Download citation
Download citation
link to html
The title compound (C9H4Cl3NO2S), commonly known as Folpet, belongs to a group of phthalimides which function as fungicides or can be used in the laboratory as sulfurizing agents. The phthalimide moiety is slightly folded with a dihedral angle of 3.5 (4)°. The molecule participates in C-H...O and Cl...Cl intermolecular interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199013074/sx1096sup1.cif
Contains datablocks (I), global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199013074/sx1096Isup2.hkl
Contains datablock I

CCDC reference: 140965

Comment top

The title compound, (I), is a member of a class of N-(trichloromethylthio)phthalimides which function as useful fungicidal, insecticidal and germicidal agents (Hargreaves et al., 1970). We were particularly interested in the utility of (I) as a convenient sulfurizing agent in the synthesis of dihydrooxathiin complexes. For example, the reaction shown below gives the synthetic route for the preparation of 2,2-bis(4-methoxyphenyl)-2,3-dihydrophenanthro[9,10 − b]-1,4-dioxine using (I) (Carle, 1997). [NB: Scheme shows 1,4-oxathiine not 1,4-dioxine]

The structure of (I) (Fig. 1) resembles other functionalized phthalimides, namely N-trichloromethylthio-3a,4,7,7a-tetrahydrophthalimide (Captan; Moss & Jacobson, 1981), N-(2-nitrophenylthio)phthalimide (Iwasaki & Masuko, 1986) and N-tert-butyldithiophthalimide (Mazhar-ul-Haque & Behforouz, 1979). The thiophthalimido group is slightly folded, with a dihedral angle of 3.5 (4)° between the N1/C2/C3/C8/C9 and C3–C8 planes, whereas nitrophenyl- and butyldithiophthalimide are more planar with corresponding angles of 1.4 and 1.5°, respectively. The S—N bond length [1.668 (5) Å] is shorter than similar bonds in the above related compounds [1.689 (3)–1.702 (2) Å], but is consistent with previously observed S—N single bonds (1.63–1.68 Å) exhibiting π character (Iwasaki & Masuko, 1986).

An intermolecular interaction of the C—H···OC type (Fig. 2)is observed between the aromatic C atoms of the phthalimide moiety and the symmetry-related carbonyls [C4—H4···O1i 3.297 (7) Å and 152.5 (2)°; C7—H7···O2ii 3.619 (8) Å and 166.9 (2)°; symmetry codes: (i) −x, 1 − y, 1 − z; (ii) −x, y − 1/2, 1/2 − z]. The H···O distances of 2.44 and 2.71 Å, respectively, are in the range that some consider to be moderate to weak non-conventional hydrogen bonding (Taylor & Kennard, 1982; Steiner, 1996; Jeffrey, 1997). Similar interactions are observed for Captan (C···O 3.400–3.445 Å and 133.2–144.9°; Moss & Jacobson, 1981), N-(2-nitrophenylthio)phthalimide (C···O 3.32–3.33 Å and 152–155°; Iwasaki & Masuko, 1986) and N-tert-butyldithiophthalimide (C···O 3.53 Å and 153°; Mazhar-ul-Haque & Behforouz, 1979).

There is one short intermolecular interaction of 3.350 (3) Å between neighboring Cl atoms which is less than the van der Waals distance (Cl radius = 1.75 Å; Bondi, 1964)). Additionally, one borderline Cl···Cl interaction is observed with a distance of 3.529 (2) Å, which is slightly longer than the van der Waals distance. The corresponding closest contact distance between Cl atoms in Captan is 3.556 Å (Moss & Jacobson, 1981). In Folpet, the nearest-neighbor contact between Cl and S atoms is Cl3···S of 3.675 (2) Å.

Experimental top

A heptane solution of trichloromethanesulfenyl chloride was added dropwise to a stirred dimethylformamide solution of phthalimide and triethylamine producing (I) (Wunderly, 1972). Crystals of (I) were obtained by slow evaporation from CH2Cl2 at 298 K and was fully characterized by spectroscopic techniques. 1H NMR (250 MHz, CDCl3): δ 7.88–7.93 (m, 2H), 8.02–8.07 (m, 2H) p.p.m.; 13C NMR (63 MHz, CDCl3): δ 99.11, 124.65, 131.30, 135.44, 165.77 p.p.m.; IR (CH2Cl2): 3948 (m), 3692–3750 (w), 3054 (versus), 2987 (s), 2681 (m), 2410 (m), 2306(s), 1798 (w), 1752 (s), 1721 (w), 1422 (s), 1259 (versus), 1150 (m), 1026 (w), 896 (s), 763 (versus), 711 (versus) cm−1; UV/vis (CH2Cl2): λ 239, 296 nm; HRMS (EI): m/z 295 (M+), 260, 241, 150, 130, 114, 104, 79, 70; exact mass for C9H4Cl3NO2S calculated 294.903, found 294.898; m.p. 448–449 K.

Computing details top

Data collection: P3-P4/PC (Siemens, 1989); cell refinement: P3-P4/PC; data reduction: XDISK (Siemens, 1989); program(s) used to solve structure: SHELXTL (Sheldrick, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 50% probability displacement ellipsoids and the atomic numbering scheme.
[Figure 2] Fig. 2. Packing diagram of (I) illustrating the C—H···O interactions in the bc plane.
2-[(trichloromethyl)thio]-1H-isoindole-1,3(2H)-dione top
Crystal data top
C9H4Cl3NO2SDx = 1.780 Mg m3
Mr = 296.54Melting point = 448–449 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.7666 (19) ÅCell parameters from 25 reflections
b = 5.7576 (12) Åθ = 7.5–15.0°
c = 19.754 (3) ŵ = 1.00 mm1
β = 94.905 (14)°T = 298 K
V = 1106.8 (4) Å3Rod, colorless
Z = 40.45 × 0.30 × 0.25 mm
F(000) = 592
Data collection top
Siemens P3
diffractometer
Rint = 0.035
Radiation source: normal-focus sealed tubeθmax = 27.6°, θmin = 1.5°
Graphite monochromatorh = 012
θ–2θ scansk = 07
2702 measured reflectionsl = 2525
2554 independent reflections3 standard reflections every 250 reflections
1281 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.157 w = 1/[σ2(Fo2) + (0.0533P)2 + 1.2199P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2552 reflectionsΔρmax = 0.40 e Å3
146 parametersΔρmin = 0.52 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (2)
Crystal data top
C9H4Cl3NO2SV = 1106.8 (4) Å3
Mr = 296.54Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7666 (19) ŵ = 1.00 mm1
b = 5.7576 (12) ÅT = 298 K
c = 19.754 (3) Å0.45 × 0.30 × 0.25 mm
β = 94.905 (14)°
Data collection top
Siemens P3
diffractometer
Rint = 0.035
2702 measured reflections3 standard reflections every 250 reflections
2554 independent reflections intensity decay: none
1281 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.10Δρmax = 0.40 e Å3
2552 reflectionsΔρmin = 0.52 e Å3
146 parameters
Special details top

Experimental. The data was corrected for decay (min. 0.9549, max. 1.000). These data were collected using variable speed θ–2θ scans (3.0–20.0°/ min), and corrected for decay (min. 0.955, max. 1.00), Lorentz, polarization and extinction effects but not for absorption

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 2 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factor(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

The structure was solved by direct methods, expanded by difference Fourier techniques and refined by full-matrix least squares on F2. H-atom positions were calculated based on geometric criterion (C—H=0.93 Å) and allowed to ride on their respective atoms. H-atom U values were assigned as 1.2Ueq of the adjacent atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.2997 (2)0.2927 (3)0.29936 (7)0.0450 (4)
O10.1391 (5)0.4883 (7)0.4127 (2)0.0569 (12)
O20.1146 (5)0.1377 (7)0.2678 (2)0.0546 (12)
Cl10.4283 (2)0.1228 (2)0.36806 (8)0.0560 (5)
Cl20.4569 (2)0.3122 (3)0.43701 (7)0.0536 (5)
Cl30.5867 (2)0.2517 (3)0.31233 (7)0.0557 (5)
N10.1642 (5)0.1895 (8)0.3357 (2)0.0414 (11)
C20.0975 (7)0.3066 (10)0.3879 (3)0.0460 (15)
C30.0174 (6)0.1586 (9)0.4029 (3)0.0413 (14)
C40.1093 (7)0.1870 (12)0.4520 (3)0.052 (2)
H40.1065 (7)0.3170 (12)0.4800 (3)0.063*
C50.2048 (7)0.0137 (14)0.4573 (3)0.062 (2)
H50.2673 (7)0.0267 (14)0.4901 (3)0.074*
C60.2106 (7)0.1796 (12)0.4154 (3)0.057 (2)
H60.2760 (7)0.2938 (12)0.4210 (3)0.068*
C70.1203 (7)0.2059 (11)0.3650 (3)0.051 (2)
H70.1247 (7)0.3340 (11)0.3362 (3)0.061*
C80.0246 (6)0.0338 (10)0.3600 (3)0.0391 (14)
C90.0879 (7)0.0155 (10)0.3142 (3)0.0434 (14)
C100.4403 (7)0.1787 (9)0.3558 (3)0.0424 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0602 (10)0.0394 (8)0.0345 (7)0.0008 (8)0.0007 (7)0.0069 (6)
O10.067 (3)0.040 (2)0.064 (3)0.004 (2)0.004 (2)0.016 (2)
O20.071 (3)0.052 (2)0.041 (2)0.004 (2)0.005 (2)0.014 (2)
Cl10.0765 (12)0.0294 (7)0.0603 (10)0.0012 (8)0.0040 (8)0.0045 (7)
Cl20.0744 (11)0.0508 (9)0.0347 (7)0.0029 (8)0.0005 (7)0.0102 (7)
Cl30.0611 (10)0.0606 (10)0.0466 (8)0.0027 (9)0.0109 (7)0.0063 (7)
N10.055 (3)0.034 (2)0.035 (2)0.000 (2)0.001 (2)0.002 (2)
C20.060 (4)0.040 (3)0.037 (3)0.012 (3)0.003 (3)0.002 (3)
C30.050 (4)0.037 (3)0.036 (3)0.012 (3)0.002 (3)0.003 (2)
C40.066 (4)0.053 (4)0.038 (3)0.016 (4)0.003 (3)0.002 (3)
C50.054 (4)0.081 (5)0.051 (4)0.024 (4)0.012 (3)0.014 (4)
C60.054 (4)0.056 (4)0.059 (4)0.003 (4)0.005 (3)0.021 (3)
C70.058 (4)0.042 (3)0.049 (3)0.003 (3)0.012 (3)0.001 (3)
C80.049 (4)0.038 (3)0.029 (3)0.009 (3)0.002 (3)0.004 (2)
C90.060 (4)0.034 (3)0.034 (3)0.010 (3)0.007 (3)0.002 (3)
C100.062 (4)0.032 (3)0.033 (3)0.001 (3)0.005 (3)0.003 (2)
Geometric parameters (Å, º) top
S1—N11.668 (5)C2—C31.460 (9)
S1—C101.816 (6)C3—C41.386 (8)
O1—C21.211 (7)C3—C81.394 (7)
O2—C91.201 (6)C4—C51.376 (9)
Cl1—C101.758 (5)C5—C61.386 (9)
Cl2—C101.774 (5)C6—C71.393 (9)
Cl3—C101.780 (6)C7—C81.372 (8)
N1—C21.434 (7)C8—C91.485 (8)
N1—C91.440 (7)
N1—S1—C10101.2 (2)C8—C7—C6116.8 (6)
C2—N1—C9110.0 (5)C7—C8—C3121.9 (6)
C2—N1—S1124.6 (4)C7—C8—C9129.8 (5)
C9—N1—S1125.1 (4)C3—C8—C9108.2 (5)
O1—C2—N1122.7 (6)O2—C9—N1124.3 (6)
O1—C2—C3131.2 (6)O2—C9—C8130.0 (6)
N1—C2—C3106.0 (5)N1—C9—C8105.7 (5)
C4—C3—C8121.2 (6)Cl1—C10—Cl2107.8 (3)
C4—C3—C2129.0 (5)Cl1—C10—Cl3111.5 (3)
C8—C3—C2109.8 (5)Cl2—C10—Cl3108.6 (3)
C5—C4—C3116.8 (6)Cl1—C10—S1112.7 (3)
C4—C5—C6122.0 (6)Cl2—C10—S1113.8 (3)
C5—C6—C7121.2 (7)Cl3—C10—S1102.4 (3)
C10—S1—N1—C289.0 (5)C6—C7—C8—C9177.3 (6)
C10—S1—N1—C998.5 (5)C4—C3—C8—C71.4 (9)
C9—N1—C2—O1177.4 (5)C2—C3—C8—C7177.5 (5)
S1—N1—C2—O13.9 (8)C4—C3—C8—C9179.2 (5)
C9—N1—C2—C34.7 (6)C2—C3—C8—C90.4 (6)
S1—N1—C2—C3178.2 (4)C2—N1—C9—O2174.5 (5)
O1—C2—C3—C41.5 (10)S1—N1—C9—O21.0 (8)
N1—C2—C3—C4176.1 (5)C2—N1—C9—C84.9 (6)
O1—C2—C3—C8179.7 (6)S1—N1—C9—C8178.4 (4)
N1—C2—C3—C82.6 (6)C7—C8—C9—O26.3 (10)
C8—C3—C4—C51.7 (8)C3—C8—C9—O2176.1 (6)
C2—C3—C4—C5177.0 (5)C7—C8—C9—N1174.4 (5)
C3—C4—C5—C60.6 (9)C3—C8—C9—N13.2 (6)
C4—C5—C6—C70.7 (10)N1—S1—C10—Cl152.5 (3)
C5—C6—C7—C81.1 (9)N1—S1—C10—Cl270.6 (3)
C6—C7—C8—C30.0 (8)N1—S1—C10—Cl3172.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.443.295 (7)153
C7—H7···O2ii0.932.713.619 (8)167
Symmetry codes: (i) x, y+3/2, z+3/2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC9H4Cl3NO2S
Mr296.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.7666 (19), 5.7576 (12), 19.754 (3)
β (°) 94.905 (14)
V3)1106.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.45 × 0.30 × 0.25
Data collection
DiffractometerSiemens P3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2702, 2554, 1281
Rint0.035
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.157, 1.10
No. of reflections2552
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.52

Computer programs: P3-P4/PC (Siemens, 1989), P3-P4/PC, XDISK (Siemens, 1989), SHELXTL (Sheldrick, 1994), SHELXTL.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds