1—C9112.25 (13)O31—C310—H311109.5
O2—C1—H1A109.2H313—C310—H311109.5
C9—C1—H1A109.2O31—C310—H312109.5
O2—C1—H1B109.2H313—C310—H312109.5
C9—C1—H1B109.2H311—C310—H312109.5
H1A—C1—H1B107.9C46—C41—C42118.58 (15)
O2—C3—C31106.44 (13)C46—C41—C4119.14 (15)
O2—C3—C4110.18 (13)C42—C41—C4122.26 (15)
C31—C3—C4111.91 (14)O42—C42—C43124.53 (16)
O2—C3—H3109.0 (10)O42—C42—C41115.96 (14)
C31—C3—H3109.6 (10)C43—C42—C41119.51 (16)
C4—C3—H3109.7 (10)C42—C43—C44121.06 (17)
C10—C4—C41112.22 (14)C42—C43—H43119.5
C10—C4—C3110.63 (13)C44—C43—H43119.5
C41—C4—C3109.59 (13)C45—C44—C43119.51 (16)
C10—C4—H4108.7 (11)C45—C44—H44120.2
C41—C4—H4108.2 (11)C43—C44—H44120.2
C3—C4—H4107.3 (11)O45—C45—C44125.69 (16)
C6—C5—C10120.71 (15)O45—C45—C46115.01 (15)
C6—C5—H5119.6C44—C45—C46119.29 (16)
C10—C5—H5119.6C41—C46—C45122.05 (16)
C5—C6—C7121.00 (16)C41—C46—H46119
C5—C6—H6119.5C45—C46—H46119
C7—C6—H6119.5O42—C420—H422109.5
C8—C7—C6118.46 (16)O42—C420—H421109.5
C8—C7—H7120.8H422—C420—H421109.5
C6—C7—H7120.8O42—C420—H423109.5
O8—C8—C7124.45 (16)H422—C420—H423109.5
O8—C8—C9114.29 (15)H421—C420—H423109.5
C7—C8—C9121.25 (15)O45—C450—H451109.5
C10—C9—C8119.41 (15)O45—C450—H453109.5
C10—C9—C1121.08 (15)H451—C450—H453109.5
C8—C9—C1119.51 (14)O45—C450—H452109.5
C5—C10—C9119.16 (15)H451—C450—H452109.5
C5—C10—C4120.78 (14)H453—C450—H452109.5
C9—C10—C4120.05 (14)O8—C80—H81109.5
C32—C31—C3113.20 (14)O8—C80—H82109.5
C32—C31—H31A108.9H81—C80—H82109.5
C3—C31—H31A108.9O8—C80—H83109.5
C32—C31—H31B108.9H81—C80—H83109.5
C3—C31—H31B108.9H82—C80—H83109.5
H31A—C31—H31B107.8C1—O2—C3111.50 (12)
O30—C32—O31123.30 (17)C32—O31—C310115.97 (15)
O30—C32—C31125.93 (16)C42—O42—C420117.69 (13)
O31—C32—C31110.73 (15)C45—O45—C450117.26 (15)
O31—C310—H313109.5C8—O8—C80116.94 (14)
C9—C1—O2—C353.05 (18)C7—C8—C9—C1178.75 (16)
O2—C1—C9—C1018.2 (2)C7—C8—O8—C803.2 (2)
O2—C1—C9—C8161.54 (14)C9—C8—O8—C80177.50 (15)
C31—C3—O2—C1169.39 (13)C8—C9—C10—C50.9 (2)
C4—C3—O2—C169.08 (17)C1—C9—C10—C5178.90 (15)
O2—C3—C4—C1046.65 (18)C8—C9—C10—C4179.95 (15)
C31—C3—C4—C10164.87 (13)C1—C9—C10—C40.3 (2)
O2—C3—C4—C41170.91 (14)C3—C31—C32—O3030.8 (2)
C31—C3—C4—C4170.87 (17)C3—C31—C32—O31151.49 (15)
O2—C3—C31—C3273.11 (17)O30—C32—O31—C3102.1 (3)
C4—C3—C31—C32166.47 (14)C31—C32—O31—C310175.67 (14)
C3—C4—C10—C5167.18 (15)C46—C41—C42—O42179.39 (15)
C41—C4—C10—C544.4 (2)C4—C41—C42—O420.8 (2)
C41—C4—C10—C9136.37 (15)C46—C41—C42—C430.2 (2)
C3—C4—C10—C913.6 (2)C4—C41—C42—C43178.78 (16)
C10—C4—C41—C4649.5 (2)C4—C41—C46—C45178.73 (15)
C3—C4—C41—C4673.84 (19)C42—C41—C46—C450.1 (2)
C10—C4—C41—C42131.98 (16)C43—C42—O42—C4203.1 (2)
C3—C4—C41—C42104.69 (17)C41—C42—O42—C420177.30 (15)
C10—C5—C6—C70.8 (3)O42—C42—C43—C44179.09 (16)
C6—C5—C10—C4179.15 (15)C41—C42—C43—C440.5 (3)
C6—C5—C10—C90.0 (2)C42—C43—C44—C450.7 (3)
C5—C6—C7—C80.7 (3)C43—C44—C45—O45178.48 (17)
C6—C7—C8—O8179.47 (15)C43—C44—C45—C460.5 (3)
C6—C7—C8—C90.2 (3)C44—C45—O45—C4503.1 (3)
O8—C8—C9—C10179.69 (14)C46—C45—O45—C450177.82 (17)
C7—C8—C9—C101.0 (2)O45—C45—C46—C41178.84 (15)
O8—C8—C9—C10.5 (2)C44—C45—C46—C410.3 (3)

Experimental details

(I)(II)
Crystal data
Chemical formulaC20H22O5C21H24O6
Mr342.38372.4
Crystal system, space groupMonoclinic, P21/cOrthorhombic, P212121
Temperature (K)173173
a, b, c (Å)5.6432 (3), 14.5521 (8), 20.9417 (12)6.4796 (4), 17.9680 (9), 16.0587 (9)
α, β, γ (°)90, 96.799 (7), 9090, 90, 90
V3)1707.65 (16)1869.64 (18)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.100.10
Crystal size (mm)0.5 × 0.5 × 0.40.3 × 0.2 × 0.2
Data collection
DiffractometerStoe IPDS
diffractometer
Stoe IPDS
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17008, 3267, 2607 13101, 2076, 1862
Rint0.0570.031
(sin θ/λ)max1)0.6140.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.03 0.028, 0.068, 1.03
No. of reflections32672076
No. of parameters229256
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.130.20, 0.11

Computer programs: Stoe & Cie (1998), Stoe & Cie, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990), PARST (Nardelli, 1996).

Selected geometric parameters (Å, º) for (I) top
C32—O301.2034 (16)O2—C11.4309 (14)
C32—O311.3377 (15)O2—C31.4385 (13)
O2—C3—C4110.34 (9)C1—O2—C3113.60 (8)
O2—C3—C4—C1050.63 (12)O30—C32—O31—C3105.8 (2)
C31—C3—C4—C41158.56 (9)C1—O2—C3—C465.25 (12)
C10—C9—C1—O29.41 (16)C440—O44—C44—C453.04 (18)
C9—C10—C4—C41104.65 (12)C50—O5—C5—C60.24 (16)
C9—C10—C4—C318.99 (14)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.952.463.354 (1)156 (1)
C46—H46···O5ii0.952.453.320 (1)152 (1)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z.
Selected geometric parameters (Å, º) for (II) top
C1—O21.424 (2)C32—O301.205 (2)
C3—O21.433 (2)C32—O311.348 (2)
O2—C3—C4110.18 (13)C1—O2—C3111.50 (12)
O2—C1—C9—C1018.2 (2)C3—C4—C10—C913.6 (2)
C4—C3—O2—C169.08 (17)C7—C8—O8—C803.2 (2)
O2—C3—C4—C1046.65 (18)O30—C32—O31—C3102.1 (3)
C31—C3—C4—C4170.87 (17)C43—C42—O42—C4203.1 (2)
C41—C4—C10—C9136.37 (15)C44—C45—O45—C4503.1 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds