Download citation
Download citation
link to html
In the layered structure of the title compound, [Er2(C2O4)3(H2O)6]·4H2O, the Er atoms are bridged by oxalate ligands. Each Er atom coordinates to six O atoms from three oxalate ligands, and three water mol­ecules. The layers are parallel to the ac plane and four disordered water mol­ecules of crystallization are situated between the layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803018129/su6041sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803018129/su6041Isup2.hkl
Contains datablock I

CCDC reference: 222819

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.004 Å
  • H-atom completeness 61%
  • R factor = 0.028
  • wR factor = 0.070
  • Data-to-parameter ratio = 28.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT201_ALERT_2_B Isotropic non-H Atoms in Main Residue(s) ..... = 1 PLAT420_ALERT_2_B D-H Without Acceptor O1M - H1M1 ... ? PLAT430_ALERT_2_B Short Inter D...A Contact O1W .. O2 = 2.73 Ang. PLAT430_ALERT_2_B Short Inter D...A Contact O2 .. O2W = 2.73 Ang. PLAT430_ALERT_2_B Short Inter D...A Contact O2 .. O5W = 2.84 Ang.
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.99 PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT043_ALERT_1_C Check Reported Molecular Weight ................ 778.74 PLAT044_ALERT_1_C Calculated and Reported Dx Differ .............. ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 2.00 Ratio PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT301_ALERT_3_C Main Residue Disorder ......................... 4.00 Perc. PLAT311_ALERT_2_C Isolated Disordered Oxygen Atom (No H's ?) ..... >O1W PLAT311_ALERT_2_C Isolated Disordered Oxygen Atom (No H's ?) ..... <O2W PLAT311_ALERT_2_C Isolated Disordered Oxygen Atom (No H's ?) ..... <O3W PLAT311_ALERT_2_C Isolated Disordered Oxygen Atom (No H's ?) ..... <O4W PLAT311_ALERT_2_C Isolated Disordered Oxygen Atom (No H's ?) ..... <O5W PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C12 - C12_c = 1.54 Ang. PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C34 - C34_b = 1.53 Ang. PLAT369_ALERT_2_C Long C(sp2)-C(sp2) Bond C56 - C56_a = 1.55 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact O1W .. C12 = 2.98 Ang. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 6 PLAT764_ALERT_4_C Overcomplete CIF Bond list Detected (Rep/Expd) . 1.28 Ratio
Alert level G FORMU01_ALERT_2_G There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C6 H20 Er2 O22 Atom count from the _atom_site data: C6 H12 Er2 O22 CELLZ01_ALERT_1_G Difference between formula and atom_site contents detected. CELLZ01_ALERT_1_G WARNING: H atoms missing from atom site list. Is this intentional? From the CIF: _cell_formula_units_Z 2 From the CIF: _chemical_formula_sum C6 H20 Er2 O22 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 12.00 12.00 0.00 H 40.00 24.00 16.00 Er 4.00 4.00 0.00 O 44.00 44.00 0.00 CHEMW03_ALERT_2_C The ratio of given/expected molecular weight as calculated from the _atom_site* data lies outside the range 0.99 <> 1.01 From the CIF: _cell_formula_units_Z 2 From the CIF: _chemical_formula_weight 778.74 TEST: Calculate formula weight from _atom_site_* atom mass num sum C 12.01 6.00 72.07 H 1.01 12.00 12.10 O 16.00 22.00 351.98 Er 167.26 2.00 334.52 Calculated formula weight 770.66
0 ALERT level A = In general: serious problem 5 ALERT level B = Potentially serious problem 21 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 16 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The lanthanoid elements all form hydrated oxalates of the composition M2(C2O4)3.nH2O (M = lanthanoid). There are two large isomorphous series of lanthanide oxalates, one with n ~10 (monoclinic) and one with n = 6 (triclinic). In the isomorphous series with n ~10, the n value varies slightly, and it appears to be dependent on the crystallographic radius of the lanthanide ion and the method of preparation. Compounds with M = Y, La–Ho form a series of `decahydrates', while compounds with M = Sc, Tm–Lu form a series of `hexahydrates'. Only erbium oxalate can be synthesized both as a decahydrate and a hexahydrate (Hansson, 1973), and this is of special interest.

Until the present study, no structurally characterized erbium(III) oxalates have been reported; only powder X-ray diffraction data have been measured and indexed (Hansson, 1973; Ollendorff & Weigel, 1969; Watanabe & Nagashima, 1971). We report here the crystal and molecular structure of erbium(III) oxalate decahydrate, (I).

Two crystallographically equivalent Er atoms, three centrosymmetric oxalate groups, and ten water molecules (six aqua ligands and four water molecules of crystallization) account for one structural unit of (I). Each Er atom coordinates six O atoms from three bidentate oxalates, and three aqua ligands (Fig. 1). The coordination polyhedron ErO9 is a distorted three-capped trigonal prism. The Er—O distances are between 2.355 (2) and 2.522 (2) Å (average 2.406 Å), which is in a good agreement with the values found in the Cambridge Structural Database (CSD; Version of October 2002; Allen, 2002) of 2.348–2.450 Å, average 2.408 Å (5 hits, R < 0.1).

The oxalate ligands are planar with C—C distances between 1.530 (6) and 1.549 (6) Å (average 1.538 Å), and C—O distances between 1.246 (3) and 1.262 (4) Å (average 1.253 Å). All these values are in a good agreement with values found in the CSD: 1.426–1.669 Å (average 1.549 Å) and 1.076–1.435 Å (average 1.252 Å) for C—C and C—O distances, respectively (536 hits, R < 0.05).

The structure of (I) is composed of infinite erbium oxalate layers perpendicular to the b axis and situated around y = 0 and y = 1/2. The layers are held together by hydrogen bonds via the water molecules of crystallization situated between the layers. Fig. 2 shows part of the infinite layer around y = 1/2 projected along the b axis. Each oxalate ligand is coordinated to two metal atoms forming two chelates. Adjacent layers are related to each other by c glides. The four water molecules of crystallization, situated between the layers, are disordered over five positions.

Experimental top

Colourless crystals of the title compound were obtained from an aqueous solution containing HCl (0.1 M), K4[Nb2(S2)2(C2O4)4] (0.01 g) (Sokolov et al., 2001) and Er(NO3)3 (0.02 g). Yield 70%.

Refinement top

The H atoms of the coordinated water molecules were located geometrically and refined with the O—H distances restrained to 0.98 (1) Å and the H···H distances restrained to 1.60 (3) Å. The isotropic displacement parameters of all the H atoms were fixed at 1.5Ueq of the parent O atom. The four water molecules of crystallization are disordered over five positions and were refined isotropically with equivalent displacement parameters. The largest difference peak is 0.99 Å from the disordered water molecule O4W and the deepest hole is 1.07 Å from the water molecule O1M, coordinated to the Er atom.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1998); program(s) used to refine structure: SHELXL97 (Sheldrick, 1998); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The coordination environment of the Er atom. Displacement ellipsoids are plotted at the 50% probability level and H atoms are drawn as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the erbium-oxalate layer around y = 1/2 projected on to (010).
(I) top
Crystal data top
[Er2(C2O4)3(H2O)6]·4H2OF(000) = 736
Mr = 778.74Dx = 2.753 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.9065 (6) ÅCell parameters from 1006 reflections
b = 9.5339 (5) Åθ = 3.1–38.9°
c = 9.8977 (5) ŵ = 8.99 mm1
β = 114.125 (1)°T = 173 K
V = 939.28 (9) Å3Block, colourless
Z = 20.26 × 0.18 × 0.11 mm
Data collection top
Bruker SMART1000 CCD
diffractometer
4504 independent reflections
Radiation source: fine-focus sealed tube4077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 8.33 pixels mm-1θmax = 36.3°, θmin = 3.0°
CCD scansh = 1818
Absorption correction: integration
(SAINT-Plus; Bruker, 2001)
k = 815
Tmin = 0.204, Tmax = 0.470l = 1616
11931 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0212P)2 + 2.9967P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4504 reflectionsΔρmax = 2.51 e Å3
158 parametersΔρmin = 1.85 e Å3
10 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0011 (2)
Crystal data top
[Er2(C2O4)3(H2O)6]·4H2OV = 939.28 (9) Å3
Mr = 778.74Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.9065 (6) ŵ = 8.99 mm1
b = 9.5339 (5) ÅT = 173 K
c = 9.8977 (5) Å0.26 × 0.18 × 0.11 mm
β = 114.125 (1)°
Data collection top
Bruker SMART1000 CCD
diffractometer
4504 independent reflections
Absorption correction: integration
(SAINT-Plus; Bruker, 2001)
4077 reflections with I > 2σ(I)
Tmin = 0.204, Tmax = 0.470Rint = 0.037
11931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02810 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 2.51 e Å3
4504 reflectionsΔρmin = 1.85 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Er10.191404 (11)0.456295 (12)0.669046 (12)0.00793 (4)
O1M0.2120 (3)0.6856 (3)0.5707 (3)0.0213 (5)
H1M10.269 (4)0.756 (4)0.587 (6)0.032*
H1M20.133 (3)0.734 (5)0.568 (6)0.032*
O2M0.1667 (3)0.2191 (3)0.6175 (3)0.0247 (6)
H2M10.108 (5)0.151 (4)0.688 (4)0.037*
H2M20.221 (5)0.167 (5)0.528 (3)0.037*
O3M0.2955 (2)0.3191 (3)0.7993 (3)0.0179 (4)
H3M10.3934 (11)0.322 (5)0.752 (5)0.027*
H3M20.262 (4)0.223 (2)0.821 (6)0.027*
O10.6108 (2)0.6089 (2)0.5352 (2)0.0128 (4)
O20.3906 (2)0.5737 (2)0.6662 (2)0.0122 (4)
C120.5008 (3)0.5531 (3)0.5580 (3)0.0101 (4)
O30.1636 (2)0.5629 (3)0.5710 (3)0.0183 (5)
O40.0260 (2)0.5246 (3)0.6842 (3)0.0136 (4)
C340.0550 (3)0.5248 (3)0.5732 (3)0.0126 (5)
O50.1283 (2)0.3960 (2)1.1227 (2)0.0144 (4)
O60.0141 (2)0.3541 (2)0.8878 (2)0.0119 (3)
C560.0330 (3)0.4274 (3)1.0035 (3)0.0100 (4)
O1W0.4246 (8)0.1872 (9)0.7979 (9)0.0444 (10)*0.577 (4)
O2W0.4431 (10)0.2877 (11)0.8780 (11)0.0444 (10)*0.428 (9)
O3W0.3386 (10)0.0884 (11)0.6556 (11)0.0444 (10)*0.442 (9)
O4W0.4210 (15)0.0125 (16)0.5761 (16)0.0444 (10)*0.298 (9)
O5W0.4183 (17)0.1448 (19)0.7429 (19)0.0444 (10)*0.255 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.00658 (6)0.00993 (6)0.00659 (6)0.00003 (4)0.00198 (4)0.00012 (3)
O1M0.0176 (10)0.0208 (11)0.0241 (12)0.0035 (9)0.0071 (9)0.0074 (9)
O2M0.0357 (14)0.0168 (11)0.0111 (9)0.0117 (10)0.0011 (9)0.0012 (8)
O3M0.0136 (9)0.0183 (10)0.0206 (10)0.0005 (8)0.0057 (8)0.0082 (9)
O10.0087 (8)0.0156 (9)0.0131 (8)0.0007 (7)0.0033 (7)0.0038 (7)
O20.0076 (7)0.0154 (9)0.0105 (8)0.0012 (7)0.0004 (7)0.0027 (7)
C120.0086 (9)0.0121 (10)0.0090 (10)0.0000 (8)0.0029 (8)0.0008 (8)
O30.0146 (9)0.0276 (12)0.0160 (10)0.0099 (9)0.0097 (8)0.0070 (9)
O40.0119 (8)0.0181 (10)0.0117 (9)0.0036 (7)0.0058 (7)0.0024 (7)
C340.0122 (10)0.0149 (11)0.0123 (11)0.0040 (9)0.0067 (9)0.0041 (9)
O50.0131 (9)0.0150 (9)0.0098 (8)0.0049 (7)0.0007 (7)0.0020 (7)
O60.0123 (8)0.0132 (9)0.0093 (8)0.0015 (7)0.0037 (7)0.0015 (7)
C560.0097 (10)0.0114 (10)0.0079 (9)0.0022 (8)0.0027 (8)0.0001 (8)
Geometric parameters (Å, º) top
Er1—O1M2.366 (3)O1—C121.246 (3)
Er1—O2M2.357 (3)O2—C121.256 (3)
Er1—O3M2.420 (2)C12—C12i1.536 (6)
Er1—O1i2.359 (2)O3—C341.247 (4)
Er1—O22.434 (2)O4—C341.262 (4)
Er1—O3ii2.522 (2)C34—C34ii1.530 (6)
Er1—O42.404 (2)O5—C561.249 (3)
Er1—O5iii2.355 (2)O6—C561.257 (3)
Er1—O62.440 (2)C56—C56iii1.549 (6)
O1M—H1M10.97 (5)O1W—O2W1.311 (12)
O1M—H1M20.99 (4)O1W—O5W0.704 (17)
O2M—H2M10.98 (4)O3W—O4W1.332 (18)
O2M—H2M20.98 (4)O3W—O5W1.55 (2)
O3M—H3M10.98 (3)O4W—O4Wiv1.78 (3)
O3M—H3M20.98 (3)
O1M—Er1—O2M142.85 (10)O5iii—Er1—O3ii139.76 (8)
O1M—Er1—O3M137.06 (9)O5iii—Er1—O481.68 (8)
O1M—Er1—O268.67 (9)O5iii—Er1—O667.64 (7)
O1M—Er1—O3ii72.97 (10)O6—Er1—O3ii116.76 (8)
O1M—Er1—O472.58 (9)Er1—O1M—H1M1122 (3)
O1M—Er1—O6129.89 (8)Er1—O1M—H1M2121 (3)
O2M—Er1—O3M73.56 (10)H1M1—O1M—H1M2108 (3)
O2M—Er1—O1i72.96 (9)Er1—O2M—H2M1126 (3)
O2M—Er1—O2128.24 (10)Er1—O2M—H2M2127 (3)
O2M—Er1—O3ii70.00 (9)H2M1—O2M—H2M2107 (3)
O2M—Er1—O494.38 (10)Er1—O3M—H3M1113 (3)
O2M—Er1—O671.95 (8)Er1—O3M—H3M2114 (3)
O3M—Er1—O269.13 (8)H3M2—O3M—H3M1112 (3)
O3M—Er1—O3ii136.54 (9)C12—O1—Er1i121.21 (18)
O3M—Er1—O671.69 (8)C12—O2—Er1118.43 (19)
O1i—Er1—O1M89.50 (9)O1—C12—O2127.0 (3)
O1i—Er1—O3M81.39 (8)O1—C12—C12i116.8 (3)
O1i—Er1—O267.17 (7)O2—C12—C12i116.2 (3)
O1i—Er1—O3ii66.01 (8)C34—O3—Er1ii118.4 (2)
O1i—Er1—O4131.17 (8)C34—O4—Er1122.56 (19)
O1i—Er1—O6140.44 (8)O3—C34—O4126.4 (3)
O2—Er1—O3ii118.24 (8)O3—C34—C34ii117.2 (3)
O2—Er1—O6125.00 (7)O4—C34—C34ii116.4 (3)
O4—Er1—O3M141.15 (8)C56—O5—Er1iii121.12 (19)
O4—Er1—O2136.82 (8)C56—O6—Er1117.83 (18)
O4—Er1—O3ii65.35 (8)O5—C56—O6126.9 (3)
O4—Er1—O669.46 (8)O5—C56—C56iii116.6 (3)
O5iii—Er1—O1M75.67 (9)O6—C56—C56iii116.5 (3)
O5iii—Er1—O2M138.12 (8)O5W—O1W—O2W167.4 (19)
O5iii—Er1—O3M83.67 (9)O4W—O3W—O5W100.6 (11)
O5iii—Er1—O1i138.22 (8)O3W—O4W—O4Wiv126.1 (15)
O5iii—Er1—O271.06 (7)O1W—O5W—O3W152 (2)
Symmetry codes: (i) x+1, y+1, z1; (ii) x, y+1, z1; (iii) x, y+1, z2; (iv) x+1, y, z1.

Experimental details

Crystal data
Chemical formula[Er2(C2O4)3(H2O)6]·4H2O
Mr778.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.9065 (6), 9.5339 (5), 9.8977 (5)
β (°) 114.125 (1)
V3)939.28 (9)
Z2
Radiation typeMo Kα
µ (mm1)8.99
Crystal size (mm)0.26 × 0.18 × 0.11
Data collection
DiffractometerBruker SMART1000 CCD
diffractometer
Absorption correctionIntegration
(SAINT-Plus; Bruker, 2001)
Tmin, Tmax0.204, 0.470
No. of measured, independent and
observed [I > 2σ(I)] reflections
11931, 4504, 4077
Rint0.037
(sin θ/λ)max1)0.833
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.070, 1.08
No. of reflections4504
No. of parameters158
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.51, 1.85

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SAINT-Plus, SHELXS97 (Sheldrick, 1998), SHELXL97 (Sheldrick, 1998), SHELXTL (Bruker, 2001), SHELXL97.

Selected geometric parameters (Å, º) top
Er1—O1M2.366 (3)O1—C121.246 (3)
Er1—O2M2.357 (3)O2—C121.256 (3)
Er1—O3M2.420 (2)C12—C12i1.536 (6)
Er1—O1i2.359 (2)O3—C341.247 (4)
Er1—O22.434 (2)O4—C341.262 (4)
Er1—O3ii2.522 (2)C34—C34ii1.530 (6)
Er1—O42.404 (2)O5—C561.249 (3)
Er1—O5iii2.355 (2)O6—C561.257 (3)
Er1—O62.440 (2)C56—C56iii1.549 (6)
O1M—Er1—O2M142.85 (10)O4—Er1—O669.46 (8)
O1M—Er1—O3M137.06 (9)O5iii—Er1—O1M75.67 (9)
O1M—Er1—O268.67 (9)O5iii—Er1—O2M138.12 (8)
O1M—Er1—O3ii72.97 (10)O5iii—Er1—O3M83.67 (9)
O1M—Er1—O472.58 (9)O5iii—Er1—O1i138.22 (8)
O1M—Er1—O6129.89 (8)O5iii—Er1—O271.06 (7)
O2M—Er1—O3M73.56 (10)O5iii—Er1—O3ii139.76 (8)
O2M—Er1—O1i72.96 (9)O5iii—Er1—O481.68 (8)
O2M—Er1—O2128.24 (10)O5iii—Er1—O667.64 (7)
O2M—Er1—O3ii70.00 (9)O6—Er1—O3ii116.76 (8)
O2M—Er1—O494.38 (10)C12—O1—Er1i121.21 (18)
O2M—Er1—O671.95 (8)C12—O2—Er1118.43 (19)
O3M—Er1—O269.13 (8)O1—C12—O2127.0 (3)
O3M—Er1—O3ii136.54 (9)O1—C12—C12i116.8 (3)
O3M—Er1—O671.69 (8)O2—C12—C12i116.2 (3)
O1i—Er1—O1M89.50 (9)C34—O3—Er1ii118.4 (2)
O1i—Er1—O3M81.39 (8)C34—O4—Er1122.56 (19)
O1i—Er1—O267.17 (7)O3—C34—O4126.4 (3)
O1i—Er1—O3ii66.01 (8)O3—C34—C34ii117.2 (3)
O1i—Er1—O4131.17 (8)O4—C34—C34ii116.4 (3)
O1i—Er1—O6140.44 (8)C56—O5—Er1iii121.12 (19)
O2—Er1—O3ii118.24 (8)C56—O6—Er1117.83 (18)
O2—Er1—O6125.00 (7)O5—C56—O6126.9 (3)
O4—Er1—O3M141.15 (8)O5—C56—C56iii116.6 (3)
O4—Er1—O2136.82 (8)O6—C56—C56iii116.5 (3)
O4—Er1—O3ii65.35 (8)
Symmetry codes: (i) x+1, y+1, z1; (ii) x, y+1, z1; (iii) x, y+1, z2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds