metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly­[[di­bromo­zinc(II)]-di-μ-1,4-dioxan-κ2O:O′]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Dundee, Perth Road, Dundee DD1 4HN, Scotland
*Correspondence e-mail: j.c.barnes@dundee.ac.uk

(Received 4 June 2004; accepted 9 June 2004; online 19 June 2004)

The title compound, [ZnBr2(C4H8O2)]n or ZnBr2·(dioxan), has a zigzag chain structure in which the 1,4-dioxan mol­ecules link tetrahedrally coordinated Zn atoms. Each dioxan ring sits on a centre of symmetry. The Zn—Br distances are 2.3110 (8) and 2.3169 (8) Å, and angle Br1—Zn1—Br2 is 124.53 (3)°. The Zn—O distances are 2.054 (4) and 2.043 (3) Å, and angle O—Zn—O is 89.6 (15)°.

Comment

1,4-Dioxan forms crystalline adducts with a very wide range of metal halides, nitrates and perchlorates. Phase diagrams of ternary systems (metal halide–dioxan–water) by Lynch and co-workers (e.g. Weicksel & Lynch, 1950[Weicksel, J. A. & Lynch, C. C. (1950). J. Am. Chem. Soc. 72, 2632-2639.]; Schott & Lynch, 1966[Schott, H. & Lynch, C. C. (1966). J. Chem. Eng. Data, 11, 215-224.]) show that there is competition between water and dioxan at 298 K. Some metals give a hydrate as the only solid product, others give only a dioxan adduct, and a third group form both of these together with ternary compounds.[link]

[Scheme 1]

Structural studies have shown that dioxan may be coordinated directly to a metal or may form hydrogen bonds with the H atoms of coordinated water mol­ecules (e.g. Barnes & Weakley, 1976[Barnes, J. C. & Weakley, T. J. R. (1976). J. Chem. Soc. Dalton Trans. pp. 1786-1790.]; Barnes, 2004a[Barnes, J. C. (2004a). In preparation.]). The chair-shaped dioxan mol­ecules cannot chelate. They almost invariably form 1,4-bridges in which each O atom usually coordinates to only one metal atom but may form one or two hydrogen bonds.

ZnCl2·2(dioxan) (Boardman et al., 1983[Boardman, A., Small, R. W. H. & Worrall, I. J. (1983). Acta Cryst. C39, 1005-1007.]) has an unusual trigonal pyramidal chain structure which includes a monodentate dioxan. In the present work, we report the structure at 150 K of ZnBr2·(dioxan), (I[link]).

Fig. 1[link] shows that (I[link]) consists of zigzag chains, parallel to c, in which dioxan mol­ecules bridge tetrahedrally coordinated zinc atoms. The two independent dioxan mol­ecules lie about the centres of inversion at (½, 0, ½) for O1, C2 and C3, and at (½, 0, 0) for O4, C5 and C6. Selected geometric parameters are given in Table 1[link]. The Zn—Br distances are 2.3110 (8) and 2.3169 (8) Å. These are significantly shorter than those in [ZnBr2(H2O)2]·H2O.2(1,8-cineol) [2.360 (2) Å, also determined at 120 K (Barnes, 2004b[Barnes, J. C. (2004b). Private communication to the Cambridge Structural Database, deposition number CCDC-240396. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.])] and the room-temperature structures of K2ZnBr4 (2.405 Å; Fábry et al., 1993[Fábry, J., Breczewshi, T., Zúñiga, F. J. & Arnaiz, A. R. (1993). Acta Cryst. C49, 946-950.]) and ZnBr2·2H2O (2.483 Å; Duhlev et al., 1988[Duhlev, R., Brown, I. D. & Fassiani, R. (1988). Acta Cryst. C44, 1696-1698.]).

The sums of covalent radii are Zn—Br = 2.45 Å and Zn—O = 1.97 Å, while the sums of ionic radii give Zn—Br = 2.78 Å and Zn—O 2.28 Å. These values suggest that the Zn—Br interactions in all these compounds are largely covalent. The Zn—O distances in (I[link]) [2.054 (4) and 2.043 (3) Å] are not significantly different from the Zn—OH2 distances in [ZnBr2(H2O)2]·H2O.2(1,8-cineol) and ZnBr2·2H2O.

In (I[link]), the torsion angles C3a—C2—O1—Zn1 [155.3 (2)°] and C5b—C6—O4—Zn1 [154.2 (2)°] show that the direction of the O—Zn vectors is close to equatorial rather than the equatorial/axial average often found in dioxan complexes of metal salts (Barnes & Weakley, 1976[Barnes, J. C. & Weakley, T. J. R. (1976). J. Chem. Soc. Dalton Trans. pp. 1786-1790.]). Each of the fragments Zn1—O1⋯O1a—Zn1a and Zn1—O4⋯O4b—Zn1b has a torsion angle of 180° [symmetry codes: (a) 1 − x, −y, 1 − z; (b) 1 − x, −y, 2 − z]. The angle between the planes C2/C2a/C3/C3a and C5/C5b/C6/C6b is only 25.2 (4)°. Taken together, these factors produce a very compact zigzag chain structure, which minimizes steric hindrance between the dioxan mol­ecules at the Zn atom. This allows the O—Zn—O angle to be only 89.6 (15)° and so provides space for the unusually close approach of the Br atoms to the zinc, and the large Br1—Zn1—Br2 angle of 124.53 (3)°.

[Figure 1]
Figure 1
The structure of (I[link]), showing the atom-labelling scheme and 50% probability displacement ellipsoids. [Symmetry codes: (a) 1 − x, −y, 1 − z; (b) 1 − x, −y, 2 − z.]

Experimental

Crystals of (I[link]) were obtained by slow evaporation of a solution of ZnBr2 in dioxan at room temperature, under an­hydro­us conditions.

Crystal data
  • [ZnBr2(C4H8O2)]

  • Mr = 313.29

  • Monoclinic, P21/n

  • a = 7.1326 (2) Å

  • b = 12.0376 (4) Å

  • c = 9.8312 (3) Å

  • β = 99.4200 (14)°

  • V = 832.72 (4) Å3

  • Z = 4

  • Dx = 2.499 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2831 reflections

  • θ = 1.9–27.5°

  • μ = 12.48 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω cans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.052, Tmax = 0.083

  • 2831 measured reflections

  • 1885 independent reflections

  • 1606 reflections with I > 2σ(I)

  • Rint = 0.031

  • θmax = 27.5°

  • h = −9 → 8

  • k = −15 → 12

  • l = −12 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.106

  • S = 1.10

  • 1885 reflections

  • 83 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0512P)2 + 3.2775P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 1.37 e Å−3

  • Δρmin = −0.96 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0142 (10)

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 2.043 (3)
Zn1—O4 2.054 (4)
Zn1—Br1 2.3110 (8)
Zn1—Br2 2.3169 (8)
O1—Zn1—O4 89.60 (15)
O1—Zn1—Br1 111.75 (11)
O4—Zn1—Br1 106.06 (10)
O1—Zn1—Br2 107.24 (10)
O4—Zn1—Br2 112.16 (11)
Br1—Zn1—Br2 124.53 (3)
C3—O1—Zn1 117.8 (3)
C2—O1—Zn1 122.1 (3)
C5—O4—Zn1 119.1 (3)
C6—O4—Zn1 121.9 (3)

The H atoms were included in calculated positions and treated as riding atoms; C—H = 0.99 Å and Uiso(H) = 1.3Ueq(parent C atom). The highest peak lies on the Zn1–Br1 vector, 1.11 Å from Zn1.

Data collection: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 1999[Spek, A. L. (1999). PLATON. University of Utrecht, The Netherlands.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

catena-Poly[[dibromozinc(II)]-di-µ-1,4-dioxan-κ2O:O'] top
Crystal data top
[ZnBr2(C4H8O2)]F(000) = 592
Mr = 313.29Dx = 2.499 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71074 Å
a = 7.1326 (2) ÅCell parameters from 2831 reflections
b = 12.0376 (4) Åθ = 1.9–27.5°
c = 9.8312 (3) ŵ = 12.48 mm1
β = 99.4200 (14)°T = 150 K
V = 832.72 (4) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius KappaCCD area-detector
diffractometer
1885 independent reflections
Radiation source: Enraf–Nonius FR591 rotating anode1606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.7°
φ and ω scans to fill Ewald sphereh = 98
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1512
Tmin = 0.052, Tmax = 0.083l = 1212
2831 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0512P)2 + 3.2775P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1885 reflectionsΔρmax = 1.37 e Å3
83 parametersΔρmin = 0.96 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0142 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Hydrogen atoms were placed on calculated positions, riding on the adjacent carbon atom. Isotropic displacement parameters were set at 1.3 times that of the carbon atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.34430 (9)0.17978 (5)0.73063 (6)0.0129 (2)
Br10.01610 (8)0.17948 (5)0.70049 (6)0.0197 (2)
Br20.53024 (8)0.33850 (4)0.74508 (6)0.0195 (2)
O10.4446 (5)0.0740 (3)0.5968 (4)0.0151 (8)
C20.5349 (8)0.1139 (4)0.4840 (5)0.0157 (11)
H2A0.60850.18220.51250.020*
H2B0.43700.13220.40370.020*
C30.3348 (8)0.0253 (4)0.5548 (6)0.0195 (11)
H3A0.23500.00830.47510.025*
H3B0.27210.05190.63150.025*
O40.4332 (5)0.0709 (3)0.8889 (4)0.0162 (8)
C50.6330 (8)0.0636 (5)0.9438 (6)0.0201 (12)
H5A0.66680.12051.01640.026*
H5B0.70840.07810.86960.026*
C60.3207 (8)0.0493 (5)0.9969 (5)0.0176 (11)
H6A0.18370.05360.95820.023*
H6B0.34880.10611.07020.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0157 (4)0.0123 (3)0.0112 (3)0.0014 (2)0.0032 (2)0.0000 (2)
Br10.0155 (3)0.0209 (3)0.0223 (3)0.0015 (2)0.0017 (2)0.0004 (2)
Br20.0205 (3)0.0157 (3)0.0233 (3)0.0032 (2)0.0065 (2)0.0037 (2)
O10.020 (2)0.0121 (17)0.0149 (18)0.0021 (15)0.0093 (16)0.0031 (14)
C20.027 (3)0.008 (2)0.015 (2)0.001 (2)0.010 (2)0.0021 (19)
C30.021 (3)0.011 (2)0.028 (3)0.006 (2)0.013 (2)0.004 (2)
O40.0129 (18)0.023 (2)0.0129 (17)0.0026 (15)0.0031 (14)0.0043 (15)
C50.013 (3)0.027 (3)0.021 (3)0.002 (2)0.003 (2)0.004 (2)
C60.018 (3)0.023 (3)0.014 (3)0.004 (2)0.008 (2)0.005 (2)
Geometric parameters (Å, º) top
Zn1—O12.043 (3)C3—H3A0.9900
Zn1—O42.054 (4)C3—H3B0.9900
Zn1—Br12.3110 (8)O4—C51.442 (7)
Zn1—Br22.3169 (8)O4—C61.454 (6)
O1—C31.451 (6)C5—C6ii1.495 (8)
O1—C21.452 (6)C5—H5A0.9900
C2—C3i1.504 (7)C5—H5B0.9900
C2—H2A0.9900C6—H6A0.9900
C2—H2B0.9900C6—H6B0.9900
O1—Zn1—O489.60 (15)O1—C3—H3B109.8
O1—Zn1—Br1111.75 (11)C2i—C3—H3B109.8
O4—Zn1—Br1106.06 (10)H3A—C3—H3B108.3
O1—Zn1—Br2107.24 (10)C5—O4—C6110.2 (4)
O4—Zn1—Br2112.16 (11)C5—O4—Zn1119.1 (3)
Br1—Zn1—Br2124.53 (3)C6—O4—Zn1121.9 (3)
C3—O1—C2110.0 (4)O4—C5—C6ii110.1 (5)
C3—O1—Zn1117.8 (3)O4—C5—H5A109.6
C2—O1—Zn1122.1 (3)C6ii—C5—H5A109.6
O1—C2—C3i109.2 (4)O4—C5—H5B109.6
O1—C2—H2A109.8C6ii—C5—H5B109.6
C3i—C2—H2A109.8H5A—C5—H5B108.2
O1—C2—H2B109.8O4—C6—C5ii109.5 (4)
C3i—C2—H2B109.8O4—C6—H6A109.8
H2A—C2—H2B108.3C5ii—C6—H6A109.8
O1—C3—C2i109.2 (4)O4—C6—H6B109.8
O1—C3—H3A109.8C5ii—C6—H6B109.8
C2i—C3—H3A109.8H6A—C6—H6B108.2
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+2.
 

Acknowledgements

We thank the EPSRC and Professor M. B. Hursthouse for collection of data at Southampton University.

References

First citationBarnes, J. C. (2004a). In preparation.  Google Scholar
First citationBarnes, J. C. (2004b). Private communication to the Cambridge Structural Database, deposition number CCDC-240396. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England.  Google Scholar
First citationBarnes, J. C. & Weakley, T. J. R. (1976). J. Chem. Soc. Dalton Trans. pp. 1786–1790.  CSD CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBoardman, A., Small, R. W. H. & Worrall, I. J. (1983). Acta Cryst. C39, 1005–1007.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuhlev, R., Brown, I. D. & Fassiani, R. (1988). Acta Cryst. C44, 1696–1698.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFábry, J., Breczewshi, T., Zúñiga, F. J. & Arnaiz, A. R. (1993). Acta Cryst. C49, 946–950.  CrossRef Web of Science IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchott, H. & Lynch, C. C. (1966). J. Chem. Eng. Data, 11, 215–224.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (1999). PLATON. University of Utrecht, The Netherlands.  Google Scholar
First citationWeicksel, J. A. & Lynch, C. C. (1950). J. Am. Chem. Soc. 72, 2632–2639.  CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds