Download citation
Download citation
link to html
The structures of the isomeric nucleosides 4-nitro-1-([beta]-D-ribo­furan­osyl)-1H-indazole, C12H13N3O6, (I), and 4-nitro-2-([beta]-D-ribo­furan­osyl)-2H-indazole, C12H13N3O6, (II), have been determined. For compound (I), the conformation of the gly­cosylic bond is anti [[chi] = -93.6 (6)°] and the sugar puckering is C2'-exo-C3'-endo. Compound (II) shows two conformations in the crystalline state which differ mainly in the sugar pucker; type 1 adopts the C2'-endo-C3'-exo sugar puckering associated with a syn base orientation [[chi] = 43.7 (6)°] and type 2 shows C2'-exo-C3'-endo sugar puckering accompanied by a somewhat different syn base orientation [[chi] = 13.8 (6)°].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103026556/sx1127sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103026556/sx1127Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103026556/sx1127IIsup3.hkl
Contains datablock II

CCDC references: 231090; 231091

Comment top

Universal nucleosides, which base-pair equally well with the canonical four nucleic acid constituents - either ribonucleosides or 2'-deoxyribonucleosides - are categorized into two types, those forming base pairs by hydrogen-bonding and those whose stability depends mainly on stacking interactions. 5-Nitro-1H-indole 2'-deoxy-β-D-ribofuranoside, which has been incorporated in duplex DNA, shows such universal base-pairing properties. It belongs to the second category of universal nucleosides, which stabilize DNA by stacking interactions rather than by hydrogen-bonding (Loakes & Brown, 1994). Likewise, the regiosiomeric 4-nitroindazole 2'-deoxyribonucleosides have been shown to act as universal nucleosides, because they behave indiscriminately towards the four natural DNA constituents (Seela & Bourgeois, 1991; Seela & Jawalekar, 2002). Recently, the title regioisomeric 4-nitroindazole ribonucleosides, (I) and (II) have been prepared (Seela & Peng, 2003; Revankar & Townsend, 1970). Here, the single-crystal structure analyses of 4-nitroindazole N1– and N2-(β-D-ribonucleosides), (I) and (II), are described. \sch

For the canonical ribonucleosides, the orientation of the base relative to the sugar (syn/anti) is defined by the torsion angle χ (O4'-C1'-N9—C4) (purine numbering; IUPAC-IUB Joint Commission on Biochemical Nomenclature, 1983). The preferred conformation at the N-glycosylic bond of the common purine nucleosides is usually anti (Saenger, 1989). By analogy, the torsion angle χ of compound (I) was defined as O4'-C1'-N1—C7a. For compound (II), the analogy is less straightforward, but the torsion angle related to χ is defined as O4'-C1'-N2—C3, as in the corresponding pyrazolo[3,4-d]pyrimidine (Seela & Debelak, 2000). The C2'-endo (S) and C3'-endo (N) puckerings are the most frequently observed sugar-ring conformations of nucleosides (Saenger, 1984a). Among these, ribonucleosides often show C3'-endo sugar puckering with a half-chair or envelope conformation.

The structure of (I) is shown in Fig. 1 and selected geometric parameters are summarized in Table 1 (systematic numbering is used throughout). For (I), the conformation of the glycosylic bond is between the anti and the high-anti range [χ = −93.6 (6)°], which was also observed for 1-(2-deoxy-β-D-erythropentofuranosyl)-4-nitro-1H-indazole [χ = −105.2 (5)°; Seela & Jawalekar, 2003], 2-(2'-deoxy-β-D-erythro-pentofuranosyl)-1H-pyrazolo[3,4-d]pyrimidine, (III) [χ = −100.4 (2)°; He et al., 2002] and pyrazolo[3,4-d]pyrimidine-4-amine 2'-deoxyribonucleoside [8-aza-7-deaza-2'-deoxyadenosine; χ = −106.3 (2)°; Seela et al., 1999]. The puckering of the ribose ring in (I) is C2'-exo-C3'-endo, showing an N-type sugar conformation (3T2) with pseudorotation parameters (Saenger, 1984b) of P = 6.5 (4)° and τm = 38.3°. The torsion angle γ (O5'-C5'-C4'-C3') is 58.0 (7)°, which corresponds to +sc (Saenger, 1984b). In contrast, 4-nitro-1H-indazole 2'-deoxyribonucleoside displays S-type sugar puckering and the orientation of the exocyclic C4'-C5' bond is -sc (Seela & Jawalekar, 2003).

The base moiety of nucleoside (I) is nearly planar; the r.m.s. deviation of the ring atoms (N1/N2/C3—C7/C7a/C3a) from their calculated least-squares planes is 0.0218 Å, with a maximum deviation of 0.037 (4) Å for atom N1. However, the exocyclic substituents (nitro atom N4 and atom C1') show significant deviations from the plane [0.14 (1) and 0.052 (9) Å, respectively] and lie on the same side of the base.

The bases are strongly stacked in the crystal structure of (I). There are three intermolecular hydrogen bonds responsible for the packing of the molecules (Table 2). The O5'-H5'A···O2'(x − 1, y, z) bond connects molecules parallel to the a axis to form infinite chains in which the bases are stacked and parallel to each other (Fig. 2). Another two interchain hydrogen bonds, O3'-H3'A···O5'(1 − x, 1/2 + y, 1 − z) and O2'-H2'A···O4'(2 − x, 1/2 + y, 1 − z), are found linking two neighbouring chains.

Compound (II) differs from compound (I) only in the glycosylation position (N2 versus N1), yet it shows a significantly different structure in the crystalline state (Fig. 3). Slow crystallization of 4-nitro-2H-indazole N2-ribonucleoside from methanol gave crystals which consist of two forms of molecules, defined as type 1 and type 2, while nucleoside (I) displays only one structure. A comparison of these two different structures shows that both exhibit a syn conformation of the N-glycosylic bond, with different torsion angles: χ = 43.7 (6) for (II-1) and 13.8 (6)° for (II-2). 2-(2-Deoxy-β-D-erythropentofuranosyl)-2H-pyrazolo[3,4-d]pyrimidine, (IV), shows similar values (He et al., 2002). The structures of the nucleosides (II-1) and (II-2) are shown in Fig. 3.

The structures of (II-1) and (II-2) differ mainly in the sugar ring conformations (Table 3). For (II-2), the sugar shows N-type sugar puckering (P = 2.1°, C2'-exo-C3'-endo, 3T2) with a puckering amplitude τm = 41.1°, which is very close to that of (I), whereas S-type sugar puckering (P = 185.4°, C2'-endo-C3'-exo, 3T2, τm = 40.6°) characterizes (II-1) (Saenger, 1984b). Both (II-1) and (II-2) display different conformations about the C4'-C5' bond: the former is -sc (-gauche) (Saenger, 1984b) with a torsion angle γ (O5'-C5'-C4'-C3') of −80.9 (5)°, whereas the latter is -ap (trans) (Saenger, 1984b) with γ = −176.1 (5)°.

The base moieties of compound (II) are nearly planar, showing maximum deviations of their C and N atoms from the least-squares plane in the range −0.007 (4)–0.005 (4) Å for (II-1) and −0.008 (4)–0.007 (3) Å for (II-2). The structure of nucleoside (II) is stabilized by several intermolecular hydrogen bonds between conformations (II-1) and (II-2) (Table 4 and Fig. 4), leading to the formation of layers. In every layer, each molecule links two neighbouring molecules of different conformations by four intermolecular hydrogen bonds, O12'-H12A···O22'(x, y − 1, z − 1), O13'-H13O···O23'(x − 1, y − 1, z), O22'-H22A···O13'(1 + x, 1 + y, 1 + z) and O23'-H23O···O15'(x, 1 + y, z). Two further hydrogen bonds between the sugar moieties and the adjacent nucleobase units are found linking molecules of identical conformation [O15'-H15A···N11(1 + x, y, 1 + z) for (II-1) and O25'-H25A···N21(x − 1, y, z − 1) for (II-2)].

Compounds (I) and (II) show different sugar conformations in the solid state; nucleoside (I) shows only the N conformation, but compound (II) displays two conformations, N and S. In solution, both regioisomers are observed to be a mixture of N– and S-conformers. The population of N– and S-conformers in D2O solution is found to be 53% N and 47% S for nucleoside (I), and 51% N, 49% S for (II). This was shown by 1H NMR spectroscopy using the vicinal [1H,1H] coupling constants and applying the PSEUROT 6.3 program (Van Wijk, et al., 1999).

Experimental top

The syntheses of compounds (I) and (II) has been published elsewhere (Seela & Peng, 2003). Both compounds were slowly crystallized from MeOH.

Refinement top

The known configuration of the sugar moiety was used to define the enantiomer employed in the refined model. All H atoms were initially found in a difference Fourier synthesis. In order to maximize the data/parameter ratio, H atoms bonded to C atoms were placed in geometrically idealized positions (C—H = 0.93–0.98 Å) and constrained to ride on their parent atoms, with Uiso(H) =?

Computing details top

For both compounds, data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1999).

Figures top
[Figure 1] Fig. 1. A perspective view of nucleoside (I) showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing in (I) viewed down the a axis, showing the intermolecular hydrogen bonding.
[Figure 3] Fig. 3. A perspective view of molecules 1 and 2 of nucleoside (II). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The hydrogen bonding within the double layers of the crystal structure of (II).
(I) 4-nitro-1-(β-D-ribofuranosyl)-1H-indazole top
Crystal data top
C12H13N3O6F(000) = 308
Mr = 295.25Dx = 1.525 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 30 reflections
a = 5.8912 (11) Åθ = 6.1–12.5°
b = 10.0825 (12) ŵ = 0.12 mm1
c = 11.0998 (17) ÅT = 293 K
β = 102.821 (15)°Block, yellow
V = 642.87 (17) Å30.6 × 0.4 × 0.3 mm
Z = 2
Data collection top
Bruker P4
diffractometer
Rint = 0.043
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 1.9°
Graphite monochromatorh = 81
2θ/ω scansk = 114
2712 measured reflectionsl = 1515
1960 independent reflections3 standard reflections every 97 reflections
1659 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.0968P]
where P = (Fo2 + 2Fc2)/3
1960 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.30 e Å3
4 restraintsΔρmin = 0.28 e Å3
Crystal data top
C12H13N3O6V = 642.87 (17) Å3
Mr = 295.25Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.8912 (11) ŵ = 0.12 mm1
b = 10.0825 (12) ÅT = 293 K
c = 11.0998 (17) Å0.6 × 0.4 × 0.3 mm
β = 102.821 (15)°
Data collection top
Bruker P4
diffractometer
Rint = 0.043
2712 measured reflections3 standard reflections every 97 reflections
1960 independent reflections intensity decay: none
1659 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0474 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.30 e Å3
1960 reflectionsΔρmin = 0.28 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6080 (8)0.6039 (5)0.2903 (4)0.0346 (10)
N20.4098 (9)0.6777 (6)0.2767 (5)0.0397 (11)
C30.2652 (10)0.6334 (7)0.1758 (5)0.0392 (12)
H3A0.11660.66680.14480.047*
C3a0.3671 (10)0.5285 (6)0.1216 (5)0.0356 (11)
N40.0918 (12)0.4695 (7)0.0746 (5)0.0539 (16)
C40.3107 (12)0.4470 (7)0.0163 (6)0.0444 (14)
C50.4584 (15)0.3499 (9)0.0048 (8)0.060 (2)
H5A0.41690.29530.07370.072*
C60.6748 (15)0.3329 (9)0.0791 (7)0.062 (2)
H6A0.77380.26600.06430.074*
C70.7440 (13)0.4113 (7)0.1813 (6)0.0455 (15)
H7A0.88720.39950.23580.055*
C7a0.5883 (10)0.5102 (6)0.1997 (5)0.0334 (11)
O410.0459 (12)0.3977 (8)0.1664 (5)0.081 (2)
O420.0332 (11)0.5603 (8)0.0565 (5)0.0720 (17)
C1'0.8022 (9)0.6260 (5)0.3942 (5)0.0301 (10)
H1'A0.94560.59460.37270.036*
O2'1.0679 (7)0.7948 (4)0.4819 (5)0.0402 (10)
H2'A1.105 (15)0.875 (12)0.488 (9)0.060*
C2'0.8311 (9)0.7726 (5)0.4315 (5)0.0302 (10)
H2'B0.77070.83160.36170.036*
O3'0.7413 (8)0.8866 (4)0.6129 (4)0.0410 (10)
H3'A0.703 (17)0.953 (12)0.575 (8)0.061*
C3'0.6872 (9)0.7813 (5)0.5308 (5)0.0286 (10)
H3'B0.52140.78470.49070.034*
O4'0.7690 (7)0.5565 (4)0.5004 (3)0.0349 (9)
C4'0.7416 (9)0.6481 (6)0.5973 (5)0.0306 (10)
H4'A0.89000.65530.65780.037*
O5'0.3376 (8)0.5771 (5)0.5793 (5)0.0491 (11)
H5'A0.274 (16)0.648 (6)0.556 (9)0.074*
C5'0.5591 (11)0.5946 (7)0.6609 (5)0.0415 (13)
H5'B0.61150.51010.69880.050*
H5'C0.54260.65520.72630.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.035 (2)0.034 (2)0.033 (2)0.005 (2)0.0036 (17)0.0066 (19)
N20.035 (2)0.042 (3)0.038 (2)0.009 (2)0.0006 (18)0.004 (2)
C30.035 (3)0.042 (3)0.038 (3)0.002 (3)0.002 (2)0.002 (2)
C3a0.039 (3)0.035 (3)0.031 (2)0.005 (2)0.005 (2)0.001 (2)
N40.061 (4)0.050 (3)0.043 (3)0.020 (3)0.006 (3)0.001 (3)
C40.050 (3)0.041 (3)0.038 (3)0.011 (3)0.000 (2)0.005 (3)
C50.073 (5)0.050 (4)0.050 (3)0.004 (4)0.001 (3)0.022 (3)
C60.071 (5)0.049 (4)0.063 (4)0.014 (4)0.008 (4)0.020 (4)
C70.049 (3)0.040 (3)0.045 (3)0.006 (3)0.005 (3)0.007 (3)
C7a0.039 (3)0.029 (2)0.032 (2)0.003 (2)0.007 (2)0.003 (2)
O410.091 (4)0.084 (5)0.054 (3)0.017 (4)0.015 (3)0.023 (3)
O420.060 (3)0.070 (4)0.071 (3)0.002 (3)0.019 (3)0.012 (3)
C1'0.029 (2)0.027 (2)0.033 (2)0.001 (2)0.0041 (18)0.003 (2)
O2'0.031 (2)0.027 (2)0.061 (3)0.0036 (16)0.0071 (17)0.0017 (19)
C2'0.031 (2)0.023 (2)0.035 (2)0.001 (2)0.0042 (19)0.000 (2)
O3'0.049 (2)0.0283 (19)0.041 (2)0.0023 (19)0.0009 (19)0.0101 (17)
C3'0.028 (2)0.025 (2)0.029 (2)0.001 (2)0.0003 (17)0.0035 (19)
O4'0.045 (2)0.0225 (17)0.0359 (18)0.0030 (17)0.0057 (16)0.0002 (15)
C4'0.030 (2)0.027 (2)0.031 (2)0.001 (2)0.0006 (18)0.0018 (19)
O5'0.034 (2)0.035 (2)0.073 (3)0.0031 (19)0.004 (2)0.004 (2)
C5'0.042 (3)0.042 (3)0.038 (3)0.005 (3)0.005 (2)0.004 (2)
Geometric parameters (Å, º) top
N1—N21.364 (7)C1'—O4'1.422 (6)
N1—C7a1.366 (7)C1'—C2'1.534 (8)
N1—C1'1.450 (6)C1'—H1'A0.9800
N2—C31.325 (7)O2'—C2'1.401 (7)
C3—C3a1.415 (9)O2'—H2'A0.84 (12)
C3—H3A0.9300C2'—C3'1.534 (7)
C3a—C41.407 (8)C2'—H2'B0.9800
C3a—C7a1.408 (8)O3'—C3'1.390 (6)
N4—O421.220 (10)O3'—H3'A0.80 (12)
N4—O411.230 (8)C3'—C4'1.532 (8)
N4—C41.468 (9)C3'—H3'B0.9800
C4—C51.364 (11)O4'—C4'1.453 (7)
C5—C61.412 (12)C4'—C5'1.511 (9)
C5—H5A0.9300C4'—H4'A0.9800
C6—C71.369 (10)O5'—C5'1.425 (7)
C6—H6A0.9300O5'—H5'A0.82 (4)
C7—C7a1.400 (9)C5'—H5'B0.9700
C7—H7A0.9300C5'—H5'C0.9700
N2—N1—C7a111.4 (5)O4'—C1'—H1'A109.1
N2—N1—C1'120.6 (4)N1—C1'—H1'A109.1
C7a—N1—C1'127.9 (5)C2'—C1'—H1'A109.1
C3—N2—N1106.5 (5)C2'—O2'—H2'A114 (6)
N2—C3—C3a110.9 (5)O2'—C2'—C3'111.4 (4)
N2—C3—H3A124.5O2'—C2'—C1'107.6 (4)
C3a—C3—H3A124.5C3'—C2'—C1'101.7 (4)
C4—C3a—C7a116.8 (6)O2'—C2'—H2'B111.9
C4—C3a—C3138.2 (6)C3'—C2'—H2'B111.9
C7a—C3a—C3105.0 (5)C1'—C2'—H2'B111.9
O42—N4—O41123.3 (7)C3'—O3'—H3'A108 (7)
O42—N4—C4118.2 (6)O3'—C3'—C4'111.1 (4)
O41—N4—C4118.5 (7)O3'—C3'—C2'115.6 (4)
C5—C4—C3a121.3 (6)C4'—C3'—C2'101.9 (4)
C5—C4—N4119.3 (6)O3'—C3'—H3'B109.3
C3a—C4—N4119.4 (6)C4'—C3'—H3'B109.3
C4—C5—C6119.4 (6)C2'—C3'—H3'B109.3
C4—C5—H5A120.3C1'—O4'—C4'111.0 (4)
C6—C5—H5A120.3O4'—C4'—C5'109.1 (5)
C7—C6—C5122.4 (7)O4'—C4'—C3'104.3 (4)
C7—C6—H6A118.8C5'—C4'—C3'116.3 (5)
C5—C6—H6A118.8O4'—C4'—H4'A109.0
C6—C7—C7a116.6 (6)C5'—C4'—H4'A109.0
C6—C7—H7A121.7C3'—C4'—H4'A109.0
C7a—C7—H7A121.7C5'—O5'—H5'A112 (7)
N1—C7a—C7130.4 (5)O5'—C5'—C4'113.1 (5)
N1—C7a—C3a106.2 (5)O5'—C5'—H5'B108.9
C7—C7a—C3a123.4 (5)C4'—C5'—H5'B108.9
O4'—C1'—N1110.8 (4)O5'—C5'—H5'C108.9
O4'—C1'—C2'106.1 (4)C4'—C5'—H5'C108.9
N1—C1'—C2'112.5 (4)H5'B—C5'—H5'C107.8
C7a—N1—N2—C31.4 (7)C4—C3a—C7a—C74.0 (9)
C1'—N1—N2—C3179.0 (5)C3—C3a—C7a—C7177.5 (6)
N1—N2—C3—C3a0.3 (7)N2—N1—C1'—O4'83.5 (6)
N2—C3—C3a—C4177.0 (7)C7a—N1—C1'—O4'93.6 (6)
N2—C3—C3a—C7a0.9 (7)N2—N1—C1'—C2'35.2 (7)
C7a—C3a—C4—C53.7 (10)C7a—N1—C1'—C2'147.7 (5)
C3—C3a—C4—C5178.5 (8)O4'—C1'—C2'—O2'88.2 (5)
C7a—C3a—C4—N4174.4 (6)N1—C1'—C2'—O2'150.4 (4)
C3—C3a—C4—N43.3 (12)O4'—C1'—C2'—C3'28.9 (5)
O42—N4—C4—C5177.1 (8)N1—C1'—C2'—C3'92.4 (5)
O41—N4—C4—C51.5 (10)O2'—C2'—C3'—O3'44.0 (6)
O42—N4—C4—C3a1.1 (10)C1'—C2'—C3'—O3'158.4 (4)
O41—N4—C4—C3a179.7 (7)O2'—C2'—C3'—C4'76.6 (5)
C3a—C4—C5—C61.6 (12)C1'—C2'—C3'—C4'37.8 (5)
N4—C4—C5—C6176.5 (8)N1—C1'—O4'—C4'114.4 (5)
C4—C5—C6—C70.5 (14)C2'—C1'—O4'—C4'8.0 (5)
C5—C6—C7—C7a0.3 (13)C1'—O4'—C4'—C5'141.4 (5)
N2—N1—C7a—C7177.2 (7)C1'—O4'—C4'—C3'16.5 (5)
C1'—N1—C7a—C70.1 (10)O3'—C3'—C4'—O4'157.5 (4)
N2—N1—C7a—C3a2.0 (6)C2'—C3'—C4'—O4'33.8 (5)
C1'—N1—C7a—C3a179.3 (5)O3'—C3'—C4'—C5'82.4 (6)
C6—C7—C7a—N1178.9 (7)C2'—C3'—C4'—C5'153.9 (5)
C6—C7—C7a—C3a2.1 (10)O4'—C4'—C5'—O5'59.5 (7)
C4—C3a—C7a—N1176.7 (5)C3'—C4'—C5'—O5'58.0 (7)
C3—C3a—C7a—N11.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O4i0.84 (12)1.96 (12)2.800 (6)173 (9)
O3—H3A···O5ii0.80 (12)2.09 (11)2.832 (7)154 (10)
O5—H5A···O2iii0.82 (4)1.97 (5)2.784 (7)168 (10)
Symmetry codes: (i) x+2, y+1/2, z+1; (ii) x+1, y+1/2, z+1; (iii) x1, y, z.
(II) 4-nitro-2-(β-D-ribofuranosyl)-2H-indazole top
Crystal data top
C12H13N3O6F(000) = 616
Mr = 295.25Dx = 1.560 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 44 reflections
a = 4.9355 (13) Åθ = 4.5–12.4°
b = 35.936 (5) ŵ = 0.13 mm1
c = 7.1833 (9) ÅT = 293 K
β = 99.311 (18)°Block, yellow
V = 1257.2 (4) Å30.4 × 0.3 × 0.2 mm
Z = 4
Data collection top
Bruker P4
diffractometer
Rint = 0.048
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.3°
Graphite monochromatorh = 16
2θ/ω scansk = 150
4996 measured reflectionsl = 1010
3706 independent reflections3 standard reflections every 97 reflections
2657 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0767P)2 + 0.5939P]
where = P = (Fo2 + 2Fc2)/3
3706 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.30 e Å3
13 restraintsΔρmin = 0.36 e Å3
Crystal data top
C12H13N3O6V = 1257.2 (4) Å3
Mr = 295.25Z = 4
Monoclinic, P21Mo Kα radiation
a = 4.9355 (13) ŵ = 0.13 mm1
b = 35.936 (5) ÅT = 293 K
c = 7.1833 (9) Å0.4 × 0.3 × 0.2 mm
β = 99.311 (18)°
Data collection top
Bruker P4
diffractometer
Rint = 0.048
4996 measured reflections3 standard reflections every 97 reflections
3706 independent reflections intensity decay: none
2657 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.06113 restraints
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.30 e Å3
3706 reflectionsΔρmin = 0.36 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.1287 (8)0.04844 (12)0.1019 (5)0.0307 (8)
N120.2705 (7)0.04215 (11)0.0735 (5)0.0277 (8)
C130.4826 (9)0.06543 (15)0.1242 (6)0.0320 (10)
H13A0.60230.06560.23840.038*
C13a0.4872 (9)0.08891 (13)0.0265 (6)0.0299 (9)
C140.6476 (10)0.11968 (14)0.0715 (7)0.0338 (10)
N140.8820 (9)0.13200 (14)0.0645 (7)0.0440 (11)
O1411.0196 (10)0.15791 (14)0.0239 (8)0.0624 (12)
O1420.9295 (10)0.11460 (15)0.2138 (7)0.0669 (14)
C150.5860 (12)0.13696 (15)0.2421 (8)0.0405 (12)
H15D0.69310.15680.27080.049*
C160.3612 (12)0.12499 (17)0.3753 (7)0.0457 (13)
H16C0.32270.13730.49030.055*
C170.1982 (11)0.09591 (16)0.3414 (7)0.0401 (12)
H17B0.05060.08840.43070.048*
C17a0.2623 (9)0.07767 (14)0.1649 (6)0.0297 (9)
C11'0.1828 (8)0.01156 (13)0.1843 (6)0.0263 (9)
H11A0.00510.00440.13080.032*
O12'0.2859 (7)0.04550 (11)0.0358 (4)0.0363 (8)
H12A0.422 (4)0.0552 (15)0.004 (6)0.054*
C12'0.3690 (8)0.02250 (13)0.1931 (5)0.0249 (8)
H12C0.55970.01460.19570.030*
O13'0.0729 (7)0.05681 (11)0.3563 (4)0.0372 (8)
H13O0.062 (7)0.0692 (15)0.451 (5)0.056*
C13'0.3344 (8)0.03872 (14)0.3849 (6)0.0286 (9)
H13B0.48440.05560.43560.034*
O14'0.1892 (6)0.02362 (10)0.3708 (4)0.0317 (7)
C14'0.3305 (8)0.00384 (14)0.5020 (6)0.0278 (9)
H14A0.22430.00830.60380.033*
O15'0.7219 (8)0.00780 (12)0.7486 (5)0.0447 (9)
H15A0.841 (11)0.0049 (10)0.812 (5)0.067*
C15'0.6117 (9)0.01193 (14)0.5841 (6)0.0327 (10)
H15B0.73430.00990.49180.039*
H15C0.59410.03810.61400.039*
N211.1154 (8)0.80507 (12)1.1277 (5)0.0340 (9)
N220.9196 (7)0.81226 (11)0.9763 (5)0.0268 (8)
C230.9253 (10)0.78854 (14)0.8319 (6)0.0322 (9)
H23A0.80840.78870.71650.039*
C23a1.1395 (10)0.76383 (14)0.8883 (6)0.0318 (10)
C241.2616 (11)0.73328 (16)0.8120 (7)0.0387 (11)
N241.1518 (13)0.72039 (17)0.6225 (8)0.0620 (15)
O2411.2554 (14)0.6934 (2)0.5598 (9)0.103 (2)
O2420.9577 (16)0.7366 (2)0.5374 (8)0.115 (3)
C251.4811 (12)0.71482 (17)0.9150 (8)0.0460 (13)
H25D1.55810.69440.86380.055*
C261.5884 (11)0.72722 (17)1.0990 (9)0.0467 (13)
H26C1.73950.71511.16650.056*
C271.4763 (11)0.75648 (17)1.1799 (8)0.0454 (13)
H27B1.54710.76391.30210.054*
C27a1.2508 (10)0.77532 (13)1.0752 (6)0.0313 (9)
C21'0.7426 (9)0.84488 (13)0.9856 (5)0.0265 (8)
H21A0.66990.84481.10480.032*
O22'0.7675 (6)0.91074 (10)1.0459 (4)0.0309 (7)
H22A0.882 (4)0.9220 (11)1.121 (7)0.046*
C22'0.9010 (8)0.88093 (13)0.9679 (6)0.0243 (8)
H22C1.09500.87891.02420.029*
O23'0.9200 (7)0.91993 (10)0.6844 (4)0.0338 (7)
H23O0.865 (12)0.9361 (3)0.749 (6)0.051*
C23'0.8612 (8)0.88460 (13)0.7526 (6)0.0251 (8)
H23B0.97880.86620.70400.030*
O24'0.5244 (6)0.84386 (10)0.8324 (4)0.0294 (7)
C24'0.5626 (8)0.87262 (13)0.6954 (5)0.0257 (8)
H24A0.44090.89370.70800.031*
O25'0.2127 (8)0.84913 (17)0.4553 (6)0.0644 (15)
H25A0.187 (4)0.834 (2)0.367 (9)0.097*
C25'0.4981 (10)0.85686 (15)0.4971 (6)0.0337 (10)
H25B0.54840.87470.40720.040*
H25C0.60240.83420.48830.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0287 (17)0.039 (2)0.0223 (16)0.0028 (17)0.0020 (13)0.0041 (16)
N120.0247 (16)0.036 (2)0.0201 (15)0.0004 (15)0.0035 (12)0.0016 (14)
C130.029 (2)0.041 (3)0.0238 (19)0.0022 (19)0.0041 (16)0.0035 (18)
C13a0.029 (2)0.035 (3)0.025 (2)0.0012 (18)0.0006 (16)0.0020 (17)
C140.034 (2)0.033 (3)0.033 (2)0.0044 (19)0.0029 (18)0.0017 (19)
N140.038 (2)0.043 (3)0.050 (3)0.012 (2)0.0047 (19)0.001 (2)
O1410.049 (2)0.057 (3)0.080 (3)0.018 (2)0.007 (2)0.004 (2)
O1420.061 (3)0.080 (4)0.051 (2)0.027 (2)0.018 (2)0.016 (2)
C150.048 (3)0.034 (3)0.041 (3)0.003 (2)0.010 (2)0.011 (2)
C160.057 (3)0.046 (3)0.032 (2)0.007 (3)0.003 (2)0.018 (2)
C170.050 (3)0.040 (3)0.027 (2)0.005 (2)0.004 (2)0.004 (2)
C17a0.029 (2)0.037 (3)0.0217 (18)0.0013 (19)0.0011 (15)0.0024 (18)
C11'0.0232 (18)0.033 (2)0.0221 (18)0.0004 (17)0.0029 (14)0.0009 (17)
O12'0.0368 (17)0.045 (2)0.0277 (15)0.0016 (16)0.0079 (13)0.0099 (14)
C12'0.0217 (18)0.032 (2)0.0217 (17)0.0064 (16)0.0047 (14)0.0017 (16)
O13'0.0357 (17)0.053 (2)0.0216 (14)0.0188 (16)0.0018 (12)0.0039 (14)
C13'0.0225 (19)0.038 (3)0.0240 (18)0.0048 (18)0.0012 (15)0.0008 (18)
O14'0.0323 (16)0.0404 (19)0.0223 (14)0.0092 (14)0.0040 (12)0.0001 (13)
C14'0.0224 (18)0.040 (3)0.0203 (17)0.0034 (18)0.0028 (14)0.0035 (18)
O15'0.0404 (19)0.056 (3)0.0318 (17)0.0054 (17)0.0121 (14)0.0022 (17)
C15'0.029 (2)0.038 (3)0.030 (2)0.0058 (19)0.0002 (16)0.0048 (19)
N210.038 (2)0.038 (2)0.0224 (16)0.0033 (18)0.0055 (15)0.0031 (16)
N220.0299 (18)0.029 (2)0.0200 (15)0.0012 (15)0.0005 (13)0.0016 (14)
C230.037 (2)0.032 (2)0.0246 (19)0.0023 (19)0.0031 (17)0.0018 (17)
C23a0.036 (2)0.034 (2)0.0243 (19)0.0006 (19)0.0012 (17)0.0008 (18)
C240.047 (3)0.036 (3)0.031 (2)0.002 (2)0.000 (2)0.005 (2)
N240.075 (4)0.062 (4)0.046 (3)0.014 (3)0.001 (3)0.026 (3)
O2410.121 (5)0.110 (5)0.071 (3)0.050 (4)0.008 (3)0.059 (4)
O2420.135 (5)0.130 (6)0.058 (3)0.076 (5)0.050 (4)0.048 (4)
C250.048 (3)0.040 (3)0.049 (3)0.014 (3)0.006 (2)0.001 (3)
C260.041 (3)0.042 (3)0.053 (3)0.008 (2)0.005 (2)0.006 (3)
C270.043 (3)0.052 (3)0.035 (3)0.002 (3)0.011 (2)0.001 (2)
C27a0.038 (2)0.029 (2)0.0255 (19)0.0031 (19)0.0007 (17)0.0024 (17)
C21'0.0295 (19)0.030 (2)0.0205 (17)0.0002 (18)0.0044 (15)0.0023 (17)
O22'0.0288 (15)0.0390 (19)0.0238 (14)0.0011 (14)0.0011 (11)0.0108 (14)
C22'0.0216 (18)0.027 (2)0.0232 (18)0.0006 (16)0.0016 (14)0.0004 (16)
O23'0.0416 (18)0.0348 (19)0.0269 (15)0.0026 (15)0.0115 (13)0.0016 (13)
C23'0.0222 (18)0.033 (2)0.0202 (17)0.0008 (16)0.0052 (14)0.0022 (16)
O24'0.0230 (13)0.0384 (18)0.0254 (13)0.0049 (13)0.0003 (11)0.0013 (14)
C24'0.0243 (18)0.033 (2)0.0193 (17)0.0013 (17)0.0026 (14)0.0037 (17)
O25'0.0302 (17)0.112 (4)0.048 (2)0.002 (2)0.0014 (15)0.050 (3)
C25'0.031 (2)0.048 (3)0.0217 (18)0.003 (2)0.0017 (15)0.0069 (19)
Geometric parameters (Å, º) top
N11—C17a1.356 (6)N21—C27a1.346 (6)
N11—N121.357 (5)N21—N221.358 (5)
N12—C131.344 (6)N22—C231.347 (6)
N12—C11'1.463 (6)N22—C21'1.470 (6)
C13—C13a1.376 (7)C23—C23a1.390 (7)
C13—H13A0.9300C23—H23A0.9300
C13a—C17a1.424 (6)C23a—C241.406 (7)
C13a—C141.427 (7)C23a—C27a1.427 (6)
C14—C151.364 (7)C24—C251.379 (8)
C14—N141.457 (6)C24—N241.457 (7)
N14—O1411.215 (6)N24—O2421.200 (8)
N14—O1421.231 (7)N24—O2411.217 (7)
C15—C161.410 (8)C25—C261.414 (8)
C15—H15D0.9300C25—H25D0.9300
C16—C171.365 (9)C26—C271.361 (9)
C16—H16C0.9300C26—H26C0.9300
C17—C17a1.417 (6)C27—C27a1.411 (7)
C17—H17B0.9300C27—H27B0.9300
C11'—O14'1.404 (5)C21'—O24'1.410 (5)
C11'—C12'1.526 (6)C21'—C22'1.529 (6)
C11'—H11A0.9800C21'—H21A0.9800
O12'—C12'1.406 (5)O22'—C22'1.419 (5)
O12'—H12A0.82 (3)O22'—H22A0.82 (4)
C12'—C13'1.531 (6)C22'—C23'1.533 (5)
C12'—H12C0.9800C22'—H22C0.9800
O13'—C13'1.430 (5)O23'—C23'1.408 (6)
O13'—H13O0.82 (4)O23'—H23O0.82 (3)
C13'—C14'1.511 (7)C23'—C24'1.526 (6)
C13'—H13B0.9800C23'—H23B0.9800
O14'—C14'1.461 (5)O24'—C24'1.460 (5)
C14'—C15'1.526 (6)C24'—C25'1.518 (6)
C14'—H14A0.9800C24'—H24A0.9800
O15'—C15'1.410 (6)O25'—C25'1.419 (6)
O15'—H15A0.82 (5)O25'—H25A0.83 (7)
C15'—H15B0.9700C25'—H25B0.9700
C15'—H15C0.9700C25'—H25C0.9700
C17a—N11—N12103.5 (4)C27a—N21—N22104.3 (4)
C13—N12—N11114.2 (4)C23—N22—N21113.3 (4)
C13—N12—C11'127.3 (4)C23—N22—C21'128.8 (4)
N11—N12—C11'118.5 (4)N21—N22—C21'117.8 (3)
N12—C13—C13a106.3 (4)N22—C23—C23a106.8 (4)
N12—C13—H13A126.9N22—C23—H23A126.6
C13a—C13—H13A126.9C23a—C23—H23A126.6
C13—C13a—C17a105.4 (4)C23—C23a—C24137.7 (4)
C13—C13a—C14137.2 (4)C23—C23a—C27a104.4 (4)
C17a—C13a—C14117.4 (4)C24—C23a—C27a118.0 (4)
C15—C14—C13a120.4 (4)C25—C24—C23a121.1 (5)
C15—C14—N14120.1 (5)C25—C24—N24119.3 (5)
C13a—C14—N14119.5 (4)C23a—C24—N24119.6 (5)
O141—N14—O142124.3 (5)O242—N24—O241123.2 (6)
O141—N14—C14119.1 (5)O242—N24—C24117.9 (5)
O142—N14—C14116.6 (4)O241—N24—C24119.0 (6)
C14—C15—C16120.5 (5)C24—C25—C26119.5 (5)
C14—C15—H15D119.7C24—C25—H25D120.2
C16—C15—H15D119.7C26—C25—H25D120.2
C17—C16—C15122.3 (5)C27—C26—C25121.7 (5)
C17—C16—H16C118.9C27—C26—H26C119.1
C15—C16—H16C118.9C25—C26—H26C119.1
C16—C17—C17a117.5 (5)C26—C27—C27a118.9 (5)
C16—C17—H17B121.3C26—C27—H27B120.6
C17a—C17—H17B121.3C27a—C27—H27B120.6
N11—C17a—C17127.4 (4)N21—C27a—C27128.0 (4)
N11—C17a—C13a110.6 (4)N21—C27a—C23a111.1 (4)
C17—C17a—C13a122.0 (5)C27—C27a—C23a120.9 (5)
O14'—C11'—N12108.9 (4)O24'—C21'—N22109.2 (4)
O14'—C11'—C12'106.7 (3)O24'—C21'—C22'107.0 (3)
N12—C11'—C12'113.3 (3)N22—C21'—C22'110.9 (3)
O14'—C11'—H11A109.2O24'—C21'—H21A109.9
N12—C11'—H11A109.2N22—C21'—H21A109.9
C12'—C11'—H11A109.2C22'—C21'—H21A109.9
C12'—O12'—H12A109 (3)C22'—O22'—H22A108.5 (13)
O12'—C12'—C11'110.1 (3)O22'—C22'—C21'109.3 (3)
O12'—C12'—C13'116.0 (4)O22'—C22'—C23'110.0 (3)
C11'—C12'—C13'100.9 (3)C21'—C22'—C23'100.0 (3)
O12'—C12'—H12C109.8O22'—C22'—H22C112.3
C11'—C12'—H12C109.8C21'—C22'—H22C112.3
C13'—C12'—H12C109.8C23'—C22'—H22C112.3
C13'—O13'—H13O108 (3)C23'—O23'—H23O110 (3)
O13'—C13'—C14'111.4 (4)O23'—C23'—C24'113.9 (4)
O13'—C13'—C12'105.9 (3)O23'—C23'—C22'115.4 (4)
C14'—C13'—C12'101.4 (4)C24'—C23'—C22'102.0 (3)
O13'—C13'—H13B112.5O23'—C23'—H23B108.4
C14'—C13'—H13B112.5C24'—C23'—H23B108.4
C12'—C13'—H13B112.5C22'—C23'—H23B108.4
C11'—O14'—C14'110.0 (3)C21'—O24'—C24'110.0 (3)
O14'—C14'—C13'104.4 (3)O24'—C24'—C25'109.8 (4)
O14'—C14'—C15'107.9 (4)O24'—C24'—C23'104.0 (3)
C13'—C14'—C15'115.5 (4)C25'—C24'—C23'113.9 (3)
O14'—C14'—H14A109.6O24'—C24'—H24A109.7
C13'—C14'—H14A109.6C25'—C24'—H24A109.7
C15'—C14'—H14A109.6C23'—C24'—H24A109.7
C15'—O15'—H15A109.3 (13)C25'—O25'—H25A108.3 (14)
O15'—C15'—C14'109.9 (4)O25'—C25'—C24'108.8 (4)
O15'—C15'—H15B109.7O25'—C25'—H25B109.9
C14'—C15'—H15B109.7C24'—C25'—H25B109.9
O15'—C15'—H15C109.7O25'—C25'—H25C109.9
C14'—C15'—H15C109.7C24'—C25'—H25C109.9
H15B—C15'—H15C108.2H25B—C25'—H25C108.3
C17a—N11—N12—C130.1 (5)C27a—N21—N22—C230.1 (5)
C17a—N11—N12—C11'179.3 (4)C27a—N21—N22—C21'177.0 (4)
N11—N12—C13—C13a0.5 (6)N21—N22—C23—C23a0.4 (6)
C11'—N12—C13—C13a178.8 (4)C21'—N22—C23—C23a176.3 (4)
N12—C13—C13a—C17a0.6 (5)N22—C23—C23a—C24179.1 (6)
N12—C13—C13a—C14179.3 (6)N22—C23—C23a—C27a0.5 (5)
C13—C13a—C14—C15179.2 (6)C23—C23a—C24—C25180.0 (6)
C17a—C13a—C14—C150.7 (7)C27a—C23a—C24—C250.4 (8)
C13—C13a—C14—N142.2 (9)C23—C23a—C24—N241.2 (10)
C17a—C13a—C14—N14179.3 (4)C27a—C23a—C24—N24179.2 (5)
C15—C14—N14—O1410.5 (8)C25—C24—N24—O242178.7 (8)
C13a—C14—N14—O141179.0 (5)C23a—C24—N24—O2420.1 (10)
C15—C14—N14—O142178.3 (6)C25—C24—N24—O2410.5 (10)
C13a—C14—N14—O1420.2 (8)C23a—C24—N24—O241178.3 (7)
C13a—C14—C15—C160.8 (8)C23a—C24—C25—C261.2 (9)
N14—C14—C15—C16179.4 (5)N24—C24—C25—C26180.0 (6)
C14—C15—C16—C170.4 (9)C24—C25—C26—C271.7 (10)
C15—C16—C17—C17a0.0 (9)C25—C26—C27—C27a1.4 (9)
N12—N11—C17a—C17179.5 (5)N22—N21—C27a—C27179.5 (5)
N12—N11—C17a—C13a0.3 (5)N22—N21—C27a—C23a0.3 (5)
C16—C17—C17a—N11179.9 (5)C26—C27—C27a—N21178.6 (5)
C16—C17—C17a—C13a0.1 (8)C26—C27—C27a—C23a0.6 (8)
C13—C13a—C17a—N110.6 (6)C23—C23a—C27a—N210.5 (6)
C14—C13a—C17a—N11179.6 (4)C24—C23a—C27a—N21179.2 (4)
C13—C13a—C17a—C17179.2 (5)C23—C23a—C27a—C27179.8 (5)
C14—C13a—C17a—C170.3 (7)C24—C23a—C27a—C270.1 (7)
C13—N12—C11'—O14'43.7 (6)C23—N22—C21'—O24'13.8 (6)
N11—N12—C11'—O14'137.0 (4)N21—N22—C21'—O24'169.6 (4)
C13—N12—C11'—C12'75.0 (6)C23—N22—C21'—C22'103.9 (5)
N11—N12—C11'—C12'104.3 (4)N21—N22—C21'—C22'72.7 (5)
O14'—C11'—C12'—O12'153.9 (3)O24'—C21'—C22'—O22'82.8 (4)
N12—C11'—C12'—O12'86.2 (4)N22—C21'—C22'—O22'158.3 (3)
O14'—C11'—C12'—C13'30.9 (4)O24'—C21'—C22'—C23'32.6 (4)
N12—C11'—C12'—C13'150.8 (3)N22—C21'—C22'—C23'86.3 (4)
O12'—C12'—C13'—O13'42.1 (5)O22'—C22'—C23'—O23'49.2 (5)
C11'—C12'—C13'—O13'76.8 (4)C21'—C22'—C23'—O23'164.1 (3)
O12'—C12'—C13'—C14'158.4 (4)O22'—C22'—C23'—C24'74.8 (4)
C11'—C12'—C13'—C14'39.6 (4)C21'—C22'—C23'—C24'40.1 (4)
N12—C11'—O14'—C14'132.0 (3)N22—C21'—O24'—C24'108.3 (4)
C12'—C11'—O14'—C14'9.3 (4)C22'—C21'—O24'—C24'11.8 (4)
C11'—O14'—C14'—C13'16.7 (4)C21'—O24'—C24'—C25'136.8 (4)
C11'—O14'—C14'—C15'106.7 (4)C21'—O24'—C24'—C23'14.5 (4)
O13'—C13'—C14'—O14'77.1 (4)O23'—C23'—C24'—O24'159.5 (3)
C12'—C13'—C14'—O14'35.2 (4)C22'—C23'—C24'—O24'34.5 (4)
O13'—C13'—C14'—C15'164.6 (4)O23'—C23'—C24'—C25'81.0 (5)
C12'—C13'—C14'—C15'83.1 (4)C22'—C23'—C24'—C25'154.0 (4)
O14'—C14'—C15'—O15'162.8 (4)O24'—C24'—C25'—O25'67.8 (5)
C13'—C14'—C15'—O15'80.9 (5)C23'—C24'—C25'—O25'176.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12A···O22i0.82 (5)2.08 (3)2.841 (5)154 (6)
O13—H13O···O23ii0.83 (7)1.96 (3)2.720 (4)154 (6)
O15—H15A···N11iii0.82 (5)2.14 (4)2.928 (6)162 (2)
O22—H22A···O13iv0.82 (2)1.95 (5)2.741 (4)161 (6)
O23—H23O···O15v0.82 (2)2.14 (2)2.839 (6)144 (3)
O25—H25A···N21vi0.83 (7)1.99 (7)2.812 (5)172 (2)
Symmetry codes: (i) x, y1, z1; (ii) x1, y1, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z; (vi) x1, y, z1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC12H13N3O6C12H13N3O6
Mr295.25295.25
Crystal system, space groupMonoclinic, P21Monoclinic, P21
Temperature (K)293293
a, b, c (Å)5.8912 (11), 10.0825 (12), 11.0998 (17)4.9355 (13), 35.936 (5), 7.1833 (9)
β (°) 102.821 (15) 99.311 (18)
V3)642.87 (17)1257.2 (4)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.120.13
Crystal size (mm)0.6 × 0.4 × 0.30.4 × 0.3 × 0.2
Data collection
DiffractometerBruker P4
diffractometer
Bruker P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2712, 1960, 1659 4996, 3706, 2657
Rint0.0430.048
(sin θ/λ)max1)0.7030.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 1.05 0.061, 0.170, 1.04
No. of reflections19603706
No. of parameters199397
No. of restraints413
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.280.30, 0.36

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL (Sheldrick, 1997), SHELXTL and PLATON (Spek, 1999).

Selected geometric parameters (Å, º) for (I) top
N1—C1'1.450 (6)
N2—N1—C1'120.6 (4)C7a—N1—C1'127.9 (5)
C1'—N1—N2—C3179.0 (5)N1—C1'—O4'—C4'114.4 (5)
N2—N1—C1'—O4'83.5 (6)C1'—O4'—C4'—C5'141.4 (5)
C7a—N1—C1'—O4'93.6 (6)C1'—O4'—C4'—C3'16.5 (5)
C7a—N1—C1'—C2'147.7 (5)C2'—C3'—C4'—O4'33.8 (5)
O4'—C1'—C2'—C3'28.9 (5)O3'—C3'—C4'—C5'82.4 (6)
N1—C1'—C2'—C3'92.4 (5)O4'—C4'—C5'—O5'59.5 (7)
C1'—C2'—C3'—O3'158.4 (4)C3'—C4'—C5'—O5'58.0 (7)
C1'—C2'—C3'—C4'37.8 (5)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2'—H2'A···O4'i0.84 (12)1.96 (12)2.800 (6)173 (9)
O3'—H3'A···O5'ii0.80 (12)2.09 (11)2.832 (7)154 (10)
O5'—H5'A···O2'iii0.82 (4)1.97 (5)2.784 (7)168 (10)
Symmetry codes: (i) x+2, y+1/2, z+1; (ii) x+1, y+1/2, z+1; (iii) x1, y, z.
Selected geometric parameters (Å, º) for (II) top
N12—C11'1.463 (6)N22—C21'1.470 (6)
C13—N12—C11'127.3 (4)C23—N22—C21'128.8 (4)
N11—N12—C11'118.5 (4)N21—N22—C21'117.8 (3)
C13—C13a—C17a—C17179.2 (5)C23—N22—C21'—O24'13.8 (6)
C13—N12—C11'—O14'43.7 (6)N21—N22—C21'—O24'169.6 (4)
N11—N12—C11'—O14'137.0 (4)N21—N22—C21'—C22'72.7 (5)
N11—N12—C11'—C12'104.3 (4)O24'—C21'—C22'—C23'32.6 (4)
O14'—C11'—C12'—C13'30.9 (4)N22—C21'—C22'—C23'86.3 (4)
N12—C11'—C12'—C13'150.8 (3)C21'—C22'—C23'—O23'164.1 (3)
C11'—C12'—C13'—O13'76.8 (4)C21'—C22'—C23'—C24'40.1 (4)
C11'—C12'—C13'—C14'39.6 (4)C22'—C21'—O24'—C24'11.8 (4)
C12'—C11'—O14'—C14'9.3 (4)C21'—O24'—C24'—C23'14.5 (4)
C12'—C13'—C14'—O14'35.2 (4)C22'—C23'—C24'—O24'34.5 (4)
O14'—C14'—C15'—O15'162.8 (4)O23'—C23'—C24'—C25'81.0 (5)
C13'—C14'—C15'—O15'80.9 (5)O24'—C24'—C25'—O25'67.8 (5)
C23—C23a—C27a—C27179.8 (5)C23'—C24'—C25'—O25'176.1 (5)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O12'—H12A···O22'i0.82 (5)2.08 (3)2.841 (5)154 (6)
O13'—H13O···O23'ii0.83 (7)1.96 (3)2.720 (4)154 (6)
O15'—H15A···N11iii0.82 (5)2.14 (4)2.928 (6)162 (2)
O22'—H22A···O13'iv0.82 (2)1.95 (5)2.741 (4)161 (6)
O23'—H23O···O15'v0.82 (2)2.14 (2)2.839 (6)144 (3)
O25'—H25A···N21vi0.83 (7)1.99 (7)2.812 (5)172 (2)
Symmetry codes: (i) x, y1, z1; (ii) x1, y1, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1; (v) x, y+1, z; (vi) x1, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds