research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of O-benzyl-L-tyrosine N-carb­­oxy anhydride

CROSSMARK_Color_square_no_text.svg

aFaculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa, Fukushima, 960-1296, Japan
*Correspondence e-mail: kana@sss.fukushima-u.ac.jp

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 March 2017; accepted 16 March 2017; online 21 March 2017)

In the title compound, C17H15NO4 (alternative name; O-benzyl-L-tyrosine N-carb­oxy anhydride), the oxazolidine ring is planer, with an r.m.s. deviation of 0.039 Å. The benz­yloxy and benzyl rings are almost coplanar, making a dihedral angle of 0.078 (10)°, and are inclined to the oxazolidine ring by 59.16 (11) and 58.42 (11)°, respectively. In the crystal, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds, forming ribbons propagating along [010]. The ribbons are linked by C—H⋯π inter­actions, forming a three-dimensional supra­molecular structure. The oxazolidine rings of adjacent ribbons are arranged into a layer parallel to the ab plane. This arrangement is favourable for the polymerization of the compound in the solid state.

1. Chemical context

N-Carb­oxy anhydrides (NCAs) of amino acids are extensively used as monomers for the preparation of high mol­ecular weight polypeptides (Kricheldorf, 2006[Kricheldorf, H. R. (2006). Angew. Chem. Int. Ed. 45, 5752-5784.]). Amino acid NCAs are easily soluble but the resulting polypeptides are not soluble in general organic solvents. Only a few amino acid ester NCAs such as γ-benzyl-L-glutamate NCA (BLG NCA) and β-benzyl-L-aspartate NCA (BLA NCA) are polymerized in solutions, because the resulting polypeptides are soluble in them. On the other hand, we found that every amino acid NCA crystal is polymerized in the solid state in hexane by the initiation of amines. We studied the polymerization of BLA NCA (Kanazawa & Sato, 1996[Kanazawa, H. & Sato, Y. (1996). Science Reports, Fukushima University. 59, 13-17.]) and β-benzyl-DL-aspartate NCA (BDLA NCA) initiated by a primary amine in the solution and solid states, and we determined the crystal structure of BLA NCA (Kanazawa & Magoshi, 2003[Kanazawa, H. & Magoshi, J. (2003). Acta Cryst. C59, o159-o161.]) and BDLA NCA (Kanazawa & Inada, 2017[Kanazawa, H. & Inada, A. (2017). Acta Cryst. E73, 445-447.]) to consider their high reactivity in the solid state. In addition, we prepared single crystals of the title compound, O-benzyl-L-tyrosine (OBLT NCA) in hexa­ne–ethyl acetate mixture. The polymerization of OBLT NCA is initiated by butyl amine initiator in dioxane or aceto­nitrile solutions. However, the polymerization rate was extremely slow, because the resultant polymer has a poor solubility in these solvents. On the other hand, the polymerization of OBLT NCA initiated by butyl amine was very reactive in the solid state in hexane. High mol­ecular weight poly(OBLT) was obtained only in the solid-state polymer­ization. High mol­ecular weight poly(OBLT) is valuable, because poly(L-tyrosine) is obtained by the hydration of benzyl groups of the polymer. Therefore, it is important to determine the crystal structure to consider the difference in the reactivity in solution and in the solid state.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The oxazolidine ring (O2/N1/C1–C3) is planar with an r.m.s. deviation of 0.039 Å, and a maximum deviation of 0.033 (2) Å for atom C3. The side chain has an extended conformation with the C3—C4—C5—C6 and C7—C8—O4—C11 torsion angles being 98.8 (2) and 179.01 (18)°, respectively. Hence, the benz­yloxy (C12–C17) and benzyl (C5–C10) rings are almost coplanar, making a dihedral angle of 0.078 (10)°, and are inclined to the oxazolidine ring by 59.16 (11) and 58.42 (11)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling and 50% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal, mol­ecules are linked via N1—H1⋯O3i and C—H⋯O3ii hydrogen bonds, forming ribbons propagating along the b-axis direction (Table 1[link] and Fig. 2[link]). The ribbons are linked by C—H⋯π inter­actions, forming a three-dimensional supra­molecular structure (Table 1[link] and Fig. 3[link]). The five-membered oxazolidine rings are packed in a layer and the –CH2C6H4OCH2C6H5 side chains are packed in another layer; the two different layers stack alternately. This sandwich structure is one of the important requirements for high reactivity in the solid state, because the five-membered rings can react with each other in the layer.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C12–C17 benz­yloxy ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.88 (3) 2.09 (3) 2.885 (2) 150 (2)
C3—H3⋯O3ii 1.00 2.50 3.410 (3) 151
C6—H6⋯Cgiii 0.95 2.89 3.546 (3) 127
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+2]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
A partial view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, only H atoms H1 and H3 (grey balls) have been included.
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound. The hydrogen bonds and C—H⋯π inter­actions are shown as dashed lines (see Table 1[link]). For clarity, only H atoms H1 and H3 and H6 (grey balls) have been included.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the presence of 15 hits for 4-methyl­ene-oxazolidine-2,5-dione or 4-ethyl-4-methyl­ene-oxazolidine-2,5-dione derivatives. A number of these compounds involve amino acid side chains (amino acid NCAs). There are four compounds in which a benzyl group side chain is bonded to atom C4 in the oxazolidine-2,5-dione ring, viz N-carb­oxy-L-phenyl­alanine anhydride (KIXSUF; Kanazawa, 2000[Kanazawa, H. (2000). Acta Cryst. C56, 469-470.]), N-carb­oxy-DL-phenyl­alanine anhydride (RESSUD; Kanazawa et al., 1997[Kanazawa, H., Uekusa, H. & Ohashi, Y. (1997). Acta Cryst. C53, 1154-1156.]), N-carb­oxy-(R)-phenyl­alanine anhydride 3-(2-thien­yl) alanine-N-carb­oxy­anhydride (SAPYEO; Nery et al.,2005[Nery, J. G., Bolbach, G., Weissbuch, G. & Lahav, M. (2005). Chem. Eur. J. 11, 3039-3048.]) and Cα-ethyl-(S)-phenyl­alanine-N-carb­oxy­anhydride (ZATWEW; Crisma et al.,1995[Crisma, M., Valle, G., Formaggio, F., Toniolo, C. & Kamphui, J. (1995). Z. Kristallogr. 210, 634-635.]). In these compounds, the dihedral angles between oxazolidine-2,5-dione ring mean plane and the benzene ring are very similar, viz 58.42 (11)° in the title compound, 59.34 (15)° in KIXSUF, 55.8 (2) and 54.7 (2)° in RESSUD, 51.7 (7), 50.6 (7)° in SAPYEO and 58.8 (7)° in ZATWEW. Inter­molecular hydrogen bonds are formed between the imino group and the carbonyl O atom in position 2 of the oxazolidine ring in the title compound and in ZATWEW. On the other hand, they are formed between the imino group and the carbonyl O atom at position 5 of the oxazolidine ring in KIXSUF and RESSUD.

5. Synthesis and crystallization

Reagent-grade O-benzyl-L-tyrosine (OBLT) (Product Code B3210; Tokyo Kasei Co. Ltd.) was used as received. The title compound was synthesized by the reaction of OBLT with triphosgene in tetra­hydro­furan, as reported previously for the synthesis of BLA NCA (Kanazawa & Magoshi, 2003[Kanazawa, H. & Magoshi, J. (2003). Acta Cryst. C59, o159-o161.]). The reaction product was recrystallized slowly in a mixture of ethyl acetate and hexane (1:50 v/v), avoiding moisture contamination, and gave colourless needle-shaped crystals.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N-bound H atom was located in a difference-Fourier map and refined with a distance restraint of N—H = 0.88 (4) Å, with Uiso(H) = 1.14Ueq(N). C-bound H atoms were positioned geometrically and treated as riding: C—H = 0.95–1.00 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C17H15NO4
Mr 297.30
Crystal system, space group Monoclinic, P21
Temperature (K) 123
a, b, c (Å) 7.7388 (5), 5.9128 (4), 15.7769 (10)
β (°) 96.390 (2)
V3) 717.43 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.26 × 0.13 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.975, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 6593, 1635, 1444
Rint 0.034
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.068, 1.10
No. of reflections 1635
No. of parameters 202
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.18
Computer programs: RAPID-AUTO (Rigaku, 2009[Rigaku (2009). RAPID-AUTO and CrystalStructure, Rigaku Corporation. Tokyo, Japan.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), CrystalStructure (Rigaku, 2009[Rigaku (2009). RAPID-AUTO and CrystalStructure, Rigaku Corporation. Tokyo, Japan.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2009); cell refinement: RAPID-AUTO (Rigaku, 2009); data reduction: RAPID-AUTO (Rigaku, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2009).

(S)-4-[4-(Benzyloxy)benzyl]oxazolidine-2,5-dione top
Crystal data top
C17H15NO4F(000) = 312
Mr = 297.30Dx = 1.376 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ybCell parameters from 7077 reflections
a = 7.7388 (5) Åθ = 3.5–27.4°
b = 5.9128 (4) ŵ = 0.10 mm1
c = 15.7769 (10) ÅT = 123 K
β = 96.390 (2)°Needle, colourless
V = 717.43 (8) Å30.26 × 0.13 × 0.10 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1635 independent reflections
Radiation source: fine-focus sealed tube1444 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 10.0 pixels mm-1θmax = 26.5°, θmin = 3.5°
ω–scanh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 77
Tmin = 0.975, Tmax = 0.990l = 1919
6593 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0302P)2 + 0.1082P]
where P = (Fo2 + 2Fc2)/3
1635 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.20 e Å3
1 restraintΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.08406 (18)0.6360 (3)0.91435 (9)0.0310 (4)
O20.89115 (18)0.3443 (3)0.91282 (8)0.0238 (3)
O30.6500 (2)0.1393 (3)0.92135 (9)0.0290 (4)
O40.70846 (18)0.5324 (3)0.52871 (9)0.0265 (4)
N10.7966 (2)0.6908 (3)0.93804 (11)0.0229 (4)
H10.792 (3)0.840 (6)0.9383 (16)0.026*
C10.9379 (3)0.5765 (4)0.92122 (12)0.0234 (5)
C20.7201 (3)0.3211 (4)0.92381 (12)0.0221 (5)
C30.6426 (3)0.5499 (4)0.93569 (13)0.0213 (4)
H30.59410.55680.99180.026*
C40.4993 (2)0.6067 (4)0.86274 (12)0.0222 (5)
H4A0.40030.50220.86590.027*
H4B0.45700.76220.87120.027*
C50.5591 (2)0.5901 (4)0.77459 (12)0.0212 (5)
C60.5233 (3)0.3969 (4)0.72446 (13)0.0227 (5)
H60.46200.27430.74610.027*
C70.5764 (3)0.3826 (4)0.64309 (13)0.0229 (5)
H70.55240.25000.60980.027*
C80.6648 (2)0.5620 (4)0.61046 (13)0.0218 (4)
C90.7028 (3)0.7545 (4)0.65934 (13)0.0230 (5)
H90.76440.87660.63760.028*
C100.6491 (3)0.7661 (4)0.74112 (13)0.0233 (5)
H100.67500.89780.77460.028*
C110.7964 (3)0.7139 (4)0.49268 (12)0.0236 (5)
H11A0.90580.74810.52920.028*
H11B0.72260.85100.48960.028*
C120.8365 (2)0.6502 (4)0.40454 (13)0.0215 (4)
C130.7879 (3)0.4450 (4)0.36549 (13)0.0231 (5)
H130.72760.33550.39500.028*
C140.8277 (3)0.4004 (4)0.28317 (13)0.0245 (5)
H140.79500.25970.25710.029*
C150.9141 (3)0.5582 (4)0.23910 (13)0.0281 (5)
H150.93940.52710.18270.034*
C160.9636 (3)0.7619 (4)0.27748 (14)0.0293 (5)
H161.02390.87060.24760.035*
C170.9253 (3)0.8080 (4)0.35980 (13)0.0265 (5)
H170.95980.94820.38580.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0254 (8)0.0395 (10)0.0284 (7)0.0028 (8)0.0048 (6)0.0012 (7)
O20.0264 (7)0.0216 (8)0.0242 (7)0.0054 (7)0.0067 (6)0.0018 (7)
O30.0374 (9)0.0201 (8)0.0295 (8)0.0022 (7)0.0040 (7)0.0011 (7)
O40.0333 (8)0.0254 (9)0.0214 (7)0.0067 (7)0.0060 (6)0.0013 (6)
N10.0234 (9)0.0190 (10)0.0264 (8)0.0002 (8)0.0030 (7)0.0026 (8)
C10.0263 (11)0.0272 (12)0.0164 (9)0.0002 (10)0.0020 (8)0.0030 (9)
C20.0287 (11)0.0244 (12)0.0138 (9)0.0034 (10)0.0051 (8)0.0031 (8)
C30.0249 (10)0.0194 (11)0.0208 (9)0.0005 (9)0.0084 (8)0.0008 (9)
C40.0198 (9)0.0218 (12)0.0254 (10)0.0014 (9)0.0044 (8)0.0006 (9)
C50.0156 (9)0.0241 (13)0.0232 (9)0.0043 (9)0.0002 (8)0.0016 (9)
C60.0189 (10)0.0225 (12)0.0264 (10)0.0013 (9)0.0008 (8)0.0031 (9)
C70.0209 (10)0.0209 (12)0.0258 (10)0.0011 (9)0.0024 (8)0.0025 (9)
C80.0204 (10)0.0243 (11)0.0203 (9)0.0012 (10)0.0012 (8)0.0001 (9)
C90.0243 (10)0.0212 (11)0.0232 (10)0.0020 (9)0.0012 (8)0.0033 (9)
C100.0243 (11)0.0207 (12)0.0242 (10)0.0004 (9)0.0009 (8)0.0004 (9)
C110.0250 (10)0.0223 (12)0.0234 (10)0.0022 (9)0.0020 (8)0.0017 (9)
C120.0172 (9)0.0249 (11)0.0217 (9)0.0013 (9)0.0006 (8)0.0028 (9)
C130.0212 (11)0.0216 (11)0.0265 (10)0.0009 (9)0.0021 (8)0.0028 (9)
C140.0223 (11)0.0228 (12)0.0277 (10)0.0006 (9)0.0001 (9)0.0018 (9)
C150.0263 (11)0.0344 (13)0.0241 (10)0.0029 (11)0.0045 (8)0.0038 (10)
C160.0332 (12)0.0275 (13)0.0287 (11)0.0040 (10)0.0105 (9)0.0038 (10)
C170.0264 (11)0.0240 (13)0.0290 (11)0.0039 (10)0.0024 (9)0.0024 (10)
Geometric parameters (Å, º) top
O1—C11.201 (2)C7—H70.9500
O2—C21.361 (2)C8—C91.388 (3)
O2—C11.422 (3)C9—C101.400 (3)
O3—C21.202 (3)C9—H90.9500
O4—C81.380 (2)C10—H100.9500
O4—C111.423 (3)C11—C121.506 (3)
N1—C11.337 (3)C11—H11A0.9900
N1—C31.451 (3)C11—H11B0.9900
N1—H10.88 (3)C12—C131.393 (3)
C2—C31.500 (3)C12—C171.396 (3)
C3—C41.544 (3)C13—C141.393 (3)
C3—H31.0000C13—H130.9500
C4—C51.517 (3)C14—C151.380 (3)
C4—H4A0.9900C14—H140.9500
C4—H4B0.9900C15—C161.383 (3)
C5—C101.389 (3)C15—H150.9500
C5—C61.399 (3)C16—C171.391 (3)
C6—C71.394 (3)C16—H160.9500
C6—H60.9500C17—H170.9500
C7—C81.391 (3)
C2—O2—C1109.05 (16)O4—C8—C7115.5 (2)
C8—O4—C11117.10 (17)C9—C8—C7120.15 (18)
C1—N1—C3113.10 (19)C8—C9—C10119.05 (19)
C1—N1—H1122.7 (16)C8—C9—H9120.5
C3—N1—H1122.7 (16)C10—C9—H9120.5
O1—C1—N1132.0 (2)C5—C10—C9121.8 (2)
O1—C1—O2120.44 (19)C5—C10—H10119.1
N1—C1—O2107.53 (17)C9—C10—H10119.1
O3—C2—O2121.8 (2)O4—C11—C12109.70 (18)
O3—C2—C3128.69 (18)O4—C11—H11A109.7
O2—C2—C3109.44 (18)C12—C11—H11A109.7
N1—C3—C2100.53 (16)O4—C11—H11B109.7
N1—C3—C4114.45 (17)C12—C11—H11B109.7
C2—C3—C4111.52 (18)H11A—C11—H11B108.2
N1—C3—H3110.0C13—C12—C17118.84 (18)
C2—C3—H3110.0C13—C12—C11123.57 (19)
C4—C3—H3110.0C17—C12—C11117.6 (2)
C5—C4—C3113.72 (15)C14—C13—C12120.03 (19)
C5—C4—H4A108.8C14—C13—H13120.0
C3—C4—H4A108.8C12—C13—H13120.0
C5—C4—H4B108.8C15—C14—C13120.8 (2)
C3—C4—H4B108.8C15—C14—H14119.6
H4A—C4—H4B107.7C13—C14—H14119.6
C10—C5—C6118.23 (17)C14—C15—C16119.63 (19)
C10—C5—C4121.1 (2)C14—C15—H15120.2
C6—C5—C4120.62 (18)C16—C15—H15120.2
C7—C6—C5120.66 (19)C15—C16—C17120.2 (2)
C7—C6—H6119.7C15—C16—H16119.9
C5—C6—H6119.7C17—C16—H16119.9
C8—C7—C6120.1 (2)C16—C17—C12120.6 (2)
C8—C7—H7119.9C16—C17—H17119.7
C6—C7—H7119.9C12—C17—H17119.7
O4—C8—C9124.34 (19)
C3—N1—C1—O1176.8 (2)C11—O4—C8—C7179.01 (18)
C3—N1—C1—O24.5 (2)C6—C7—C8—O4178.74 (18)
C2—O2—C1—O1179.56 (17)C6—C7—C8—C91.1 (3)
C2—O2—C1—N10.7 (2)O4—C8—C9—C10178.99 (19)
C1—O2—C2—O3178.53 (18)C7—C8—C9—C100.8 (3)
C1—O2—C2—C33.2 (2)C6—C5—C10—C90.4 (3)
C1—N1—C3—C26.0 (2)C4—C5—C10—C9179.00 (19)
C1—N1—C3—C4113.59 (19)C8—C9—C10—C50.1 (3)
O3—C2—C3—N1176.5 (2)C8—O4—C11—C12178.88 (17)
O2—C2—C3—N15.4 (2)O4—C11—C12—C131.7 (3)
O3—C2—C3—C461.8 (3)O4—C11—C12—C17179.17 (18)
O2—C2—C3—C4116.34 (17)C17—C12—C13—C140.1 (3)
N1—C3—C4—C558.2 (2)C11—C12—C13—C14179.01 (19)
C2—C3—C4—C555.1 (2)C12—C13—C14—C150.5 (3)
C3—C4—C5—C1081.9 (2)C13—C14—C15—C160.8 (3)
C3—C4—C5—C698.8 (2)C14—C15—C16—C170.5 (3)
C10—C5—C6—C70.1 (3)C15—C16—C17—C120.1 (3)
C4—C5—C6—C7179.27 (18)C13—C12—C17—C160.4 (3)
C5—C6—C7—C80.6 (3)C11—C12—C17—C16178.8 (2)
C11—O4—C8—C90.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 benzyloxy ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.88 (3)2.09 (3)2.885 (2)150 (2)
C3—H3···O3ii1.002.503.410 (3)151
C6—H6···Cgiii0.952.893.546 (3)127
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+2; (iii) x+1, y1/2, z+1.
 

Acknowledgements

HK thanks the Rigaku Corporation, Tokyo, Japan, for assistance with the data collection of the title compound and Dr Hidehiro Uekusa of Tokyo Institute of Technology for assistance with the checking of the crystal-structure analysis of the title compound.

References

First citationCrisma, M., Valle, G., Formaggio, F., Toniolo, C. & Kamphui, J. (1995). Z. Kristallogr. 210, 634–635.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKanazawa, H. (2000). Acta Cryst. C56, 469–470.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKanazawa, H. & Inada, A. (2017). Acta Cryst. E73, 445–447.  CSD CrossRef IUCr Journals Google Scholar
First citationKanazawa, H. & Magoshi, J. (2003). Acta Cryst. C59, o159–o161.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKanazawa, H. & Sato, Y. (1996). Science Reports, Fukushima University. 59, 13–17.  Google Scholar
First citationKanazawa, H., Uekusa, H. & Ohashi, Y. (1997). Acta Cryst. C53, 1154–1156.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKricheldorf, H. R. (2006). Angew. Chem. Int. Ed. 45, 5752–5784.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNery, J. G., Bolbach, G., Weissbuch, G. & Lahav, M. (2005). Chem. Eur. J. 11, 3039–3048.  CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (2009). RAPID-AUTO and CrystalStructure, Rigaku Corporation. Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds