Download citation
Download citation
link to html
The crystal structure of the title compound, C12H14O2, has been determined at 150 K. Significant intermolecular non-conventional C—H...O interactions involving the terminal acetyl­inic H atom are observed, which result in a zigzag hydrogen-bonded chain in the b direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803006585/su6020sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803006585/su6020Isup2.hkl
Contains datablock I

CCDC reference: 209987

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.039
  • wR factor = 0.112
  • Data-to-parameter ratio = 14.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_371 Alert C Long C(sp2)-C(sp1) Bond C(1) - C(7) = 1.44 Ang. PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 15 C2 -C1 -C7 -C8 -164.00 3.00 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 16 C6 -C1 -C7 -C8 16.00 4.00 1.555 1.555 1.555 1.555
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

In our quest for developing direct synthetic routes towards the total synthesis of certain diterpene alkaloids (Atta-ur-Rahman & Choudhary, 1997, 1999; Wang & Liang, 1992), we required 1,2-dioxygenated phenylacetylenes as masked o-benzoquinones (Liao & Peddinti, 2002). In particular, we have made use of 1-ethynyl-2-isopropoxy-3-methoxybenzene, (I), which is easily synthesized on large scale (> 20 g) in three steps from o-vanillin, (II) (Williams et al., 2003).

Crystallographic data for (I) were collected at 150 K due to the low melting point of the compound (321–323 K, uncorrected). The molecular structure of (I) is shown in Fig. 1. The methoxy group lies esentially in the plane of the phenyl ring [C4—C3—O2—C12 = 3.2 (2)°], whereas the isopropoxyl group C9—O1 vector is rotated well away from this plane [C3—C2—O1—C9 = 71.5 (2)°]. The bond lengths and angles (Table 1) are as expected for a purely organic phenylacetylene, of which there are 574 structurally characterized examples in the Cambridge Structural Database (Allen, 2002); 61 bearing a terminal (monosubstituted) acetylene group. The C1—C7 distance of 1.441 (2) Å (formally a single bond) reflects conjugation between the phenyl ring and the alkyne group. Nevertheless, this bond length is not significantly different from that seen in other phenylacetylenes. Interestingly, there are an additional 1407 metal-containing structures where the phenylacetylene moiety is coordinated as either an η1 σ-donor (in its deprotonated form) or in a side-on η2-bonding mode as a neutral ligand. The most closely related crystal structures to (I) are those of the 2–6-dioxyphenylacetylenes (III) (Evans et al., 1990) and (IV) (Evans et al., 1989). The present crystal structure of (I) represents the first example of a 2,3-dioxyphenylacetylene in the literature.

There is a non-classical intermolecular hydrogen-bonding interaction involving the acetylinic proton and the isopropoxyl group [H8···O1i 2.31 Å, C8···O1i 3.233 (2) Å and C8—H8···O1i 169.6 (1)°; symmetry code: (i) −x + 3/2, y − 1/2, z]. This results in an hydrogen-bonded chain of molecules in the b direction (Fig. 2). A weaker intramolecular C—H···O interaction occurs between the isopropoxyl methine proton and the adjacent methoxyl group [H9···O2 2.44 Å, C9···O2 3.026 (2) Å and C9—H9···O2 117.6 (1)°]. An avoidance of steric repulsion between the isopropoxyl and methoxyl methyl groups may also be significant in assisting this non-conventional hydrogen-bonding interaction. Moreover, the above-mentioned intermolecular hydrogen bond with H8 will be important in influencing the orientation of the isopropoxyl group.

We are currently employing this useful synthon (I) in the pursuit of a number of novel polycyclic organic derivatives and we shall report the results of these investigations separately (Williams et al., 2003).

Experimental top

The synthesis of the title compound will be reported separately in a full account (Williams et al., 2003). Following distillation, (I) crystallized upon cooling to room temperature.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP-3 plot (Farrugia, 1997) of (I) (30% probability ellipsoids).
[Figure 2] Fig. 2. PLUTON packing diagram (Spek, 1990) showing hydrogen-bonded chains. All H atoms, except for the acetylinic proton, have been omitted and C8 has been highlighted in a different shading from the remaining C atoms.
(I) top
Crystal data top
C12H14O2F(000) = 816
Mr = 190.23Dx = 1.198 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 9.895 (1) Åθ = 11.2–14.2°
b = 11.343 (2) ŵ = 0.08 mm1
c = 18.791 (2) ÅT = 150 K
V = 2109.1 (5) Å3Prism, colourless
Z = 80.5 × 0.5 × 0.3 mm
Data collection top
Enraf-Nonius TurboCAD4
diffractometer
Rint = 0.037
Radiation source: Enraf Nonius FR590θmax = 25.0°, θmin = 2.2°
Graphite monochromatorh = 111
non–profiled ω/2θ scansk = 113
2431 measured reflectionsl = 122
1847 independent reflections3 standard reflections every 120 min
1368 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.4832P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1847 reflectionsΔρmax = 0.22 e Å3
131 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0097 (15)
Crystal data top
C12H14O2V = 2109.1 (5) Å3
Mr = 190.23Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.895 (1) ŵ = 0.08 mm1
b = 11.343 (2) ÅT = 150 K
c = 18.791 (2) Å0.5 × 0.5 × 0.3 mm
Data collection top
Enraf-Nonius TurboCAD4
diffractometer
Rint = 0.037
2431 measured reflections3 standard reflections every 120 min
1847 independent reflections intensity decay: 1%
1368 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
1847 reflectionsΔρmin = 0.23 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.54112 (16)0.19490 (14)0.57991 (8)0.0223 (4)
C20.51895 (16)0.30191 (14)0.61453 (8)0.0211 (4)
C30.43349 (17)0.38615 (14)0.58391 (8)0.0232 (4)
C40.36924 (18)0.36175 (15)0.51998 (9)0.0286 (4)
H40.31070.41680.50010.034*
C50.39235 (19)0.25522 (15)0.48573 (9)0.0303 (4)
H50.34910.23940.44280.036*
C60.47786 (18)0.17337 (14)0.51433 (8)0.0273 (4)
H60.49420.10320.49030.033*
C70.62784 (17)0.10692 (14)0.61118 (8)0.0247 (4)
C80.69953 (18)0.03208 (16)0.63409 (9)0.0307 (4)
H80.75570.02660.6520.037*
C90.50921 (18)0.33300 (14)0.74135 (8)0.0256 (4)
H90.43640.39060.7350.031*
C100.4487 (2)0.21431 (17)0.75864 (9)0.0362 (5)
H10A0.39320.18860.71970.054*
H10B0.39450.22060.80090.054*
H10C0.51980.15820.76640.054*
C110.6057 (2)0.37719 (16)0.79715 (8)0.0332 (4)
H11A0.68010.32340.80140.05*
H11B0.55970.38290.8420.05*
H11C0.63890.45350.78370.05*
C120.3300 (2)0.57492 (15)0.59057 (10)0.0349 (5)
H12A0.35990.59650.54370.052*
H12B0.32820.64360.62040.052*
H12C0.2410.54160.58780.052*
O10.58896 (11)0.32627 (10)0.67607 (5)0.0230 (3)
O20.42065 (13)0.49027 (10)0.61993 (6)0.0305 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0213 (9)0.0220 (8)0.0235 (8)0.0025 (7)0.0037 (7)0.0043 (7)
C20.0191 (8)0.0249 (8)0.0193 (8)0.0030 (7)0.0003 (7)0.0026 (6)
C30.0249 (9)0.0219 (8)0.0227 (8)0.0007 (7)0.0002 (7)0.0007 (7)
C40.0277 (10)0.0302 (9)0.0280 (9)0.0033 (8)0.0046 (8)0.0041 (7)
C50.0344 (10)0.0349 (9)0.0215 (9)0.0034 (8)0.0051 (7)0.0000 (7)
C60.0314 (10)0.0253 (9)0.0253 (8)0.0026 (8)0.0019 (7)0.0013 (7)
C70.0257 (9)0.0257 (8)0.0228 (8)0.0015 (8)0.0056 (7)0.0007 (7)
C80.0327 (10)0.0300 (9)0.0294 (9)0.0067 (9)0.0037 (8)0.0041 (7)
C90.0261 (9)0.0298 (9)0.0209 (8)0.0048 (7)0.0013 (7)0.0011 (7)
C100.0392 (11)0.0431 (10)0.0263 (9)0.0102 (9)0.0043 (8)0.0033 (8)
C110.0394 (10)0.0350 (10)0.0251 (9)0.0001 (9)0.0028 (8)0.0007 (8)
C120.0414 (11)0.0274 (9)0.0360 (9)0.0103 (9)0.0040 (9)0.0029 (7)
O10.0214 (6)0.0276 (6)0.0201 (6)0.0018 (5)0.0022 (5)0.0010 (5)
O20.0374 (7)0.0237 (6)0.0305 (7)0.0072 (5)0.0071 (6)0.0006 (5)
Geometric parameters (Å, º) top
C1—C21.395 (2)C9—O11.461 (2)
C1—C61.404 (2)C9—C111.504 (2)
C1—C71.441 (2)C9—C101.509 (2)
C2—O11.376 (2)C9—H90.9800
C2—C31.400 (2)C10—H10A0.9600
C3—O21.367 (2)C10—H10B0.9600
C3—C41.387 (2)C10—H10C0.9600
C4—C51.388 (2)C11—H11A0.9600
C4—H40.9300C11—H11B0.9600
C5—C61.366 (2)C11—H11C0.9600
C5—H50.9300C12—O21.425 (2)
C6—H60.9300C12—H12A0.9600
C7—C81.187 (2)C12—H12B0.9600
C8—H80.9300C12—H12C0.9600
C2—C1—C6119.4 (2)O1—C9—H9109.2
C2—C1—C7120.4 (1)C11—C9—H9109.2
C6—C1—C7120.2 (1)C10—C9—H9109.2
O1—C2—C1119.2 (1)C9—C10—H10A109.5
O1—C2—C3120.8 (1)C9—C10—H10B109.5
C1—C2—C3119.8 (1)H10A—C10—H10B109.5
O2—C3—C4124.0 (1)C9—C10—H10C109.5
O2—C3—C2116.3 (2)H10A—C10—H10C109.5
C4—C3—C2119.8 (2)H10B—C10—H10C109.5
C3—C4—C5120.0 (2)C9—C11—H11A109.5
C3—C4—H4120.0C9—C11—H11B109.5
C5—C4—H4120.0H11A—C11—H11B109.5
C6—C5—C4120.8 (2)C9—C11—H11C109.5
C6—C5—H5119.6H11A—C11—H11C109.5
C4—C5—H5119.6H11B—C11—H11C109.5
C5—C6—C1120.2 (2)O2—C12—H12A109.5
C5—C6—H6119.9O2—C12—H12B109.5
C1—C6—H6119.9H12A—C12—H12B109.5
C8—C7—C1177.1 (2)O2—C12—H12C109.5
C7—C8—H8180.0H12A—C12—H12C109.5
O1—C9—C11105.1 (1)H12B—C12—H12C109.5
O1—C9—C10110.4 (1)C2—O1—C9116.4 (1)
C11—C9—C10113.5 (1)C3—O2—C12116.7 (1)
C6—C1—C2—O1175.17 (14)C4—C5—C6—C11.6 (3)
C7—C1—C2—O15.0 (2)C2—C1—C6—C51.8 (2)
C6—C1—C2—C30.4 (2)C7—C1—C6—C5177.97 (16)
C7—C1—C2—C3179.40 (14)C2—C1—C7—C8164 (3)
O1—C2—C3—O22.3 (2)C6—C1—C7—C816 (4)
C1—C2—C3—O2177.84 (14)C1—C2—O1—C9113.00 (16)
O1—C2—C3—C4176.78 (14)C3—C2—O1—C971.46 (18)
C1—C2—C3—C41.3 (2)C11—C9—O1—C2172.09 (13)
O2—C3—C4—C5177.48 (16)C10—C9—O1—C265.15 (17)
C2—C3—C4—C51.6 (3)C4—C3—O2—C123.2 (2)
C3—C4—C5—C60.1 (3)C2—C3—O2—C12177.76 (14)

Experimental details

Crystal data
Chemical formulaC12H14O2
Mr190.23
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)9.895 (1), 11.343 (2), 18.791 (2)
V3)2109.1 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.5 × 0.5 × 0.3
Data collection
DiffractometerEnraf-Nonius TurboCAD4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2431, 1847, 1368
Rint0.037
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.05
No. of reflections1847
No. of parameters131
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.23

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS86 (Sheldrick, 1985), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C1—C21.395 (2)C4—C51.388 (2)
C1—C61.404 (2)C5—C61.366 (2)
C1—C71.441 (2)C7—C81.187 (2)
C2—O11.376 (2)C9—O11.461 (2)
C2—C31.400 (2)C9—C101.509 (2)
C3—O21.367 (2)C12—O21.425 (2)
C3—C41.387 (2)
C2—C1—C6119.4 (2)C3—C4—C5120.0 (2)
C2—C1—C7120.4 (1)C6—C5—C4120.8 (2)
C6—C1—C7120.2 (1)C5—C6—C1120.2 (2)
O1—C2—C1119.2 (1)C8—C7—C1177.1 (2)
O1—C2—C3120.8 (1)O1—C9—C11105.1 (1)
C1—C2—C3119.8 (1)O1—C9—C10110.4 (1)
O2—C3—C4124.0 (1)C11—C9—C10113.5 (1)
O2—C3—C2116.3 (2)C2—O1—C9116.4 (1)
C4—C3—C2119.8 (2)C3—O2—C12116.7 (1)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds