Download citation
Download citation
link to html
In the title compound, C14H10BrClN2O2, the bromo­phenyl and chloro­phenyl groups lie in cis and trans positions, respectively, across the C-N bonds with respect to the urea carbonyl O atom. In the crystal structure, the mol­ecules form dimers via intermolecular hydrogen bonds involving the amino H atom that is closest to the carbonyl O atom of the benzoyl group and the urea carbonyl O atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803004422/su6016sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803004422/su6016Isup2.hkl
Contains datablock I

CCDC reference: 209911

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.036
  • wR factor = 0.098
  • Data-to-parameter ratio = 17.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

It is known that conversion of thiocarbonyls to their carbonyl compounds can be carried out with the help of reagents such as sodium peroxide (Kalm, 1961), dimethyl selenoxide (Mikolajczyk & Luczak, 1978), dimethyl sulfoxide/iodine (Mikolajczyk & Luczak, 1975) and bismuth nitrate (Mohammadpoor-Baltork, 2003). In the course of our work to synthesize a series of chlorobenzoylthiourea derivatives, including p-bromophenylchlorobenzoylthiourea, the title compound, (I), was obtained instead.

The bond lengths and angles in (I) are in the normal ranges (Allen et al., 1987) and in agreement with most urea and thiourea derivatives (Stoyanova et al., 2002; Yamin & Yusof, 2003). The bromophenyl and chlorobenzoyl groups lie cis and trans, respectively, to atom O2 across the urea C—N bonds. Both aryl rings, Cl1/C1—C6 and Br1/C9—C14, are essentially planar, with atoms Br1 and Cl1 deviating by 0.046 (1) and 0.020 (1) Å, respectively, from their mean planes, and an angle between the planes of 57.12 (10)°. The central carbonyl-urea carbonyl fragment (atoms O1/O2/N1/N2/C7/C8) is also planar, with a maximum deviation of 0.039 (2)° for atom C7. The bromophenyl and chlorophenyl planes are inclined to the central carbonyl-urea plane by 7.65 (11) and 55.12 (10)°, respectively. There are two intramolecular interactions N2—H2A···O1 and C14—H14···O2 forming the two pseduo-six-membered rings O1—C7—N1—C8—N2—H2A and O2—C8—N2—C9—C14—H14, respectively. In the crystal, the molecules are arranged as dimers by intermolecular hydrogen bonding, N1—H1A···O2i, and are arranged almost perpendicular to the ac plane, stackng in the a direction (Fig. 2).

Experimental top

A solution of 4-bromoaniline (1.411 g, 8.2 mmol) was added dropwise to 50 ml of ethanol containing an equimolar amount of 2-chlorobenzoyl chloride and ammonium thiocynate in a two-neck round-bottomed flask. The solution was refluxed for ca 1 h and then cooled in ice. The orange precipitate was filtered off and washed with methanol–distilled water, then dried at room temperature. Recrystallization from DMSO yielded single crystals suitable for X-ray analysis.

Refinement top

After checking their presence in difference Fourier maps, all H atoms were fixed geometrically at ideal positions and allowed to ride on the parent C or N atoms, with C—H = 0.97 Å and N—H = 0.89 Å.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, (I), with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title complex, viewed down the c axis. The dashed lines denote the N—H··· O hydrogen bonds.
N-para-bromophenyl-N'-2-chlorobenzoylurea top
Crystal data top
C14H10BrClN2O2F(000) = 704
Mr = 353.60Dx = 1.725 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.6761 (7) ÅCell parameters from 2647 reflections
b = 17.7520 (17) Åθ = 2.3–27.5°
c = 10.3654 (10) ŵ = 3.22 mm1
β = 105.479 (2)°T = 293 K
V = 1361.2 (2) Å3Block, colourless
Z = 40.38 × 0.21 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3130 independent reflections
Radiation source: fine-focus sealed tube2322 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 83.66 pixels mm-1θmax = 27.5°, θmin = 2.3°
ω scansh = 99
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 2322
Tmin = 0.374, Tmax = 0.627l = 1313
9216 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.049P)2 + 0.3187P]
where P = (Fo2 + 2Fc2)/3
3130 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H10BrClN2O2V = 1361.2 (2) Å3
Mr = 353.60Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6761 (7) ŵ = 3.22 mm1
b = 17.7520 (17) ÅT = 293 K
c = 10.3654 (10) Å0.38 × 0.21 × 0.16 mm
β = 105.479 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3130 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2322 reflections with I > 2σ(I)
Tmin = 0.374, Tmax = 0.627Rint = 0.022
9216 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.02Δρmax = 0.61 e Å3
3130 reflectionsΔρmin = 0.28 e Å3
181 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.84987 (5)0.035482 (19)0.09409 (3)0.07391 (15)
Cl10.11560 (11)0.31030 (4)0.43300 (7)0.0637 (2)
O10.2248 (2)0.21736 (9)0.55813 (19)0.0543 (4)
O20.1713 (2)0.00241 (10)0.42736 (17)0.0520 (4)
N10.0960 (3)0.10119 (10)0.52699 (19)0.0422 (4)
H1A0.01290.07470.54670.051*
N20.3382 (3)0.10369 (10)0.43313 (19)0.0426 (4)
H2A0.35480.14780.46840.051*
C10.0901 (3)0.16094 (14)0.7237 (2)0.0488 (6)
H1B0.02320.11860.75960.059*
C20.2285 (4)0.18459 (16)0.7751 (3)0.0585 (7)
H2B0.25240.15920.84700.070*
C30.3310 (4)0.24545 (17)0.7204 (3)0.0595 (7)
H3A0.42640.26060.75380.071*
C40.2937 (4)0.28428 (15)0.6163 (3)0.0526 (6)
H4A0.36320.32570.57910.063*
C50.1530 (3)0.26132 (13)0.5677 (2)0.0418 (5)
C60.0487 (3)0.19917 (12)0.6194 (2)0.0388 (5)
C70.1046 (3)0.17463 (12)0.5658 (2)0.0400 (5)
C80.2048 (3)0.06300 (13)0.4591 (2)0.0398 (5)
C90.4545 (3)0.08285 (12)0.3550 (2)0.0380 (5)
C100.5758 (3)0.13703 (13)0.3378 (2)0.0452 (5)
H10A0.57850.18360.37930.054*
C110.6920 (3)0.12328 (14)0.2607 (3)0.0493 (6)
H11A0.77200.16040.24900.059*
C120.6892 (3)0.05486 (14)0.2014 (2)0.0467 (6)
C130.5710 (4)0.00010 (15)0.2172 (3)0.0609 (7)
H13A0.57070.04660.17640.073*
C140.4522 (4)0.01414 (14)0.2937 (3)0.0564 (7)
H14A0.37090.02280.30360.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0782 (2)0.0794 (3)0.0848 (3)0.01496 (16)0.0577 (2)0.00629 (15)
Cl10.0755 (5)0.0600 (4)0.0656 (4)0.0126 (3)0.0362 (4)0.0185 (3)
O10.0501 (10)0.0420 (9)0.0824 (12)0.0100 (7)0.0381 (9)0.0136 (8)
O20.0555 (11)0.0349 (9)0.0779 (12)0.0074 (7)0.0389 (9)0.0088 (8)
N10.0411 (10)0.0349 (10)0.0593 (12)0.0013 (8)0.0283 (9)0.0020 (8)
N20.0436 (11)0.0327 (10)0.0604 (12)0.0047 (8)0.0293 (9)0.0076 (8)
C10.0536 (15)0.0458 (13)0.0533 (14)0.0001 (11)0.0252 (12)0.0018 (10)
C20.0662 (18)0.0627 (17)0.0586 (16)0.0057 (13)0.0375 (14)0.0013 (12)
C30.0516 (16)0.0703 (18)0.0673 (17)0.0009 (13)0.0346 (14)0.0147 (14)
C40.0466 (14)0.0548 (15)0.0592 (15)0.0085 (11)0.0187 (12)0.0058 (12)
C50.0448 (13)0.0436 (13)0.0425 (12)0.0004 (10)0.0209 (11)0.0040 (9)
C60.0400 (12)0.0374 (12)0.0445 (12)0.0027 (9)0.0209 (10)0.0057 (9)
C70.0405 (12)0.0378 (12)0.0461 (12)0.0007 (9)0.0193 (10)0.0016 (9)
C80.0404 (12)0.0363 (11)0.0479 (13)0.0011 (9)0.0207 (10)0.0007 (9)
C90.0385 (12)0.0328 (11)0.0468 (12)0.0017 (9)0.0186 (10)0.0022 (9)
C100.0426 (13)0.0389 (12)0.0597 (14)0.0030 (10)0.0233 (12)0.0059 (10)
C110.0423 (13)0.0491 (14)0.0640 (15)0.0032 (10)0.0271 (12)0.0044 (11)
C120.0418 (13)0.0561 (15)0.0496 (13)0.0095 (11)0.0253 (11)0.0061 (11)
C130.0691 (18)0.0440 (14)0.0836 (19)0.0025 (13)0.0445 (16)0.0160 (13)
C140.0605 (16)0.0398 (13)0.0831 (19)0.0099 (11)0.0438 (15)0.0103 (12)
Geometric parameters (Å, º) top
Br1—C121.900 (2)C3—H3A0.9300
Cl1—C51.733 (2)C4—C51.369 (3)
O1—C71.213 (3)C4—H4A0.9300
O2—C81.215 (3)C5—C61.384 (3)
N1—C71.361 (3)C6—C71.494 (3)
N1—C81.402 (3)C9—C141.373 (3)
N1—H1A0.8600C9—C101.383 (3)
N2—C81.338 (3)C10—C111.369 (3)
N2—C91.406 (3)C10—H10A0.9300
N2—H2A0.8600C11—C121.359 (4)
C1—C21.375 (4)C11—H11A0.9300
C1—C61.383 (3)C12—C131.369 (4)
C1—H1B0.9300C13—C141.381 (4)
C2—C31.367 (4)C13—H13A0.9300
C2—H2B0.9300C14—H14A0.9300
C3—C41.374 (4)
C7—N1—C8128.58 (19)O1—C7—N1123.9 (2)
C7—N1—H1A115.7O1—C7—C6122.0 (2)
C8—N1—H1A115.7N1—C7—C6114.11 (19)
C8—N2—C9127.73 (19)O2—C8—N2125.4 (2)
C8—N2—H2A116.1O2—C8—N1119.13 (19)
C9—N2—H2A116.1N2—C8—N1115.48 (19)
C2—C1—C6121.0 (2)C14—C9—C10119.0 (2)
C2—C1—H1B119.5C14—C9—N2124.7 (2)
C6—C1—H1B119.5C10—C9—N2116.37 (19)
C3—C2—C1119.9 (3)C11—C10—C9121.1 (2)
C3—C2—H2B120.0C11—C10—H10A119.4
C1—C2—H2B120.0C9—C10—H10A119.4
C2—C3—C4120.3 (2)C12—C11—C10119.3 (2)
C2—C3—H3A119.8C12—C11—H11A120.4
C4—C3—H3A119.8C10—C11—H11A120.4
C5—C4—C3119.3 (2)C11—C12—C13120.8 (2)
C5—C4—H4A120.3C11—C12—Br1119.48 (19)
C3—C4—H4A120.3C13—C12—Br1119.73 (19)
C4—C5—C6121.7 (2)C12—C13—C14120.0 (2)
C4—C5—Cl1117.60 (19)C12—C13—H13A120.0
C6—C5—Cl1120.59 (17)C14—C13—H13A120.0
C1—C6—C5117.7 (2)C9—C14—C13119.8 (2)
C1—C6—C7121.0 (2)C9—C14—H14A120.1
C5—C6—C7121.3 (2)C13—C14—H14A120.1
C6—C1—C2—C31.9 (4)C9—N2—C8—O26.4 (4)
C1—C2—C3—C41.6 (4)C9—N2—C8—N1172.6 (2)
C2—C3—C4—C50.1 (4)C7—N1—C8—O2176.7 (2)
C3—C4—C5—C61.0 (4)C7—N1—C8—N22.4 (3)
C3—C4—C5—Cl1178.1 (2)C8—N2—C9—C141.8 (4)
C2—C1—C6—C50.8 (4)C8—N2—C9—C10176.6 (2)
C2—C1—C6—C7178.4 (2)C14—C9—C10—C110.3 (4)
C4—C5—C6—C10.7 (3)N2—C9—C10—C11178.3 (2)
Cl1—C5—C6—C1177.62 (18)C9—C10—C11—C120.8 (4)
C4—C5—C6—C7179.9 (2)C10—C11—C12—C130.5 (4)
Cl1—C5—C6—C73.1 (3)C10—C11—C12—Br1179.93 (18)
C8—N1—C7—O17.9 (4)C11—C12—C13—C140.3 (5)
C8—N1—C7—C6171.9 (2)Br1—C12—C13—C14179.2 (2)
C1—C6—C7—O1125.5 (3)C10—C9—C14—C130.5 (4)
C5—C6—C7—O153.7 (3)N2—C9—C14—C13178.9 (3)
C1—C6—C7—N154.7 (3)C12—C13—C14—C90.8 (5)
C5—C6—C7—N1126.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.861.982.833 (3)171
N2—H2A···O10.861.972.667 (2)137
C14—H14A···O20.932.272.873 (3)122
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H10BrClN2O2
Mr353.60
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.6761 (7), 17.7520 (17), 10.3654 (10)
β (°) 105.479 (2)
V3)1361.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.22
Crystal size (mm)0.38 × 0.21 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.374, 0.627
No. of measured, independent and
observed [I > 2σ(I)] reflections
9216, 3130, 2322
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.02
No. of reflections3130
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.28

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
Br1—C121.900 (2)N1—C71.361 (3)
Cl1—C51.733 (2)N1—C81.402 (3)
O1—C71.213 (3)N2—C81.338 (3)
O2—C81.215 (3)N2—C91.406 (3)
C7—N1—C8128.58 (19)O2—C8—N1119.13 (19)
C8—N2—C9127.73 (19)N2—C8—N1115.48 (19)
O1—C7—N1123.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.861.982.833 (3)171
N2—H2A···O10.861.972.667 (2)137
C14—H14A···O20.932.272.873 (3)122
Symmetry code: (i) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds