Download citation
Download citation
link to html
The title compound (PBT), C14H14N4S4, possesses C2 symmetry, with the twofold axis bisecting the central benzene ring. The two terminal 2-(5-methyl-1,3,4-thio­diazo­lyl)­thio groups adopt a trans conformation with respect to the benzene moiety, and the dihedral angle between the two thio­diazo­le planes is 61.3 (2)°, while that between the thio­diazo­le and benzene planes is 79.4 (5)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802021761/su6006sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802021761/su6006Isup2.hkl
Contains datablock I

CCDC reference: 202991

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.029
  • wR factor = 0.078
  • Data-to-parameter ratio = 14.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

2,2'-[1,2-phenylenebis(methylenethio)]bis[5-methyl-1,3,4-thiadiazole] top
Crystal data top
C14H14N4S4F(000) = 760
Mr = 366.53Dx = 1.429 Mg m3
Monoclinic, C2/cMelting point = 387–388 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 18.10 (1) ÅCell parameters from 774 reflections
b = 9.239 (5) Åθ = 2.5–26.3°
c = 11.216 (6) ŵ = 0.56 mm1
β = 114.764 (8)°T = 293 K
V = 1703.3 (16) Å3Block, colorless
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1497 independent reflections
Radiation source: fine-focus sealed tube1242 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
φ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: empirical (using intensity measurements)
multi-scan (SADABS; Sheldrick, 1996; Blessing, 1995)
h = 2119
Tmin = 0.851, Tmax = 0.897k = 1110
2152 measured reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0345P)2 + 1.2785P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max = 0.002
S = 1.08Δρmax = 0.16 e Å3
1497 reflectionsΔρmin = 0.27 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21874 (17)0.7285 (3)1.1845 (3)0.0698 (7)
H1A0.25910.76761.15910.105*
H1B0.24300.70841.27700.105*
H1C0.17550.79731.16510.105*
C20.18541 (12)0.5917 (2)1.1105 (2)0.0455 (5)
C30.11765 (12)0.3706 (2)1.01993 (18)0.0389 (5)
C40.08644 (13)0.1441 (2)0.8508 (2)0.0443 (5)
H4A0.07230.21550.78130.053*
H4B0.14450.12610.88530.053*
C50.04034 (11)0.0062 (2)0.79752 (18)0.0370 (4)
C60.07878 (13)0.1252 (2)0.8447 (2)0.0439 (5)
H60.13200.12600.90880.053*
C70.03924 (13)0.2548 (2)0.7977 (2)0.0483 (5)
H70.06570.34190.83070.058*
N10.20691 (11)0.5378 (2)1.02379 (19)0.0521 (5)
N20.16765 (10)0.40861 (19)0.97010 (17)0.0471 (4)
S10.11313 (4)0.48919 (6)1.13513 (6)0.05008 (19)
S20.06020 (4)0.21166 (6)0.98111 (6)0.05084 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0786 (18)0.0645 (16)0.0708 (17)0.0309 (14)0.0358 (14)0.0233 (13)
C20.0421 (11)0.0476 (12)0.0439 (11)0.0077 (9)0.0152 (10)0.0027 (9)
C30.0390 (11)0.0389 (11)0.0357 (10)0.0003 (8)0.0127 (9)0.0009 (8)
C40.0430 (11)0.0486 (12)0.0458 (11)0.0064 (9)0.0232 (9)0.0066 (10)
C50.0394 (10)0.0398 (11)0.0382 (10)0.0017 (8)0.0225 (8)0.0028 (8)
C60.0419 (11)0.0508 (13)0.0407 (11)0.0073 (9)0.0189 (9)0.0022 (9)
C70.0669 (14)0.0389 (11)0.0474 (12)0.0111 (10)0.0320 (10)0.0060 (9)
N10.0465 (10)0.0546 (11)0.0581 (11)0.0137 (9)0.0248 (9)0.0098 (9)
N20.0447 (10)0.0478 (10)0.0507 (10)0.0073 (8)0.0220 (9)0.0064 (8)
S10.0599 (4)0.0463 (3)0.0534 (3)0.0122 (3)0.0328 (3)0.0101 (2)
S20.0630 (4)0.0460 (3)0.0542 (3)0.0161 (3)0.0350 (3)0.0114 (2)
Geometric parameters (Å, º) top
C1—C21.494 (3)C4—S21.825 (2)
C2—N11.289 (3)C5—C61.389 (3)
C2—S11.729 (2)C5—C5i1.402 (4)
C3—N21.295 (3)C6—C71.381 (3)
C3—S11.722 (2)C7—C7i1.375 (4)
C3—S21.746 (2)N1—N21.391 (2)
C4—C51.504 (3)
N1—C2—C1124.5 (2)C6—C5—C4118.92 (18)
N1—C2—S1113.39 (16)C5i—C5—C4122.03 (11)
C1—C2—S1122.07 (17)C7—C6—C5121.04 (19)
N2—C3—S1114.39 (15)C7i—C7—C6119.89 (12)
N2—C3—S2124.81 (15)C2—N1—N2113.40 (17)
S1—C3—S2120.77 (12)C3—N2—N1111.61 (17)
C5—C4—S2108.72 (13)C3—S1—C287.21 (10)
C6—C5—C5i119.06 (12)C3—S2—C499.19 (9)
S2—C4—C5—C696.64 (19)C2—N1—N2—C30.1 (3)
S2—C4—C5—C5i82.9 (2)N2—C3—S1—C20.70 (16)
C5i—C5—C6—C71.1 (3)S2—C3—S1—C2177.62 (14)
C4—C5—C6—C7179.31 (17)N1—C2—S1—C30.65 (17)
C5—C6—C7—C7i0.4 (3)C1—C2—S1—C3179.0 (2)
C1—C2—N1—N2179.2 (2)N2—C3—S2—C45.3 (2)
S1—C2—N1—N20.5 (2)S1—C3—S2—C4176.60 (12)
S1—C3—N2—N10.6 (2)C5—C4—S2—C3178.04 (14)
S2—C3—N2—N1177.65 (15)
Symmetry code: (i) x, y, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds