research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of 2-acetyl-4-ethynylphenol and 2-acetyl-4-(3-hy­dr­oxy-3-methylbut-1-yn-1-yl)phenol

CROSSMARK_Color_square_no_text.svg

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: edwin.weber@chemie-tu.freiberg.de

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 29 July 2016; accepted 22 August 2016; online 5 September 2016)

In the title compounds, C10H8O2, (I), and C13H14O3, (II), the 2-acetyl-4-ethynylphenol unit displays a planar geometry, which is stabilized by an intra­molecular O—H⋯O hydrogen bond. The crystal structure of (I) is constructed of infinite strands, along [101], of C—H⋯O=C hydrogen-bonded mol­ecules, which in turn are linked by C—H⋯π inter­actions. In the crystal of (II), which crystallized with three independent mol­ecules per asymmetric unit, the non-polar parts of the mol­ecules form hydro­phobic layered domains, parallel to (10-1), which are separated by the polar groups. While the 2-acetyl­phenol part of the mol­ecules are involved in O—H⋯O=C hydrogen bonding, the ternary OH groups creates a cyclic pattern of O—H⋯O hydrogen bonds.

1. Chemical context

2-Acetyl­phenol and its derivatives are well known for their efficiency in the complexation of transition metal ions (Weber, 1977[Weber, J. H. (1977). Synth. React. Inorg. Met.-Org. Chem. 7, 243-252.]; Duckworth & Stephenson, 1969[Duckworth, V. F. & Stephenson, N. C. (1969). Acta Cryst. B25, 2245-2254.]; Ali et al., 2005[Ali, H. M., Abdul Halim, S. N. & Ng, S. W. (2005). Acta Cryst. E61, m1429-m1430.]). Such mol­ecules, endowed with a 2-acetyl­phenol moiety, have been used as mol­ecular linkers for the construction of coordination polymers and related porous framework structures (Hübscher et al., 2013[Hübscher, J., Günthel, M., Rosin, R., Seichter, W., Mertens, F. & Weber, E. (2013). Z. Naturforsch. Teil B, 68, 214-222.]; Günthel et al., 2015[Günthel, M., Hübscher, J., Dittrich, R., Weber, E., Joseph, Y. & Mertens, F. (2015). J. Polym. Sci. Part B Polym. Phys. 53, 335-344.]) that are the subject of great topical inter­est (MacGillivray, 2010[MacGillivray, L. R. (2010). Metal-Organic Frameworks. Hoboken: Wiley.]; Furukawa et al., 2013[Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444.]; Eddaoudi et al., 2015[Eddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K. & Guillerm, V. (2015). Chem. Soc. Rev. 44, 228-249.]). A corresponding linker design features a structure with terminal chelating 2-acetyl­phenol units attached to a linear central segment. In the course of the synthesis of respective linkers, the 2-acetyl­phenol derivatives (I)[link] and (II)[link], being substituted acetyl­enically in the 4-position, are important inter­mediates (Hübscher et al., 2013[Hübscher, J., Günthel, M., Rosin, R., Seichter, W., Mertens, F. & Weber, E. (2013). Z. Naturforsch. Teil B, 68, 214-222.]). However, these compounds are not only of experimental preparative relevance but also show inter­esting structures in the crystalline state, as discussed in the present communication.

[Scheme 1]

2. Structural commentary

The crystal structures of the title compounds (I)[link] and (II)[link], crystallize in the space groups P[\overline{1}] and P21/c, respectively. Perspective views of the mol­ecules are depicted in Fig. 1[link]. In (I)[link] the asymmetric part of the unit cell contains one mol­ecule (Fig. 1[link]a). As a result of the presence of an intra­molecular O–H⋯O hydrogen bond, the mol­ecule has an almost planar geometry with largest atomic distances from the mean plane being −0.034 (1) Å for atom C5 and 0.069 (1) Å for atom O1. Because of substituent effects, the bond distances within the aromatic ring of the mol­ecule deviate significantly from those observed in the polymorphous structures of ethynyl­benzene (Dziubek et al. 2007[Dziubek, K., Podsiadło, M. & Katrusiak, A. (2007). J. Am. Chem. Soc. 129, 12620-12621.]; Thakur et al. 2010[Thakur, T. S., Sathishkumar, R., Dikundwar, A. G., Guru Row, T. N. & Desiraju, G. R. (2010). Cryst. Growth Des. 10, 4246-4249.]). Compound (II)[link] crystallizes with three independent and conformationally non-equivalent mol­ecules in the asymmetric unit. The mol­ecules differ in their geometries around the di­methyl­hydroxy­methyl structural element. These differences are expressed by the torsion angle along the atomic sequences Cethyn­yl—C—O—H which are 72.1 (2) and 83.9 (2)° (gauche) for mol­ecules 1 and 3 and 173.0 (2)° (anti) for mol­ecule 2 (Fig. 1[link]b). The ethynyl segment of the mol­ecules also deviates from linearity, possibly because of packing forces and inter­molecular inter­actions.

[Figure 1]
Figure 1
Perspective view of the mol­ecular structure of the title compounds, (a) (I)[link] and (b) (II)[link], with the atom labelling. Displacement parameters are drawn at the 50% probability level.

3. Supra­molecular features

Infinite strands of C—H⋯O hydrogen-bonded mol­ecules [d(H⋯O) 2.28 Å] (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.]) running along [101] represent the basic supra­molecular aggregates of the crystal structure of (I)[link]. Within a given strand, the acetyl­enic hydrogen acts as a donor and the acyl oxygen as an acceptor site (Fig. 2[link] and Table 1[link]). A view of the crystal packing reveals a layered arrangement of the mol­ecular chains in the ac plane. As depicted in Fig. 2[link], the crystal of (I)[link] lacks ππ arene stacking (Martinez & Iverson, 2012[Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191-2201.]). Instead, the methyl hydrogen H8C forms a weak C—H⋯π contact [d(H⋯π) 2.72 Å; Table 1[link]] (Nishio et al., 2009[Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757-1788.]), which connects the chains of consecutive layers.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 1.83 2.5696 (11) 146
C10—H10⋯O2i 0.95 2.28 3.2214 (14) 171
C8—H8CCg1ii 0.97 2.72 3.6024 (12) 150
Symmetry codes: (i) x-1, y, z+1; (ii) -x+2, -y+3, -z+1.
[Figure 2]
Figure 2
A partial view of the crystal packing of compound (I)[link]. Hydrogen bonds are shown as dashed lines (see Table 1[link]), and O atoms as red circles.

Because of the presence of a di­methyl­hydroxy­methyl residue as a terminal group, the crystal structure of (II)[link] is composed of hexa­mers of O—H⋯O hydrogen-bonded mol­ecules [d(H⋯O) 1.90, 1.99 Å], which create a cyclic hydrogen-bond motif of graph set R66(12) (Table 2[link] and Fig. 3[link]). Furthermore, the hexa­mers are inter­connected by weaker O—H⋯O hydrogen bonds involving the phenolic OH hydrogens H1 and H1A as donors and the acyl oxygen atoms O2A and O2B as acceptors [d(H⋯O) 2.60, 2.53 Å], forming layers parallel to (10[\overline{1}]). The mol­ecules pack with the di­methyl­hydroxy­methyl groups assembled in layered structure domains, separated by the non-polar parts of the mol­ecules (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.84 1.83 2.5639 (16) 145
O1—H1⋯O2Ai 0.84 2.60 3.1129 (15) 121
O3—H3⋯O3Bii 0.84 1.90 2.7300 (12) 171
O1A—H1A⋯O2A 0.84 1.85 2.5832 (15) 145
O1A—H1A⋯O2Biii 0.84 2.53 3.0303 (16) 119
O3A—H3A1⋯O3 0.84 1.99 2.8262 (13) 176
O1B—H1B⋯O2B 0.84 1.83 2.5611 (16) 145
O3B—H3B⋯O3Aiv 0.84 1.99 2.8203 (13) 172
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+2; (iii) -x, -y+1, -z+1; (iv) x, y, z+1.
[Figure 3]
Figure 3
The crystal packing of compound (II)[link], viewed along the c axis. Hydrogen bonds are shown as dashed lines (see Table 2[link]) and C-bound H atoms have been omitted for clarity.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.37, update November 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for p-substituted 2-acetyl­phenols excluding their co-crystals and complexes yielded 23 hits, only two of them containing the 4-ethynyl-2-acetyl­phenol element, namely 1,1′-[1,4-phenylene­bis(ethyne-2,1-di­yl(6-hy­droxy-3,1-phenyl­ene)]di­ethanone and 1,1′-[ethyne-1,2-diylbis(6-hy­droxy-3,1-phenyl­ene)]di­ethan­one [CSD refcodes: TEVLAJ and TEVLEN; Hübscher et al., 2013[Hübscher, J., Günthel, M., Rosin, R., Seichter, W., Mertens, F. & Weber, E. (2013). Z. Naturforsch. Teil B, 68, 214-222.]]. The presence of an acceptor instead of a donor substituent in p-position of the phenolic OH as in 4-cyano-2-acetophenol [LIWFUT; Filarowski et al., 2007[Filarowski, A., Kochel, A., Hansen, P. E., Urbanowicz, A. & Szymborska, K. (2007). J. Mol. Struct. 844-845, 77-82.])], 4-nitro-2-acetophenol [GADBAP; Hibbs et al., 2003[Hibbs, D. E., Overgaard, J. & Piltz, R. O. (2003). Org. Biomol. Chem. 1, 1191-1198.])] and 4-chloro-2-acetophenol [DACGOE; Filarowski et al., 2004[Filarowski, A., Koll, A., Kochel, A., Kalenik, J. & Hansen, P. E. (2004). J. Mol. Struct. 700, 67-72.])] markedly influences the pattern of non-covalent inter­molecular bonding. In the first two cases, the crystal is constructed of the same kind of mol­ecular strands in which the mol­ecules are linked via C—Harene⋯O=C bonding. Inter-strand association is accomplished by ππ stacking forces. In these structures, the p-substituents are excluded from inter­molecular inter­actions. In the latter compound, the chlorine atom acts as a bifurcated acceptor for C—H⋯Cl bonding (Thallapally & Nangia, 2001[Thallapally, P. K. & Nangia, A. (2001). CrystEngComm, 3, 114-119.]), thus creating double strand-like supra­molecular aggregates. Neither the OH nor the acetyl group are involved in inter­molecular bonding.

5. Synthesis and crystallization

Compounds (I)[link] and (II)[link] were synthesized following a literature procedure (Hübscher et al., 2013[Hübscher, J., Günthel, M., Rosin, R., Seichter, W., Mertens, F. & Weber, E. (2013). Z. Naturforsch. Teil B, 68, 214-222.]). This involves the reaction of 2-acetyl-4-bromo­phenol with 2-methyl­but-3-yn-2-ol (MEBYNOL) using a Sonogashira–Hagihara coupling process to give (II)[link]. A deblocking reaction of (II)[link] under basic conditions yielded (I)[link]. Crystals of (I)[link] and (II)[link], suitable for X-ray diffraction analysis, were obtained from solutions of n-hexa­ne/ethyl acetate (3:1, v/v) and cyclo­hexane, respectively, upon slow evaporation of the solvents at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were placed geometrically in idealized positions and allowed to ride on their parent atoms: O—H = 0.84 and C—H = 0.95–98 Å with Uiso(H) = 1.5Ueq(C-methyl and O) and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C10H8O2 C13H14O3
Mr 160.16 218.24
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 153 153
a, b, c (Å) 6.9725 (1), 7.3174 (1), 8.9189 (2) 22.5787 (6), 16.9306 (4), 9.2849 (2)
α, β, γ (°) 69.241 (1), 79.975 (1), 70.127 (1) 90, 101.815 (1), 90
V3) 399.42 (1) 3474.15 (14)
Z 2 12
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.09
Crystal size (mm) 0.55 × 0.41 × 0.15 0.36 × 0.18 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD area detector Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.956, 0.988 0.969, 0.992
No. of measured, independent and observed [I > 2σ(I)] reflections 8959, 2133, 1881 37857, 9244, 5584
Rint 0.018 0.043
(sin θ/λ)max−1) 0.684 0.684
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.115, 1.06 0.047, 0.117, 0.89
No. of reflections 2133 9244
No. of parameters 111 448
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.19 0.28, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(I) 2-Acetyl-4-ethynylphenol top
Crystal data top
C10H8O2Z = 2
Mr = 160.16F(000) = 168
Triclinic, P1Dx = 1.332 Mg m3
a = 6.9725 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.3174 (1) ÅCell parameters from 4876 reflections
c = 8.9189 (2) Åθ = 2.5–33.3°
α = 69.241 (1)°µ = 0.09 mm1
β = 79.975 (1)°T = 153 K
γ = 70.127 (1)°Irregular, colourless
V = 399.42 (1) Å30.55 × 0.41 × 0.15 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
1881 reflections with I > 2σ(I)
phi and ω scansRint = 0.018
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 29.1°, θmin = 2.5°
Tmin = 0.956, Tmax = 0.988h = 99
8959 measured reflectionsk = 109
2133 independent reflectionsl = 1212
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.0965P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2133 reflectionsΔρmax = 0.39 e Å3
111 parametersΔρmin = 0.19 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.41916 (10)0.74175 (12)0.41955 (9)0.0302 (2)
H11.39470.76030.32540.045*
O21.20310 (12)0.78960 (13)0.19487 (9)0.0330 (2)
C11.24964 (13)0.73237 (14)0.51663 (11)0.0216 (2)
C21.06267 (13)0.75622 (13)0.45971 (10)0.01892 (19)
C30.89112 (13)0.75319 (13)0.56854 (10)0.01892 (19)
H30.76460.76930.53170.023*
C40.90292 (13)0.72710 (13)0.72934 (11)0.01990 (19)
C51.09230 (14)0.69865 (14)0.78338 (11)0.0229 (2)
H51.10270.67830.89330.027*
C61.26244 (14)0.70005 (15)0.67882 (12)0.0245 (2)
H61.38950.67880.71740.029*
C71.04995 (14)0.78735 (14)0.28831 (11)0.0219 (2)
C80.85185 (15)0.81574 (16)0.22710 (11)0.0260 (2)
H8A0.86650.84970.10990.039*
H8B0.74500.92740.25640.039*
H8C0.81420.68870.27480.039*
C90.72595 (14)0.73051 (15)0.83939 (11)0.0233 (2)
C100.58198 (16)0.73495 (18)0.93333 (12)0.0303 (2)
H100.46700.73851.00840.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0169 (3)0.0405 (4)0.0325 (4)0.0114 (3)0.0054 (3)0.0114 (3)
O20.0275 (4)0.0478 (5)0.0258 (4)0.0153 (3)0.0108 (3)0.0163 (3)
C10.0160 (4)0.0208 (4)0.0276 (5)0.0062 (3)0.0026 (3)0.0084 (3)
C20.0178 (4)0.0195 (4)0.0200 (4)0.0062 (3)0.0015 (3)0.0075 (3)
C30.0165 (4)0.0209 (4)0.0198 (4)0.0060 (3)0.0003 (3)0.0073 (3)
C40.0188 (4)0.0204 (4)0.0197 (4)0.0055 (3)0.0005 (3)0.0066 (3)
C50.0234 (4)0.0245 (4)0.0216 (4)0.0065 (3)0.0038 (3)0.0080 (3)
C60.0186 (4)0.0268 (5)0.0299 (5)0.0069 (3)0.0049 (3)0.0093 (4)
C70.0227 (4)0.0230 (4)0.0208 (4)0.0084 (3)0.0043 (3)0.0091 (3)
C80.0269 (5)0.0333 (5)0.0207 (4)0.0104 (4)0.0005 (3)0.0117 (4)
C90.0229 (4)0.0286 (5)0.0181 (4)0.0072 (3)0.0019 (3)0.0073 (3)
C100.0241 (5)0.0454 (6)0.0199 (4)0.0100 (4)0.0018 (3)0.0107 (4)
Geometric parameters (Å, º) top
O1—C11.3447 (10)C4—C91.4357 (12)
O1—H10.8400C5—C61.3760 (13)
O2—C71.2359 (11)C5—H50.9500
C1—C61.3945 (13)C6—H60.9500
C1—C21.4144 (12)C7—C81.4954 (13)
C2—C31.4043 (11)C8—H8A0.9800
C2—C71.4776 (12)C8—H8B0.9800
C3—C41.3915 (12)C8—H8C0.9800
C3—H30.9500C9—C101.1896 (14)
C4—C51.4081 (13)C10—H100.9500
C1—O1—H1109.5C4—C5—H5119.6
O1—C1—C6117.45 (8)C5—C6—C1120.47 (8)
O1—C1—C2122.56 (8)C5—C6—H6119.8
C6—C1—C2119.99 (8)C1—C6—H6119.8
C3—C2—C1118.61 (8)O2—C7—C2120.17 (8)
C3—C2—C7121.40 (8)O2—C7—C8119.66 (8)
C1—C2—C7119.98 (8)C2—C7—C8120.17 (8)
C4—C3—C2121.23 (8)C7—C8—H8A109.5
C4—C3—H3119.4C7—C8—H8B109.5
C2—C3—H3119.4H8A—C8—H8B109.5
C3—C4—C5118.87 (8)C7—C8—H8C109.5
C3—C4—C9121.18 (8)H8A—C8—H8C109.5
C5—C4—C9119.94 (8)H8B—C8—H8C109.5
C6—C5—C4120.77 (8)C10—C9—C4178.07 (10)
C6—C5—H5119.6C9—C10—H10180.0
O1—C1—C2—C3177.21 (8)C9—C4—C5—C6178.37 (8)
C6—C1—C2—C32.03 (13)C4—C5—C6—C10.82 (14)
O1—C1—C2—C71.68 (14)O1—C1—C6—C5176.86 (8)
C6—C1—C2—C7179.08 (8)C2—C1—C6—C52.41 (14)
C1—C2—C3—C40.09 (13)C3—C2—C7—O2179.92 (8)
C7—C2—C3—C4178.96 (8)C1—C2—C7—O21.07 (14)
C2—C3—C4—C51.46 (13)C3—C2—C7—C80.24 (13)
C2—C3—C4—C9178.01 (8)C1—C2—C7—C8179.09 (8)
C3—C4—C5—C61.11 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.841.832.5696 (11)146
C10—H10···O2i0.952.283.2214 (14)171
C8—H8C···Cg1ii0.972.723.6024 (12)150
Symmetry codes: (i) x1, y, z+1; (ii) x+2, y+3, z+1.
(II) 2-acetyl-4-(3-hydroxy-3-methylbut-1-yn-1-yl)phenol top
Crystal data top
C13H14O3F(000) = 1392
Mr = 218.24Dx = 1.252 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 22.5787 (6) ÅCell parameters from 5422 reflections
b = 16.9306 (4) Åθ = 2.5–30.0°
c = 9.2849 (2) ŵ = 0.09 mm1
β = 101.815 (1)°T = 153 K
V = 3474.15 (14) Å3Irregular, colourless
Z = 120.36 × 0.18 × 0.09 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
5584 reflections with I > 2σ(I)
phi and ω scansRint = 0.043
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 29.1°, θmin = 1.5°
Tmin = 0.969, Tmax = 0.992h = 3030
37857 measured reflectionsk = 2215
9244 independent reflectionsl = 1212
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.7504P]
where P = (Fo2 + 2Fc2)/3
S = 0.89(Δ/σ)max < 0.001
9244 reflectionsΔρmax = 0.28 e Å3
448 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.89700 (5)0.94178 (6)0.79757 (13)0.0366 (3)
H10.92850.92500.77310.055*
O20.96006 (5)0.84850 (7)0.67152 (12)0.0346 (3)
O30.56111 (4)0.64727 (5)0.60432 (10)0.0205 (2)
H30.57890.60730.64580.031*
C10.85079 (7)0.89274 (9)0.74568 (17)0.0269 (3)
C20.85610 (6)0.82660 (8)0.65630 (15)0.0211 (3)
C30.80510 (6)0.77861 (8)0.60989 (15)0.0215 (3)
H3A0.80820.73400.54980.026*
C40.75036 (7)0.79445 (9)0.64918 (17)0.0263 (3)
C50.74677 (7)0.86060 (11)0.7373 (2)0.0421 (5)
H50.70950.87240.76520.051*
C60.79568 (7)0.90872 (10)0.7843 (2)0.0431 (5)
H60.79190.95340.84380.052*
C70.91531 (7)0.80842 (9)0.61934 (16)0.0240 (3)
C80.92118 (7)0.74117 (9)0.51956 (17)0.0307 (4)
H8A0.96080.74340.49220.046*
H8B0.88920.74470.43070.046*
H8C0.91730.69120.57020.046*
C90.69681 (7)0.74734 (9)0.59880 (17)0.0268 (3)
C100.65027 (7)0.71275 (8)0.55868 (16)0.0249 (3)
C110.59180 (6)0.67451 (8)0.49244 (15)0.0203 (3)
C120.54963 (7)0.73505 (9)0.40490 (18)0.0314 (4)
H12A0.51150.70950.35930.047*
H12B0.56860.75760.32810.047*
H12C0.54170.77720.47070.047*
C130.60249 (7)0.60527 (9)0.39664 (17)0.0323 (4)
H13A0.63300.57000.45340.048*
H13B0.61680.62500.31060.048*
H13C0.56460.57620.36410.048*
O1A0.09288 (5)0.39654 (6)0.19886 (12)0.0314 (3)
H1A0.06060.41250.22080.047*
O2A0.02652 (5)0.48991 (6)0.31900 (12)0.0314 (3)
O3A0.44017 (4)0.60416 (6)0.48406 (11)0.0266 (2)
H3A10.47620.61510.52260.040*
C1A0.13877 (6)0.44376 (8)0.26152 (15)0.0223 (3)
C2A0.13134 (6)0.50939 (8)0.35040 (15)0.0201 (3)
C3A0.18251 (6)0.55480 (8)0.40964 (15)0.0218 (3)
H3A20.17820.59950.46850.026*
C4A0.23926 (6)0.53601 (8)0.38434 (16)0.0225 (3)
C5A0.24516 (7)0.47049 (8)0.29560 (16)0.0255 (3)
H5A0.28380.45720.27700.031*
C6A0.19582 (7)0.42545 (9)0.23548 (17)0.0278 (3)
H6A0.20060.38140.17550.033*
C7A0.07086 (6)0.52920 (8)0.37736 (16)0.0229 (3)
C8A0.06356 (7)0.59680 (9)0.47539 (17)0.0281 (3)
H8A10.02170.59870.48890.042*
H8A20.07330.64620.43050.042*
H8A30.09090.58980.57110.042*
C9A0.29267 (7)0.57970 (8)0.45030 (16)0.0238 (3)
C10A0.33979 (6)0.60994 (8)0.50234 (16)0.0222 (3)
C11A0.40037 (6)0.64057 (8)0.56760 (15)0.0197 (3)
C12A0.41846 (7)0.61565 (9)0.72763 (16)0.0274 (3)
H12D0.41810.55790.73410.041*
H12E0.38980.63770.78300.041*
H12F0.45920.63520.76910.041*
C13A0.40330 (7)0.73018 (8)0.55269 (19)0.0344 (4)
H13D0.44400.74870.59770.052*
H13E0.37370.75480.60250.052*
H13F0.39410.74460.44830.052*
O1B0.09750 (5)0.76866 (6)0.69610 (12)0.0308 (3)
H1B0.06480.75190.71420.046*
O2B0.02975 (5)0.67941 (6)0.81596 (12)0.0312 (3)
O3B0.39230 (5)0.49085 (5)1.26894 (10)0.0223 (2)
H3B0.40580.52791.32660.033*
C1B0.14361 (6)0.72470 (8)0.76915 (16)0.0231 (3)
C2B0.13506 (6)0.66126 (8)0.86175 (15)0.0197 (3)
C3B0.18585 (6)0.61886 (8)0.93290 (15)0.0207 (3)
H3B10.18050.57580.99470.025*
C4B0.24368 (6)0.63788 (8)0.91583 (16)0.0225 (3)
C5B0.25058 (7)0.70103 (9)0.82282 (18)0.0318 (4)
H5B0.28990.71470.80950.038*
C6B0.20166 (7)0.74333 (9)0.75085 (18)0.0326 (4)
H6B0.20740.78570.68800.039*
C7B0.07363 (7)0.64181 (8)0.88234 (15)0.0218 (3)
C8B0.06475 (7)0.57612 (8)0.98361 (16)0.0260 (3)
H8B10.02260.57560.99510.039*
H8B20.09150.58411.07980.039*
H8B30.07440.52560.94220.039*
C9B0.29578 (6)0.59485 (8)0.99253 (16)0.0234 (3)
C10B0.33953 (7)0.56037 (8)1.05638 (16)0.0220 (3)
C11B0.39376 (6)0.51369 (8)1.12051 (15)0.0192 (3)
C12B0.39370 (8)0.43695 (8)1.03571 (17)0.0321 (4)
H12G0.43070.40731.07530.048*
H12H0.39190.44870.93160.048*
H12I0.35840.40531.04550.048*
C13B0.45099 (7)0.56111 (9)1.11999 (16)0.0263 (3)
H13G0.45120.60841.18090.039*
H13H0.45210.57671.01890.039*
H13I0.48650.52871.15980.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0213 (6)0.0381 (6)0.0493 (7)0.0113 (5)0.0050 (6)0.0164 (6)
O20.0213 (6)0.0484 (7)0.0351 (7)0.0103 (5)0.0080 (5)0.0079 (5)
O30.0189 (5)0.0210 (5)0.0220 (5)0.0017 (4)0.0049 (4)0.0048 (4)
C10.0189 (8)0.0300 (8)0.0299 (8)0.0060 (6)0.0006 (7)0.0063 (6)
C20.0171 (7)0.0260 (7)0.0191 (7)0.0034 (6)0.0009 (6)0.0023 (6)
C30.0198 (7)0.0232 (7)0.0204 (7)0.0028 (6)0.0017 (6)0.0008 (6)
C40.0184 (8)0.0301 (7)0.0283 (8)0.0069 (6)0.0002 (7)0.0013 (6)
C50.0186 (8)0.0521 (11)0.0565 (12)0.0055 (8)0.0097 (8)0.0235 (9)
C60.0238 (9)0.0481 (10)0.0576 (12)0.0044 (8)0.0091 (9)0.0309 (9)
C70.0216 (8)0.0315 (7)0.0189 (7)0.0017 (6)0.0038 (6)0.0036 (6)
C80.0274 (9)0.0356 (8)0.0305 (9)0.0002 (7)0.0090 (7)0.0021 (7)
C90.0208 (8)0.0298 (8)0.0292 (8)0.0033 (6)0.0037 (7)0.0004 (6)
C100.0221 (8)0.0256 (7)0.0266 (8)0.0013 (6)0.0041 (7)0.0019 (6)
C110.0178 (7)0.0233 (7)0.0198 (7)0.0054 (6)0.0038 (6)0.0018 (6)
C120.0248 (8)0.0315 (8)0.0348 (9)0.0078 (7)0.0015 (7)0.0154 (7)
C130.0264 (9)0.0423 (9)0.0297 (9)0.0057 (7)0.0091 (7)0.0122 (7)
O1A0.0187 (6)0.0355 (6)0.0388 (7)0.0094 (5)0.0029 (5)0.0100 (5)
O2A0.0163 (5)0.0419 (6)0.0355 (6)0.0057 (5)0.0044 (5)0.0029 (5)
O3A0.0160 (5)0.0374 (6)0.0272 (6)0.0055 (5)0.0062 (5)0.0113 (5)
C1A0.0178 (7)0.0254 (7)0.0223 (8)0.0052 (6)0.0007 (6)0.0027 (6)
C2A0.0159 (7)0.0254 (7)0.0182 (7)0.0015 (6)0.0018 (6)0.0043 (6)
C3A0.0205 (8)0.0234 (7)0.0211 (7)0.0007 (6)0.0035 (6)0.0008 (6)
C4A0.0170 (7)0.0243 (7)0.0248 (8)0.0040 (6)0.0009 (6)0.0027 (6)
C5A0.0162 (7)0.0291 (7)0.0315 (8)0.0008 (6)0.0058 (7)0.0006 (6)
C6A0.0248 (8)0.0277 (7)0.0309 (9)0.0018 (6)0.0059 (7)0.0069 (6)
C7A0.0180 (7)0.0295 (7)0.0205 (7)0.0009 (6)0.0023 (6)0.0055 (6)
C8A0.0202 (8)0.0329 (8)0.0319 (9)0.0007 (7)0.0074 (7)0.0004 (7)
C9A0.0191 (8)0.0251 (7)0.0270 (8)0.0004 (6)0.0046 (6)0.0000 (6)
C10A0.0188 (7)0.0234 (7)0.0244 (8)0.0003 (6)0.0044 (6)0.0019 (6)
C11A0.0154 (7)0.0217 (6)0.0215 (7)0.0001 (6)0.0025 (6)0.0025 (6)
C12A0.0267 (8)0.0315 (8)0.0236 (8)0.0001 (7)0.0041 (7)0.0034 (6)
C13A0.0286 (9)0.0226 (7)0.0484 (11)0.0029 (7)0.0008 (8)0.0019 (7)
O1B0.0201 (6)0.0336 (6)0.0370 (6)0.0063 (5)0.0018 (5)0.0147 (5)
O2B0.0178 (5)0.0398 (6)0.0348 (6)0.0047 (5)0.0025 (5)0.0082 (5)
O3B0.0278 (6)0.0200 (5)0.0186 (5)0.0002 (4)0.0036 (5)0.0013 (4)
C1B0.0200 (8)0.0244 (7)0.0228 (8)0.0039 (6)0.0008 (6)0.0043 (6)
C2B0.0178 (7)0.0219 (6)0.0184 (7)0.0001 (6)0.0011 (6)0.0016 (5)
C3B0.0207 (8)0.0203 (6)0.0202 (7)0.0002 (6)0.0024 (6)0.0016 (5)
C4B0.0187 (7)0.0247 (7)0.0224 (8)0.0038 (6)0.0005 (6)0.0027 (6)
C5B0.0181 (8)0.0376 (9)0.0389 (10)0.0003 (7)0.0041 (7)0.0123 (7)
C6B0.0227 (8)0.0365 (8)0.0385 (10)0.0022 (7)0.0061 (7)0.0188 (7)
C7B0.0202 (7)0.0256 (7)0.0190 (7)0.0004 (6)0.0028 (6)0.0038 (6)
C8B0.0215 (8)0.0296 (7)0.0271 (8)0.0029 (6)0.0055 (7)0.0011 (6)
C9B0.0182 (8)0.0251 (7)0.0259 (8)0.0010 (6)0.0022 (6)0.0026 (6)
C10B0.0194 (7)0.0230 (7)0.0231 (8)0.0013 (6)0.0033 (6)0.0015 (6)
C11B0.0199 (7)0.0202 (6)0.0168 (7)0.0024 (6)0.0018 (6)0.0001 (5)
C12B0.0419 (10)0.0257 (7)0.0267 (9)0.0038 (7)0.0021 (7)0.0059 (6)
C13B0.0199 (8)0.0331 (8)0.0251 (8)0.0013 (6)0.0029 (6)0.0058 (6)
Geometric parameters (Å, º) top
O1—C11.3432 (17)C6A—H6A0.9500
O1—H10.8400C7A—C8A1.492 (2)
O2—C71.2311 (17)C8A—H8A10.9800
O3—C111.4376 (16)C8A—H8A20.9800
O3—H30.8400C8A—H8A30.9800
C1—C61.390 (2)C9A—C10A1.1903 (19)
C1—C21.413 (2)C10A—C11A1.472 (2)
C2—C31.4031 (19)C11A—C12A1.518 (2)
C2—C71.479 (2)C11A—C13A1.5261 (19)
C3—C41.385 (2)C12A—H12D0.9800
C3—H3A0.9500C12A—H12E0.9800
C4—C51.399 (2)C12A—H12F0.9800
C4—C91.444 (2)C13A—H13D0.9800
C5—C61.370 (2)C13A—H13E0.9800
C5—H50.9500C13A—H13F0.9800
C6—H60.9500O1B—C1B1.3448 (16)
C7—C81.491 (2)O1B—H1B0.8400
C8—H8A0.9800O2B—C7B1.2314 (17)
C8—H8B0.9800O3B—C11B1.4382 (16)
C8—H8C0.9800O3B—H3B0.8400
C9—C101.194 (2)C1B—C6B1.392 (2)
C10—C111.486 (2)C1B—C2B1.4135 (19)
C11—C121.517 (2)C2B—C3B1.3988 (19)
C11—C131.520 (2)C2B—C7B1.476 (2)
C12—H12A0.9800C3B—C4B1.3849 (19)
C12—H12B0.9800C3B—H3B10.9500
C12—H12C0.9800C4B—C5B1.403 (2)
C13—H13A0.9800C4B—C9B1.442 (2)
C13—H13B0.9800C5B—C6B1.370 (2)
C13—H13C0.9800C5B—H5B0.9500
O1A—C1A1.3434 (16)C6B—H6B0.9500
O1A—H1A0.8400C7B—C8B1.4962 (19)
O2A—C7A1.2313 (17)C8B—H8B10.9800
O3A—C11A1.4403 (16)C8B—H8B20.9800
O3A—H3A10.8400C8B—H8B30.9800
C1A—C6A1.393 (2)C9B—C10B1.1951 (19)
C1A—C2A1.4144 (19)C10B—C11B1.4765 (19)
C2A—C3A1.4030 (19)C11B—C12B1.5189 (19)
C2A—C7A1.477 (2)C11B—C13B1.5221 (19)
C3A—C4A1.3862 (19)C12B—H12G0.9800
C3A—H3A20.9500C12B—H12H0.9800
C4A—C5A1.404 (2)C12B—H12I0.9800
C4A—C9A1.440 (2)C13B—H13G0.9800
C5A—C6A1.371 (2)C13B—H13H0.9800
C5A—H5A0.9500C13B—H13I0.9800
C1—O1—H1109.5H8A1—C8A—H8A2109.5
C11—O3—H3109.5C7A—C8A—H8A3109.5
O1—C1—C6117.24 (13)H8A1—C8A—H8A3109.5
O1—C1—C2123.17 (13)H8A2—C8A—H8A3109.5
C6—C1—C2119.58 (13)C10A—C9A—C4A174.00 (16)
C3—C2—C1118.43 (13)C9A—C10A—C11A175.11 (15)
C3—C2—C7122.16 (13)O3A—C11A—C10A104.90 (11)
C1—C2—C7119.37 (13)O3A—C11A—C12A109.62 (11)
C4—C3—C2121.85 (13)C10A—C11A—C12A110.24 (12)
C4—C3—H3A119.1O3A—C11A—C13A109.47 (12)
C2—C3—H3A119.1C10A—C11A—C13A111.50 (12)
C3—C4—C5118.10 (13)C12A—C11A—C13A110.93 (12)
C3—C4—C9122.75 (14)C11A—C12A—H12D109.5
C5—C4—C9119.12 (14)C11A—C12A—H12E109.5
C6—C5—C4121.52 (15)H12D—C12A—H12E109.5
C6—C5—H5119.2C11A—C12A—H12F109.5
C4—C5—H5119.2H12D—C12A—H12F109.5
C5—C6—C1120.52 (15)H12E—C12A—H12F109.5
C5—C6—H6119.7C11A—C13A—H13D109.5
C1—C6—H6119.7C11A—C13A—H13E109.5
O2—C7—C2120.13 (13)H13D—C13A—H13E109.5
O2—C7—C8119.69 (14)C11A—C13A—H13F109.5
C2—C7—C8120.18 (13)H13D—C13A—H13F109.5
C7—C8—H8A109.5H13E—C13A—H13F109.5
C7—C8—H8B109.5C1B—O1B—H1B109.5
H8A—C8—H8B109.5C11B—O3B—H3B109.5
C7—C8—H8C109.5O1B—C1B—C6B117.64 (13)
H8A—C8—H8C109.5O1B—C1B—C2B122.65 (13)
H8B—C8—H8C109.5C6B—C1B—C2B119.71 (13)
C10—C9—C4175.55 (16)C3B—C2B—C1B118.45 (13)
C9—C10—C11173.44 (16)C3B—C2B—C7B121.72 (12)
O3—C11—C10111.07 (11)C1B—C2B—C7B119.82 (13)
O3—C11—C12105.15 (11)C4B—C3B—C2B121.84 (13)
C10—C11—C12109.53 (11)C4B—C3B—H3B1119.1
O3—C11—C13109.47 (11)C2B—C3B—H3B1119.1
C10—C11—C13110.13 (12)C3B—C4B—C5B118.28 (13)
C12—C11—C13111.41 (13)C3B—C4B—C9B121.27 (13)
C11—C12—H12A109.5C5B—C4B—C9B120.44 (13)
C11—C12—H12B109.5C6B—C5B—C4B121.22 (14)
H12A—C12—H12B109.5C6B—C5B—H5B119.4
C11—C12—H12C109.5C4B—C5B—H5B119.4
H12A—C12—H12C109.5C5B—C6B—C1B120.48 (14)
H12B—C12—H12C109.5C5B—C6B—H6B119.8
C11—C13—H13A109.5C1B—C6B—H6B119.8
C11—C13—H13B109.5O2B—C7B—C2B120.07 (13)
H13A—C13—H13B109.5O2B—C7B—C8B120.09 (13)
C11—C13—H13C109.5C2B—C7B—C8B119.84 (13)
H13A—C13—H13C109.5C7B—C8B—H8B1109.5
H13B—C13—H13C109.5C7B—C8B—H8B2109.5
C1A—O1A—H1A109.5H8B1—C8B—H8B2109.5
C11A—O3A—H3A1109.5C7B—C8B—H8B3109.5
O1A—C1A—C6A116.82 (13)H8B1—C8B—H8B3109.5
O1A—C1A—C2A123.16 (13)H8B2—C8B—H8B3109.5
C6A—C1A—C2A120.02 (13)C10B—C9B—C4B178.88 (16)
C3A—C2A—C1A118.21 (13)C9B—C10B—C11B174.01 (15)
C3A—C2A—C7A121.67 (13)O3B—C11B—C10B110.51 (11)
C1A—C2A—C7A120.12 (12)O3B—C11B—C12B105.61 (11)
C4A—C3A—C2A121.56 (13)C10B—C11B—C12B109.64 (12)
C4A—C3A—H3A2119.2O3B—C11B—C13B109.33 (11)
C2A—C3A—H3A2119.2C10B—C11B—C13B110.54 (11)
C3A—C4A—C5A118.87 (13)C12B—C11B—C13B111.12 (12)
C3A—C4A—C9A122.18 (13)C11B—C12B—H12G109.5
C5A—C4A—C9A118.91 (13)C11B—C12B—H12H109.5
C6A—C5A—C4A120.76 (14)H12G—C12B—H12H109.5
C6A—C5A—H5A119.6C11B—C12B—H12I109.5
C4A—C5A—H5A119.6H12G—C12B—H12I109.5
C5A—C6A—C1A120.58 (14)H12H—C12B—H12I109.5
C5A—C6A—H6A119.7C11B—C13B—H13G109.5
C1A—C6A—H6A119.7C11B—C13B—H13H109.5
O2A—C7A—C2A119.97 (13)H13G—C13B—H13H109.5
O2A—C7A—C8A120.10 (13)C11B—C13B—H13I109.5
C2A—C7A—C8A119.94 (13)H13G—C13B—H13I109.5
C7A—C8A—H8A1109.5H13H—C13B—H13I109.5
C7A—C8A—H8A2109.5
O1—C1—C2—C3179.09 (14)C9A—C4A—C5A—C6A177.42 (14)
C6—C1—C2—C30.3 (2)C4A—C5A—C6A—C1A0.1 (2)
O1—C1—C2—C71.3 (2)O1A—C1A—C6A—C5A179.82 (13)
C6—C1—C2—C7178.10 (15)C2A—C1A—C6A—C5A0.1 (2)
C1—C2—C3—C40.0 (2)C3A—C2A—C7A—O2A177.17 (13)
C7—C2—C3—C4177.71 (13)C1A—C2A—C7A—O2A2.1 (2)
C2—C3—C4—C50.2 (2)C3A—C2A—C7A—C8A2.9 (2)
C2—C3—C4—C9177.97 (13)C1A—C2A—C7A—C8A177.88 (13)
C3—C4—C5—C60.1 (3)O1B—C1B—C2B—C3B179.88 (13)
C9—C4—C5—C6177.96 (17)C6B—C1B—C2B—C3B0.1 (2)
C4—C5—C6—C10.2 (3)O1B—C1B—C2B—C7B0.7 (2)
O1—C1—C6—C5179.02 (17)C6B—C1B—C2B—C7B179.48 (14)
C2—C1—C6—C50.4 (3)C1B—C2B—C3B—C4B0.6 (2)
C3—C2—C7—O2174.40 (13)C7B—C2B—C3B—C4B178.83 (13)
C1—C2—C7—O23.3 (2)C2B—C3B—C4B—C5B0.7 (2)
C3—C2—C7—C85.2 (2)C2B—C3B—C4B—C9B178.53 (13)
C1—C2—C7—C8177.15 (13)C3B—C4B—C5B—C6B0.3 (2)
O1A—C1A—C2A—C3A179.71 (13)C9B—C4B—C5B—C6B178.99 (15)
C6A—C1A—C2A—C3A0.3 (2)C4B—C5B—C6B—C1B0.3 (3)
O1A—C1A—C2A—C7A0.4 (2)O1B—C1B—C6B—C5B179.67 (15)
C6A—C1A—C2A—C7A179.61 (13)C2B—C1B—C6B—C5B0.5 (2)
C1A—C2A—C3A—C4A0.8 (2)C3B—C2B—C7B—O2B178.68 (13)
C7A—C2A—C3A—C4A179.90 (13)C1B—C2B—C7B—O2B1.9 (2)
C2A—C3A—C4A—C5A0.9 (2)C3B—C2B—C7B—C8B1.1 (2)
C2A—C3A—C4A—C9A176.86 (13)C1B—C2B—C7B—C8B178.30 (13)
C3A—C4A—C5A—C6A0.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.841.832.5639 (16)145
O1—H1···O2Ai0.842.603.1129 (15)121
O3—H3···O3Bii0.841.902.7300 (12)171
O1A—H1A···O2A0.841.852.5832 (15)145
O1A—H1A···O2Biii0.842.533.0303 (16)119
O3A—H3A1···O30.841.992.8262 (13)176
O1B—H1B···O2B0.841.832.5611 (16)145
O3B—H3B···O3Aiv0.841.992.8203 (13)172
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x+1, y+1, z+2; (iii) x, y+1, z+1; (iv) x, y, z+1.
 

Acknowledgements

We acknowledge the financial support within the Cluster of Excellence `Structure Design of Novel High-Performance Materials via Atomic Design and Defect Engineering (ADDE)' provided to us by the European Union (European Regional Development Fund) and by the Ministry of Science and Art of Saxony (SMWK) as well as by the Deutsche Forschungsgemeinschaft (DFG Priority Program 1362 `Porous Metal-Organic Frameworks').

References

First citationAli, H. M., Abdul Halim, S. N. & Ng, S. W. (2005). Acta Cryst. E61, m1429–m1430.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationDuckworth, V. F. & Stephenson, N. C. (1969). Acta Cryst. B25, 2245–2254.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDziubek, K., Podsiadło, M. & Katrusiak, A. (2007). J. Am. Chem. Soc. 129, 12620–12621.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEddaoudi, M., Sava, D. F., Eubank, J. F., Adil, K. & Guillerm, V. (2015). Chem. Soc. Rev. 44, 228–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFilarowski, A., Kochel, A., Hansen, P. E., Urbanowicz, A. & Szymborska, K. (2007). J. Mol. Struct. 844–845, 77–82.  Web of Science CSD CrossRef CAS Google Scholar
First citationFilarowski, A., Koll, A., Kochel, A., Kalenik, J. & Hansen, P. E. (2004). J. Mol. Struct. 700, 67–72.  Web of Science CSD CrossRef CAS Google Scholar
First citationFurukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. (2013). Science, 341, 1230444.  Web of Science CrossRef PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGünthel, M., Hübscher, J., Dittrich, R., Weber, E., Joseph, Y. & Mertens, F. (2015). J. Polym. Sci. Part B Polym. Phys. 53, 335–344.  Google Scholar
First citationHibbs, D. E., Overgaard, J. & Piltz, R. O. (2003). Org. Biomol. Chem. 1, 1191–1198.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHübscher, J., Günthel, M., Rosin, R., Seichter, W., Mertens, F. & Weber, E. (2013). Z. Naturforsch. Teil B, 68, 214–222.  Google Scholar
First citationMacGillivray, L. R. (2010). Metal-Organic Frameworks. Hoboken: Wiley.  Google Scholar
First citationMartinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191–2201.  Web of Science CrossRef CAS Google Scholar
First citationNishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThakur, T. S., Sathishkumar, R., Dikundwar, A. G., Guru Row, T. N. & Desiraju, G. R. (2010). Cryst. Growth Des. 10, 4246–4249.  Web of Science CSD CrossRef CAS Google Scholar
First citationThallapally, P. K. & Nangia, A. (2001). CrystEngComm, 3, 114–119.  CrossRef Google Scholar
First citationWeber, J. H. (1977). Synth. React. Inorg. Met.-Org. Chem. 7, 243–252.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds