Download citation
Download citation
link to html
The title compound, (1,4,7,10,13,16-hexaoxa­cyclo­octane)­potassium di­chloro­aurate(I), [K(C12H24O6)][AuCl2], consists of potassium ion encapsulated by the 18-membered crown ether 1,4,7,10,13,16-hexaoxa­cyclo­octane and a linear di­chloro­aurate(I) monoanion. The potassium occupies a crystallographic center of symmetry with a ring coordination number of six, and two chlorides in axial sites at a distance of 3.2306 (5) Å. The linear anionic species sits on another crystallographic center of symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803000813/su6009sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803000813/su6009Isup2.hkl
Contains datablock I

CCDC reference: 204654

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.017
  • wR factor = 0.047
  • Data-to-parameter ratio = 27.2

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.865 Tmax scaled 0.396 Tmin scaled 0.156

Comment top

Although cations are the dominant species in the coordination chemistry of crown ethers, the counter-anions can also play an important role in the binding mode, cation–anion pairing, and the geometry of the structure (Bajaj & Poonia, 1988). Current interests of a number of researchers are thus also focused on the coordination chemistry of anions (Bianchi et al., 1997). Our interests in this area involve exploring dual host receptors (Kavallieratos et al., 2000; Qian et al., 2001), expanding previous work to anionic metal complexes.

The unique formula unit of (I) is shown in Fig. 1. The linear dichloroaurate(I) and the 18-crown-6 potassium complex form infinite alternating cation/anion layers, separated by 3.9618 (2) Å, along the b axis (Fig. 2).

The crown ether adopts D3 d symmetry as observed in most other complexes of 18-crown-6 (Dunitz et al., 1974). The potassium ion is located at the center of the crown and is coordinated to the six O atoms with an average K···O bond distance of 2.810 Å, which is consistent with previously reported results (2.801 Å; Sieler et al., 1974). The linear dichloroaurate anions sit above and below the plane of the crown ether with one of the Cl atoms closer to the potassium [3.2306 (5) Å] than is the gold [3.9618 (2) Å]. The presence of two chlorides approximately above and below the potassium ion thus completes a pseudo-hexagonal bipyrimidal coordination sphere for the alkali metal ion.

Experimental top

Equimolar amounts (0.065 mmol each) of 18-crown-6, potassium and tetrachloroaurate(III) were dissolved in methanol. Single crystals of the reduced gold complex with the potassium crown ether complex were grown from diffusion of diethyl ether into the methanolic solution of the mixture. 1H NMR (500 MHz, CDCl3, TMS): δ 3.66 (t, CH2). 13C NMR (125 MHz, CDCl3, TMS): δ 70.4 (CH2). MS (FAB): m/z 303 (18 C6 + K)+.

Refinement top

Crystal decay was determined by remeasuring the first 50 frames of data at the end of data collection and comparing the intensities from the first and last runs. All H atoms were constrained using the AFIX 23 parameter in SHELXL97. Residual peaks > 0.5 e Å−3 were near atom Au1.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing diagram for (I). H atoms have been omitted for clarity.
(I) top
Crystal data top
[K(C12H24O6)][AuCl2]F(000) = 552
Mr = 571.28Dx = 2.034 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.7583 (4) ÅCell parameters from 4929 reflections
b = 7.9237 (4) Åθ = 3.0–30.5°
c = 13.8393 (6) ŵ = 8.42 mm1
β = 103.785 (2)°T = 100 K
V = 932.76 (8) Å3Prism, colourless
Z = 20.31 × 0.16 × 0.11 mm
Data collection top
Bruker APEX
diffractometer
2800 independent reflections
Radiation source: fine-focus sealed tube2470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 30.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
h = 1112
Tmin = 0.180, Tmax = 0.458k = 1011
7528 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0272P)2 + 0.1888P]
where P = (Fo2 + 2Fc2)/3
2800 reflections(Δ/σ)max < 0.001
103 parametersΔρmax = 1.66 e Å3
0 restraintsΔρmin = 1.15 e Å3
Crystal data top
[K(C12H24O6)][AuCl2]V = 932.76 (8) Å3
Mr = 571.28Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.7583 (4) ŵ = 8.42 mm1
b = 7.9237 (4) ÅT = 100 K
c = 13.8393 (6) Å0.31 × 0.16 × 0.11 mm
β = 103.785 (2)°
Data collection top
Bruker APEX
diffractometer
2800 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
2470 reflections with I > 2σ(I)
Tmin = 0.180, Tmax = 0.458Rint = 0.019
7528 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 1.04Δρmax = 1.66 e Å3
2800 reflectionsΔρmin = 1.15 e Å3
103 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.50000.50000.50000.01508 (12)
Au10.50001.00000.50000.01592 (4)
Cl10.68346 (5)0.83457 (6)0.45636 (3)0.02577 (9)
O10.21989 (13)0.60565 (15)0.54438 (9)0.0194 (2)
C20.11670 (19)0.7040 (2)0.47040 (13)0.0224 (3)
H2A0.15810.82010.46960.027*
H2B0.01140.71030.48480.027*
C30.10560 (19)0.6203 (2)0.37168 (13)0.0224 (3)
H3A0.07260.50130.37450.027*
H3B0.02650.67880.31940.027*
O40.25593 (13)0.62761 (14)0.34885 (8)0.0190 (2)
C50.2505 (2)0.5690 (2)0.25103 (13)0.0218 (3)
H5A0.18030.64200.20160.026*
H5B0.20890.45240.24280.026*
C60.4136 (2)0.5733 (2)0.23527 (12)0.0221 (3)
H6A0.41100.54860.16480.026*
H6B0.45970.68690.25140.026*
O70.50738 (14)0.44985 (17)0.29831 (9)0.0188 (2)
C80.6639 (2)0.4462 (2)0.28588 (14)0.0213 (3)
H8A0.71130.56000.29740.026*
H8B0.66370.41120.21720.026*
C90.75772 (19)0.3232 (2)0.35897 (12)0.0208 (3)
H9A0.70080.21460.35560.025*
H9B0.86060.30200.34340.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0135 (3)0.0188 (3)0.0135 (3)0.00158 (13)0.0043 (2)0.00069 (13)
Au10.01654 (6)0.01508 (6)0.01601 (6)0.00128 (2)0.00365 (4)0.00002 (2)
Cl10.02336 (18)0.02127 (18)0.0352 (2)0.00012 (16)0.01197 (16)0.00407 (17)
O10.0200 (5)0.0181 (5)0.0204 (6)0.0045 (4)0.0057 (4)0.0006 (4)
C20.0160 (7)0.0211 (8)0.0312 (9)0.0048 (6)0.0077 (6)0.0052 (7)
C30.0137 (7)0.0262 (9)0.0255 (9)0.0013 (6)0.0011 (6)0.0049 (7)
O40.0161 (5)0.0229 (6)0.0169 (6)0.0010 (4)0.0018 (4)0.0003 (4)
C50.0261 (8)0.0193 (8)0.0167 (8)0.0003 (6)0.0015 (6)0.0014 (6)
C60.0305 (9)0.0204 (9)0.0147 (8)0.0009 (7)0.0042 (6)0.0014 (6)
O70.0206 (6)0.0195 (6)0.0174 (6)0.0003 (5)0.0064 (5)0.0019 (5)
C80.0258 (9)0.0221 (8)0.0195 (8)0.0045 (7)0.0125 (7)0.0028 (7)
C90.0200 (7)0.0204 (8)0.0250 (8)0.0010 (6)0.0118 (6)0.0045 (6)
Geometric parameters (Å, º) top
K1—O12.7955 (11)O1—C21.4251 (19)
K1—O42.7994 (11)C2—C31.501 (3)
K1—O72.8353 (12)C3—O41.427 (2)
K1—Cl13.2306 (5)O4—C51.421 (2)
K1—Au13.9618 (2)C5—C61.497 (2)
Au1—Cl12.2644 (4)C6—O71.432 (2)
Au1—K1i3.9619 (2)O7—C81.422 (2)
O1—C9ii1.4214 (19)C8—C91.500 (3)
O1ii—K1—O1180.0Cl1—K1—Au134.856 (8)
O1—K1—O460.14 (3)Au1iii—K1—Au1180.0
O1—K1—O4ii119.86 (3)Cl1—Au1—Cl1iv180.0
O4—K1—O4ii180.0Cl1—Au1—K154.627 (11)
O1—K1—O7119.03 (3)Cl1iv—Au1—K1125.373 (11)
O4—K1—O760.49 (3)Cl1—Au1—K1i125.373 (11)
O1—K1—O7ii60.97 (3)Cl1iv—Au1—K1i54.627 (11)
O4—K1—O7ii119.51 (3)K1—Au1—K1i180.0
O7—K1—O7ii180.0Au1—Cl1—K190.517 (14)
O1—K1—Cl1107.27 (3)C9ii—O1—C2112.39 (13)
O4—K1—Cl183.64 (2)C9ii—O1—K1113.20 (9)
O4ii—K1—Cl196.36 (2)C2—O1—K1116.45 (9)
O7—K1—Cl178.58 (3)O1—C2—C3107.75 (13)
O1—K1—Cl1ii72.73 (3)O4—C3—C2108.70 (13)
O4—K1—Cl1ii96.36 (2)C5—O4—C3111.98 (13)
O7—K1—Cl1ii101.42 (3)C5—O4—K1116.12 (9)
Cl1—K1—Cl1ii180.0C3—O4—K1113.62 (9)
O1—K1—Au1iii107.43 (2)O4—C5—C6108.34 (13)
O4—K1—Au1iii111.17 (2)O7—C6—C5108.92 (14)
O7—K1—Au1iii81.94 (3)C8—O7—C6111.69 (13)
Cl1—K1—Au1iii145.144 (8)C8—O7—K1111.76 (10)
O1—K1—Au172.57 (2)C6—O7—K1111.08 (10)
O4—K1—Au168.83 (2)O7—C8—C9108.71 (14)
O7—K1—Au198.06 (3)O1ii—C9—C8107.91 (13)
O1ii—K1—Au1—Cl15.60 (3)O1ii—K1—O4—C526.95 (11)
O1—K1—Au1—Cl1174.40 (3)O1—K1—O4—C5153.05 (11)
O4—K1—Au1—Cl1110.37 (3)O7—K1—O4—C512.39 (10)
O4ii—K1—Au1—Cl169.63 (3)O7ii—K1—O4—C5167.61 (10)
O7—K1—Au1—Cl156.41 (3)Cl1—K1—O4—C592.84 (10)
O7ii—K1—Au1—Cl1123.59 (3)Cl1ii—K1—O4—C587.16 (10)
O1ii—K1—Au1—Cl1iv174.40 (3)Au1iii—K1—O4—C554.54 (11)
O1—K1—Au1—Cl1iv5.60 (3)Au1—K1—O4—C5125.46 (11)
O4—K1—Au1—Cl1iv69.63 (3)O1ii—K1—O4—C3158.97 (10)
O4ii—K1—Au1—Cl1iv110.37 (3)O1—K1—O4—C321.03 (10)
O7—K1—Au1—Cl1iv123.59 (3)O7—K1—O4—C3144.40 (11)
O7ii—K1—Au1—Cl1iv56.41 (3)O7ii—K1—O4—C335.60 (11)
Cl1ii—K1—Au1—Cl1iv0.02 (10)Cl1—K1—O4—C3135.15 (10)
O1ii—K1—Cl1—Au1174.40 (3)Cl1ii—K1—O4—C344.85 (10)
O1—K1—Cl1—Au15.60 (3)Au1iii—K1—O4—C377.47 (10)
O4—K1—Cl1—Au161.59 (3)Au1—K1—O4—C3102.53 (10)
O4ii—K1—Cl1—Au1118.41 (3)C3—O4—C5—C6177.34 (13)
O7—K1—Cl1—Au1122.70 (3)K1—O4—C5—C644.57 (15)
O7ii—K1—Cl1—Au157.30 (3)O4—C5—C6—O767.51 (17)
O4—K1—O1—C9ii146.63 (11)C5—C6—O7—C8179.26 (14)
O4ii—K1—O1—C9ii33.37 (11)C5—C6—O7—K155.22 (15)
O7—K1—O1—C9ii161.12 (10)O1ii—K1—O7—C817.46 (10)
O7ii—K1—O1—C9ii18.88 (10)O1—K1—O7—C8162.54 (10)
Cl1—K1—O1—C9ii74.83 (10)O4—K1—O7—C8148.09 (12)
Cl1ii—K1—O1—C9ii105.17 (10)O4ii—K1—O7—C831.91 (12)
Au1iii—K1—O1—C9ii108.52 (10)Cl1—K1—O7—C858.99 (11)
Au1—K1—O1—C9ii71.48 (10)Cl1ii—K1—O7—C8121.01 (11)
O4—K1—O1—C214.08 (10)Au1iii—K1—O7—C891.95 (11)
O4ii—K1—O1—C2165.92 (10)Au1—K1—O7—C888.05 (11)
O7—K1—O1—C228.58 (12)O1ii—K1—O7—C6142.94 (12)
O7ii—K1—O1—C2151.42 (12)O1—K1—O7—C637.06 (12)
Cl1—K1—O1—C257.72 (11)O4—K1—O7—C622.62 (10)
Cl1ii—K1—O1—C2122.28 (11)O4ii—K1—O7—C6157.38 (10)
Au1iii—K1—O1—C2118.93 (10)Cl1—K1—O7—C666.49 (10)
Au1—K1—O1—C261.07 (10)Cl1ii—K1—O7—C6113.51 (10)
C9ii—O1—C2—C3178.36 (13)Au1iii—K1—O7—C6142.57 (11)
K1—O1—C2—C345.44 (15)Au1—K1—O7—C637.43 (11)
O1—C2—C3—O465.27 (17)C6—O7—C8—C9176.08 (14)
C2—C3—O4—C5172.93 (13)K1—O7—C8—C950.94 (15)
C2—C3—O4—K153.07 (15)O7—C8—C9—O1ii70.56 (17)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1; (iii) x, y1, z; (iv) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[K(C12H24O6)][AuCl2]
Mr571.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.7583 (4), 7.9237 (4), 13.8393 (6)
β (°) 103.785 (2)
V3)932.76 (8)
Z2
Radiation typeMo Kα
µ (mm1)8.42
Crystal size (mm)0.31 × 0.16 × 0.11
Data collection
DiffractometerBruker APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
Tmin, Tmax0.180, 0.458
No. of measured, independent and
observed [I > 2σ(I)] reflections
7528, 2800, 2470
Rint0.019
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.047, 1.04
No. of reflections2800
No. of parameters103
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.66, 1.15

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds