research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1S,2R)-2-hy­dr­oxy-1,2-di­phenyl­ethan-1-aminium (S)-2-aza­niumyl­butane­dioate monohydrate

CROSSMARK_Color_square_no_text.svg

aSchool of Science, Tokai University, 4-1-1 Kitakaname, Hiratuka, Kanagawa 259-1292, Japan
*Correspondence e-mail: fujii@wing.ncc.u-tokai.ac.jp

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 17 October 2017; accepted 29 October 2017; online 3 November 2017)

The title diastereomeric salt, formed between 2-amino-1,2-di­phenyl­ethanol (ADE) and aspartic acid (ASP), C14H16NO+·C4H6NO4·H2O, crystallizes as a monohydrate. The 1,2-di­phenyl­ethyl group in the cation has a cis conformation, and the aspartic acid anion is in the zwitterionic form. In the crystal, the ASP anions are linked via N—H⋯O hydrogen bonds to form a 21 helix along the b-axis direction. The helices are linked by the ADE cations via O—H⋯O and N—H⋯O hydrogen bonds, forming layers parallel to the bc plane. There are channels in the layers that are occupied by water mol­ecules, which link to both the anions and cations via Owater—H⋯O and N—H⋯Owater hydrogen bonds. There are also C—H⋯O and C—H⋯π inter­actions present within the layers.

1. Chemical context

The production of chiral compounds has great importance in the pharmaceutical industry, and diastereomeric salt separation is still widely applied in the process. A synthetic optical resolving agent, chiral 2-amino-1,2-di­phenyl­ethanol (ADE) (Read & Steele, 1927[Read, J. & Steele, C. C. (1927). J. Chem. Soc. pp. 910-918.]), has been widely tried and used in diastereomeric salt-separation methods for chiral alcohols or organic acids. L-(S)-aspartic acid (ASP) is a known neurotransmitter, and D-(R)-ASP is a non-essential amino acid, one of two D-amino acids commonly found in mammals. D-ASP has also attracted attention as residue in the anti­fungal bacitracin, while N-methyl-D-aspartic acid (NMDA) acts as a specific agonist at the NMDA receptor. D-amino acids are mainly resolved enzymatically with D-amino­acyl­ase (EC 3.5.1.14) in industrial applications. The optical separation of ASP with cis-ADE was introduced without chemical modification. The crystal structure of the title mol­ecular salt, formed between L-(S)-ASP and (1R,2S)-cis-ADE, is reported herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the components of the title salt are shown in Fig. 1[link], and selected torsion angles are given in Table 1[link]. It can be seen that the hy­droxy and protonated amino groups of cis-ADE form a tweezer-like motif. The dihedral angle between the phenyl rings (A and B; Fig.1) is 48.71 (9)° and the torsion angle O1A—C1A—C2A—N1A is −65.0 (2)°. The hy­droxy group adopts a gauche conformation [O1A—C1A—C2A—C9A = 60.1 (2)°] with respect to phenyl ring B. Thus, the tweezer-like motif is twisted with respect to the phenyl groups. This arrangement is similar to that found in racemic cis-ADE (Fujii, 2015[Fujii, I. (2015). Acta Cryst. E71, 1539-1541.]) and the diastereomeric salts formed with cis-enanti­omers.

Table 1
Selected torsion angles (°)

O1A—C1A—C2A—N1A −65.0 (2) N1B—C2B—C3B—C4B 73.0 (2)
C3A—C1A—C2A—C9A −66.1 (2) C1B—C2B—C3B—C4B −53.0 (2)
O1B—C1B—C2B—N1B 17.4 (2) C2B—C3B—C4B—O3B 1.4 (3)
[Figure 1]
Figure 1
A view of the mol­ecular structure of (1S,2R)-cis-ADE·(S)-ASP monohydrate, with the atom and ring labelling. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate the hydrogen bonds (see Table 2[link]).

L-(S)-ASP crystallizes as a deprotonated zwitterion. The succinate group adopts a cis conformation [C1B—C2B—C3B—C4B = −53.0 (2)°], which is the motif commonly found in L-ASP salts; for example L-His·L-ASP monohydrate (Suresh & Vijayan, 1987[Suresh, C. G. & Vijayan, M. (1987). J. Biosci. 12, 13-21.]). The amino and residual carb­oxy groups have a slightly right-handed helical-shape; torsion angles N1B—C2B—C3B—C4B and C2B—C3B—C4B—O3B are 73.0 (2) and 1.4 (3)°, respectively.

3. Supra­molecular features

In the crystal, the (S)-ASP anions correlated with crystallographic symmetry are linked via N1B—H1B3⋯O4Bii [2.868 (2) Å] hydrogen bonds into C(6) chains to form a right-handed 21-helix along the b-axis direction (Fig. 2[link] and Table 2[link]). The helices are linked by the (1R,2S)-cis-ADE cations via N—H⋯O hydrogen bonds [N1A—H1A2⋯O1B = 2.862 (2) Å and N1A—H1A1⋯O4Biii = 2.742 (3) Å] and O—H⋯O hydrogen bonds [O1A—H1O1⋯O2Bi = 2.752 (2) Å], forming layers parallel to the bc plane (Fig. 3[link], Table 2[link]). There are channels in the layers that are occupied by water mol­ecules which link to both the anions and cations via tetra­hedrally placed hydrogen bonds; Owater—H⋯O hydrogen bonds [O1C—H1OB⋯O1Bi = 2.734 (2) Å and O1C—H1OA⋯O1Biv = 2.840 (2) Å] and N—H⋯Owater hydrogen bonds [N1B—H1B2⋯O1C = 2.938 (2) Å and N1A—H1A3⋯O1C = 2.926 (3) Å], shown in Fig. 4[link]; see also Table 2[link]. There are also C—H⋯O and C—H⋯π inter­actions present within the layers (Table 2[link]). Finally, the hydro­phobic and hydro­philic layers are well separated along the a-axis direction.

Table 2
Hydrogen-bond geometry (Å, °)

CgB is the centroid of phenyl ring B (C9–C14).

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1B1⋯O3Bi 0.92 (4) 1.92 (4) 2.819 (2) 168 (3)
N1B—H1B3⋯O3Bii 0.87 (3) 2.46 (3) 3.112 (2) 132 (3)
N1B—H1B3⋯O4Bii 0.87 (3) 2.20 (3) 2.868 (2) 134 (3)
O1A—H1O1⋯O2Bi 0.88 (3) 1.88 (3) 2.752 (2) 171 (3)
N1A—H1A1⋯O4Biii 1.08 (4) 1.70 (4) 2.742 (3) 162 (3)
N1A—H1A2⋯O1B 0.95 (3) 1.92 (3) 2.862 (2) 173 (3)
O1C—H1OB⋯O1Bi 0.92 (4) 1.82 (4) 2.734 (2) 173 (3)
O1C—H1OA⋯O1Biv 0.90 (4) 2.01 (4) 2.840 (2) 153 (4)
N1A—H1A3⋯O1C 0.87 (4) 2.45 (3) 2.926 (3) 115 (2)
N1B—H1B2⋯O1C 0.96 (2) 2.01 (3) 2.938 (2) 163 (2)
C2A—H2A⋯O1Av 0.98 2.42 3.304 (3) 150
C14A—H14A⋯O4Bvi 0.93 2.53 3.371 (3) 150
C3B—H3B2⋯CgBiii 0.97 2.87 3.6127 (16) 134
Symmetry codes: (i) x, y+1, z; (ii) [-x+2, y+{\script{1\over 2}}, -z]; (iii) x, y, z+1; (iv) [-x+2, y+{\script{1\over 2}}, -z+1]; (v) x, y-1, z; (vi) x, y+1, z+1.
[Figure 2]
Figure 2
A view along the c axis of the right-handed 21-helix of ASP anions. Hydrogen bonds are shown as dashed lines (see Table 2[link]) and C-bound H atoms have been omitted.
[Figure 3]
Figure 3
A partial view along the b axis of the crystal packing of the ASP helices linked by the ADE cations. Hydrogen bonds are shown as dashed lines (see Table 2[link]) and C-bound H atoms have been omitted.
[Figure 4]
Figure 4
A view along the b axis of the crystal packing of (1S,2R)-cis-ADE·(S)-ASP monohydrate. Hydrogen bonds are shown as dashed lines (see Table 2[link]) and C-bound H atoms have been omitted.

4. Database survey

The author has reported the crystal structures of several amino acids without chemical modification including the chiral resolving agents; 1,1′-bi­naphthalene-2,2′-diyl hydrogen phosphate, 2-phen­oxy­propionic acid and mandelic acid (Fujii & Hirayama, 2002[Fujii, I. & Hirayama, N. (2002). Helv. Chim. Acta, 85, 2946-2960.]; Fujii et al., 2005[Fujii, I., Baba, H. & Takahashi, Y. (2005). Anal. Sci. X-ray Struct. Anal. Online, 21, x175-176.], 2006[Fujii, I., Watadani, T., Nunomura, S. & Takahashi, Y. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x75-x76.]). The crystal structures of racemic trans- and cis-ADE have been reported (GAQXON: Bari et al., 2012[Bari, A., Al-Obaid, A. M. & Ng, S. W. (2012). Acta Cryst. E68, o491.]; RUTROP: Fujii, 2015[Fujii, I. (2015). Acta Cryst. E71, 1539-1541.], respect­ively). Recently, the solvent-induced chirality switching in optical resolution between mandelic acid and cis-ADE has been demonstrated (Shitara et al., 2013[Shitara, H., Shintani, T., Kodama, K. & Hirose, T. (2013). J. Org. Chem. 78, 9309-9316.]). Moreover, a database search (CSD Version 5.28, last update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded other comparable structures, viz. L-aspartic acid (LASPRT: Derissen et al., 1968[Derissen, J. L., Endeman, H. J. & Peerdeman, A. F. (1968). Acta Cryst. B24, 1349-1354.]), L-aspartic acid monohydrate (IJEQET: Umadevi et al., 2003[Umadevi, K., Anitha, K., Sridhar, B., Srinivasan, N. & Rajaram, R. K. (2003). Acta Cryst. E59, o1073-o1075.]) and N-methyl-D-aspartic acid monohydrate (KEWGUO: Sawka-Dobrowolska et al., 1990[Sawka-Dobrowolska, W., Głowiak, T., Kozłowski, H. & Masterlerz, P. (1990). Acta Cryst. C46, 1679-1681.]).

5. Synthesis and crystallization

(1R,2S)-cis-2-Amino-1,2-di­phenyl­ethanol (ADE) and aspartic acid (ASP) were purchased from Sigma–Aldrich Co. Ltd. The title mol­ecular salt was obtained from an aqueous ethanol solution of racemic-ASP and (1R,2S)-cis-ADE in a 2:1 molar ratio, heated to 333 K under stirring. On slow cooling to ambient temperature and slow evaporation of the solvent, colourless rod-shaped crystals were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All the H atoms were located in difference-Fourier maps. The NH3+, OH, and water H atoms were freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.98 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C14H16NO+·C4H6NO4·H2O
Mr 364.39
Crystal system, space group Monoclinic, P21
Temperature (K) 297
a, b, c (Å) 18.310 (8), 5.2661 (10), 9.2792 (10)
β (°) 96.070 (4)
V3) 889.7 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.86
Crystal size (mm) 0.4 × 0.2 × 0.2
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.74, 0.86
No. of measured, independent and observed [I > 2σ(I)] reflections 2114, 2051, 1907
Rint 0.020
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.079, 1.06
No. of reflections 2051
No. of parameters 272
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.13
Absolute structure No quotients, so Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter determined by classical intensity fit
Absolute structure parameter 0.1 (2)
Computer programs: CAD4 (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD4. Enraf-Nonius, Delft, The Netherlands.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2017 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CAD4 (Enraf–Nonius, 1994); cell refinement: CAD4 (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2017 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009), WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

(1S,2R)-2-Hydroxy-1,2-diphenylethan-1-aminium (S)-2-azaniumylbutanedioate monohydrate top
Crystal data top
C14H16NO+·C4H6NO4·H2OF(000) = 388
Mr = 364.39Dx = 1.36 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 18.310 (8) Åθ = 28.2–34.6°
b = 5.2661 (10) ŵ = 0.86 mm1
c = 9.2792 (10) ÅT = 297 K
β = 96.070 (4)°Rod, colorless
V = 889.7 (4) Å30.4 × 0.2 × 0.2 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1907 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.020
Graphite monochromatorθmax = 74.9°, θmin = 2.4°
non–profiled ω/2τ scansh = 022
Absorption correction: ψ scan
(North et al., 1968)
k = 06
Tmin = 0.74, Tmax = 0.86l = 1111
2114 measured reflections3 standard reflections every 60 min
2051 independent reflections intensity decay: 5%
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.0743P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.17 e Å3
2051 reflectionsΔρmin = 0.13 e Å3
272 parametersExtinction correction: (SHELXL2017; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0104 (12)
0 constraintsAbsolute structure: No quotients, so Flack (1983) parameter determined by classical intensity fit
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (2)
Secondary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1B0.86265 (9)0.1336 (4)0.25943 (17)0.0285 (3)
C2B0.87228 (9)0.3556 (4)0.15574 (17)0.0281 (3)
H2B0.8346620.4817290.1719840.034*
C3B0.86125 (10)0.2862 (4)0.00305 (18)0.0331 (4)
H3B10.8728210.4335610.0590830.040*
H3B20.8097030.2474840.0285250.040*
C4B0.90650 (9)0.0630 (4)0.04800 (18)0.0309 (4)
N1B0.94481 (9)0.4807 (4)0.19193 (17)0.0344 (3)
O1B0.90523 (7)0.1301 (3)0.37604 (13)0.0363 (3)
O2B0.81052 (7)0.0126 (3)0.22709 (14)0.0410 (3)
O3B0.94788 (7)0.0504 (3)0.04607 (14)0.0378 (3)
O4B0.89947 (7)0.0126 (3)0.18182 (14)0.0437 (4)
H1B10.9480 (15)0.620 (7)0.134 (3)0.064 (8)*
H1B20.9537 (12)0.517 (5)0.294 (3)0.044 (6)*
H1B30.9841 (16)0.405 (7)0.168 (3)0.069 (9)*
C1A0.73892 (10)0.5069 (4)0.44043 (19)0.0329 (4)
H1A0.7680630.4366720.3671580.039*
C2A0.75763 (9)0.3549 (4)0.58118 (18)0.0326 (4)
H2A0.7412730.1798140.5619920.039*
C3A0.65856 (10)0.4782 (4)0.38426 (18)0.0343 (4)
C4A0.63715 (12)0.2766 (5)0.2934 (2)0.0458 (5)
H4A0.6722270.1641850.2656030.055*
C5A0.56362 (13)0.2416 (5)0.2438 (3)0.0547 (6)
H5A0.5495390.1044930.1840800.066*
C6A0.51174 (12)0.4086 (5)0.2827 (3)0.0562 (6)
H6A0.4625890.3856620.2484700.067*
C7A0.53231 (12)0.6099 (6)0.3721 (3)0.0578 (6)
H7A0.4970420.7229860.3984210.069*
C8A0.60593 (11)0.6449 (5)0.4233 (2)0.0450 (5)
H8A0.6196410.7810710.4840530.054*
C9A0.72103 (9)0.4489 (4)0.70990 (17)0.0300 (4)
C10A0.66288 (10)0.3106 (4)0.7532 (2)0.0403 (4)
H10A0.6463440.1668380.7013940.048*
C11A0.62902 (13)0.3850 (6)0.8737 (2)0.0551 (6)
H11A0.5893860.2926880.9007600.066*
C12A0.65359 (13)0.5929 (6)0.9524 (2)0.0541 (6)
H12A0.6315100.6398551.0341360.065*
C13A0.71124 (14)0.7326 (5)0.9101 (2)0.0503 (5)
H13A0.7281530.8739400.9637290.060*
C14A0.74423 (11)0.6637 (4)0.7880 (2)0.0397 (4)
H14A0.7820960.7621430.7584810.048*
N1A0.83958 (9)0.3495 (5)0.6135 (2)0.0445 (4)
O1A0.76176 (8)0.7615 (3)0.46671 (15)0.0392 (3)
H1A10.8579 (18)0.240 (8)0.709 (3)0.087 (11)*
H1A20.8600 (15)0.288 (7)0.530 (3)0.067 (9)*
H1A30.8561 (15)0.501 (7)0.638 (3)0.053 (8)*
H1O10.7784 (15)0.818 (7)0.387 (3)0.062 (8)*
O1C0.94824 (9)0.6688 (3)0.49070 (19)0.0476 (4)
H1OB0.9297 (17)0.820 (9)0.453 (3)0.077 (10)*
H1OA0.991 (2)0.707 (9)0.543 (4)0.090 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1B0.0317 (7)0.0269 (8)0.0277 (7)0.0005 (7)0.0073 (6)0.0007 (7)
C2B0.0292 (7)0.0260 (8)0.0297 (7)0.0032 (7)0.0054 (6)0.0030 (7)
C3B0.0374 (8)0.0338 (10)0.0280 (7)0.0067 (8)0.0025 (6)0.0061 (7)
C4B0.0312 (7)0.0305 (9)0.0318 (7)0.0023 (7)0.0075 (6)0.0018 (7)
N1B0.0367 (8)0.0300 (8)0.0367 (8)0.0035 (7)0.0050 (6)0.0064 (7)
O1B0.0440 (7)0.0328 (7)0.0312 (6)0.0031 (6)0.0005 (5)0.0062 (6)
O2B0.0437 (7)0.0411 (8)0.0387 (6)0.0143 (7)0.0061 (5)0.0035 (6)
O3B0.0425 (7)0.0308 (7)0.0406 (7)0.0073 (6)0.0068 (5)0.0072 (6)
O4B0.0458 (7)0.0528 (10)0.0328 (6)0.0030 (7)0.0054 (5)0.0066 (6)
C1A0.0359 (9)0.0326 (10)0.0310 (8)0.0018 (8)0.0077 (6)0.0030 (8)
C2A0.0317 (8)0.0334 (9)0.0330 (8)0.0023 (8)0.0041 (6)0.0039 (8)
C3A0.0389 (9)0.0338 (9)0.0300 (7)0.0022 (8)0.0028 (6)0.0045 (8)
C4A0.0485 (11)0.0399 (12)0.0479 (11)0.0043 (10)0.0003 (8)0.0053 (10)
C5A0.0568 (12)0.0483 (13)0.0561 (12)0.0057 (12)0.0075 (10)0.0066 (11)
C6A0.0409 (11)0.0594 (17)0.0655 (14)0.0038 (11)0.0074 (10)0.0067 (12)
C7A0.0395 (10)0.0593 (15)0.0733 (15)0.0108 (12)0.0004 (10)0.0058 (13)
C8A0.0412 (10)0.0426 (11)0.0506 (11)0.0057 (10)0.0015 (8)0.0067 (10)
C9A0.0299 (8)0.0297 (9)0.0298 (8)0.0018 (7)0.0013 (6)0.0039 (7)
C10A0.0378 (9)0.0414 (11)0.0427 (10)0.0083 (9)0.0083 (7)0.0013 (9)
C11A0.0513 (12)0.0670 (17)0.0506 (12)0.0069 (12)0.0213 (9)0.0014 (12)
C12A0.0658 (13)0.0590 (16)0.0399 (10)0.0156 (13)0.0171 (9)0.0001 (11)
C13A0.0746 (14)0.0369 (11)0.0380 (10)0.0047 (11)0.0003 (9)0.0051 (9)
C14A0.0471 (10)0.0332 (10)0.0382 (9)0.0060 (9)0.0016 (7)0.0010 (9)
N1A0.0338 (8)0.0613 (13)0.0392 (9)0.0097 (9)0.0076 (6)0.0119 (9)
O1A0.0455 (7)0.0349 (7)0.0378 (7)0.0054 (6)0.0065 (5)0.0053 (6)
O1C0.0472 (8)0.0297 (8)0.0625 (9)0.0008 (6)0.0098 (7)0.0011 (7)
Geometric parameters (Å, º) top
C1B—O2B1.239 (2)C5A—C6A1.370 (4)
C1B—O1B1.265 (2)C5A—H5A0.9300
C1B—C2B1.536 (2)C6A—C7A1.374 (4)
C2B—N1B1.488 (2)C6A—H6A0.9300
C2B—C3B1.511 (2)C7A—C8A1.393 (3)
C2B—H2B0.9800C7A—H7A0.9300
C3B—C4B1.522 (3)C8A—H8A0.9300
C3B—H3B10.9700C9A—C10A1.384 (3)
C3B—H3B20.9700C9A—C14A1.386 (3)
C4B—O3B1.246 (2)C10A—C11A1.391 (3)
C4B—O4B1.263 (2)C10A—H10A0.9300
N1B—H1B10.92 (4)C11A—C12A1.365 (4)
N1B—H1B20.96 (2)C11A—H11A0.9300
N1B—H1B30.87 (3)C12A—C13A1.377 (4)
C1A—O1A1.418 (2)C12A—H12A0.9300
C1A—C3A1.516 (3)C13A—C14A1.387 (3)
C1A—C2A1.539 (2)C13A—H13A0.9300
C1A—H1A0.9800C14A—H14A0.9300
C2A—N1A1.499 (2)N1A—H1A11.08 (4)
C2A—C9A1.513 (2)N1A—H1A20.95 (3)
C2A—H2A0.9800N1A—H1A30.87 (4)
C3A—C8A1.380 (3)O1A—H1O10.88 (3)
C3A—C4A1.386 (3)O1C—H1OB0.92 (4)
C4A—C5A1.388 (3)O1C—H1OA0.90 (4)
C4A—H4A0.9300
O2B—C1B—O1B125.99 (17)C3A—C4A—H4A119.8
O2B—C1B—C2B117.27 (14)C5A—C4A—H4A119.8
O1B—C1B—C2B116.47 (15)C6A—C5A—C4A120.2 (2)
N1B—C2B—C3B110.56 (14)C6A—C5A—H5A119.9
N1B—C2B—C1B110.74 (13)C4A—C5A—H5A119.9
C3B—C2B—C1B114.48 (15)C5A—C6A—C7A120.0 (2)
N1B—C2B—H2B106.9C5A—C6A—H6A120.0
C3B—C2B—H2B106.9C7A—C6A—H6A120.0
C1B—C2B—H2B106.9C6A—C7A—C8A120.1 (2)
C2B—C3B—C4B115.70 (14)C6A—C7A—H7A119.9
C2B—C3B—H3B1108.4C8A—C7A—H7A119.9
C4B—C3B—H3B1108.4C3A—C8A—C7A120.2 (2)
C2B—C3B—H3B2108.4C3A—C8A—H8A119.9
C4B—C3B—H3B2108.4C7A—C8A—H8A119.9
H3B1—C3B—H3B2107.4C10A—C9A—C14A118.70 (17)
O3B—C4B—O4B125.39 (18)C10A—C9A—C2A118.39 (18)
O3B—C4B—C3B119.12 (15)C14A—C9A—C2A122.89 (16)
O4B—C4B—C3B115.47 (16)C9A—C10A—C11A120.5 (2)
C2B—N1B—H1B1109.3 (17)C9A—C10A—H10A119.8
C2B—N1B—H1B2111.4 (14)C11A—C10A—H10A119.8
H1B1—N1B—H1B2114 (3)C12A—C11A—C10A120.4 (2)
C2B—N1B—H1B3119 (2)C12A—C11A—H11A119.8
H1B1—N1B—H1B396 (3)C10A—C11A—H11A119.8
H1B2—N1B—H1B3107 (2)C11A—C12A—C13A119.7 (2)
O1A—C1A—C3A114.28 (16)C11A—C12A—H12A120.2
O1A—C1A—C2A108.10 (15)C13A—C12A—H12A120.2
C3A—C1A—C2A111.15 (14)C12A—C13A—C14A120.4 (2)
O1A—C1A—H1A107.7C12A—C13A—H13A119.8
C3A—C1A—H1A107.7C14A—C13A—H13A119.8
C2A—C1A—H1A107.7C9A—C14A—C13A120.3 (2)
N1A—C2A—C9A111.47 (15)C9A—C14A—H14A119.8
N1A—C2A—C1A107.92 (15)C13A—C14A—H14A119.8
C9A—C2A—C1A114.98 (16)C2A—N1A—H1A1113.1 (18)
N1A—C2A—H2A107.4C2A—N1A—H1A2108.5 (16)
C9A—C2A—H2A107.4H1A1—N1A—H1A2111 (3)
C1A—C2A—H2A107.4C2A—N1A—H1A3110.3 (18)
C8A—C3A—C4A119.11 (18)H1A1—N1A—H1A3102 (3)
C8A—C3A—C1A121.73 (18)H1A2—N1A—H1A3112 (3)
C4A—C3A—C1A119.16 (18)C1A—O1A—H1O1107 (2)
C3A—C4A—C5A120.4 (2)H1OB—O1C—H1OA106 (4)
O1A—C1A—C2A—N1A65.0 (2)C5A—C6A—C7A—C8A0.1 (4)
O1A—C1A—C2A—C9A60.14 (19)C6A—C7A—C8A—C3A0.2 (4)
C3A—C1A—C2A—N1A168.86 (17)C2A—C9A—C10A—C11A177.95 (19)
C3A—C1A—C2A—C9A66.1 (2)C14A—C9A—C10A—C11A0.6 (3)
O1A—C1A—C3A—C4A149.76 (18)C2A—C9A—C14A—C13A176.29 (19)
O1A—C1A—C3A—C8A31.4 (2)C10A—C9A—C14A—C13A2.2 (3)
C2A—C1A—C3A—C4A87.6 (2)C9A—C10A—C11A—C12A1.2 (3)
C2A—C1A—C3A—C8A91.3 (2)C10A—C11A—C12A—C13A1.4 (4)
N1A—C2A—C9A—C10A131.49 (19)C11A—C12A—C13A—C14A0.2 (4)
N1A—C2A—C9A—C14A47.0 (3)C12A—C13A—C14A—C9A2.0 (3)
C1A—C2A—C9A—C10A105.3 (2)O1B—C1B—C2B—N1B17.4 (2)
C1A—C2A—C9A—C14A76.2 (2)O1B—C1B—C2B—C3B143.24 (16)
C1A—C3A—C4A—C5A178.1 (2)O2B—C1B—C2B—N1B168.28 (16)
C8A—C3A—C4A—C5A0.7 (3)O2B—C1B—C2B—C3B42.5 (2)
C1A—C3A—C8A—C7A178.7 (2)N1B—C2B—C3B—C4B73.0 (2)
C4A—C3A—C8A—C7A0.2 (3)C1B—C2B—C3B—C4B53.0 (2)
C3A—C4A—C5A—C6A1.0 (4)C2B—C3B—C4B—O3B1.4 (3)
C4A—C5A—C6A—C7A0.6 (4)C2B—C3B—C4B—O4B177.08 (16)
Hydrogen-bond geometry (Å, º) top
CgB is the centroid of phenyl ring B (C9–C14).
D—H···AD—HH···AD···AD—H···A
N1B—H1B1···O3Bi0.92 (4)1.92 (4)2.819 (2)168 (3)
N1B—H1B3···O3Bii0.87 (3)2.46 (3)3.112 (2)132 (3)
N1B—H1B3···O4Bii0.87 (3)2.20 (3)2.868 (2)134 (3)
O1A—H1O1···O2Bi0.88 (3)1.88 (3)2.752 (2)171 (3)
N1A—H1A1···O4Biii1.08 (4)1.70 (4)2.742 (3)162 (3)
N1A—H1A2···O1B0.95 (3)1.92 (3)2.862 (2)173 (3)
O1C—H1OB···O1Bi0.92 (4)1.82 (4)2.734 (2)173 (3)
O1C—H1OA···O1Biv0.90 (4)2.01 (4)2.840 (2)153 (4)
N1A—H1A3···O1C0.87 (4)2.45 (3)2.926 (3)115 (2)
N1B—H1B2···O1C0.96 (2)2.01 (3)2.938 (2)163 (2)
C2A—H2A···O1Av0.982.423.304 (3)150
C14A—H14A···O4Bvi0.932.533.371 (3)150
C3B—H3B2···CgBiii0.972.873.6127 (16)134
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1/2, z; (iii) x, y, z+1; (iv) x+2, y+1/2, z+1; (v) x, y1, z; (vi) x, y+1, z+1.
 

Acknowledgements

The author thanks Tokai University for a research grant, which partially supported this work.

References

First citationBari, A., Al-Obaid, A. M. & Ng, S. W. (2012). Acta Cryst. E68, o491.  Web of Science CSD CrossRef IUCr Journals
First citationDerissen, J. L., Endeman, H. J. & Peerdeman, A. F. (1968). Acta Cryst. B24, 1349–1354.  CSD CrossRef CAS IUCr Journals Web of Science
First citationEnraf–Nonius (1994). CAD4. Enraf-Nonius, Delft, The Netherlands.
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationFujii, I. (2015). Acta Cryst. E71, 1539–1541.  CSD CrossRef IUCr Journals
First citationFujii, I., Baba, H. & Takahashi, Y. (2005). Anal. Sci. X-ray Struct. Anal. Online, 21, x175–176.  CSD CrossRef CAS
First citationFujii, I. & Hirayama, N. (2002). Helv. Chim. Acta, 85, 2946–2960.  Web of Science CSD CrossRef CAS
First citationFujii, I., Watadani, T., Nunomura, S. & Takahashi, Y. (2006). Anal. Sci. X-ray Struct. Anal. Online, 22, x75–x76.  CSD CrossRef CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science
First citationRead, J. & Steele, C. C. (1927). J. Chem. Soc. pp. 910–918.  CrossRef
First citationSawka-Dobrowolska, W., Głowiak, T., Kozłowski, H. & Masterlerz, P. (1990). Acta Cryst. C46, 1679–1681.  CSD CrossRef CAS Web of Science IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationShitara, H., Shintani, T., Kodama, K. & Hirose, T. (2013). J. Org. Chem. 78, 9309–9316.  Web of Science CSD CrossRef CAS PubMed
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSuresh, C. G. & Vijayan, M. (1987). J. Biosci. 12, 13–21.  CrossRef CAS Web of Science
First citationUmadevi, K., Anitha, K., Sridhar, B., Srinivasan, N. & Rajaram, R. K. (2003). Acta Cryst. E59, o1073–o1075.  Web of Science CSD CrossRef IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds