research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-9-(4-nitro­benzyl­­idene)-8,9-di­hydro­pyrido[2,3-d]pyrrolo­[1,2-a]pyrimidin-5(7H)-one

CROSSMARK_Color_square_no_text.svg

aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan, and bA. S. Sadikov Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str. 83, Tashkent 100125, Uzbekistan
*Correspondence e-mail: hamidkhodjaniyazov@yandex.ru

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 February 2016; accepted 1 March 2016; online 4 March 2016)

The title compound, C17H12N4O3, a pyrido­pyrrolo­pyrimidine derivative, is almost planar. The nitro­benzene ring is inclined to the mean plane of the 8,9-di­hydro­pyrido[2,3-d]pyrrolo­[1,2-a]pyrimidin-5(7H)-one moiety (r.m.s. deviation = 0.023 Å) by 6.8 (1)°. In the crystal, mol­ecules are linked via C—H⋯O and C—H⋯N hydrogen bonds, forming layers parallel to (101).

1. Chemical context

Pyrido[2,3-d]pyrimidines, and their derivatives, are an important group of heterocyclic compounds that exhibit biological and pharmacological activities. For example, Le Corre et al. (2010[Le Corre, L., Girard, A. L., Aubertin, J., Radvanyi, F., Benoist-Lasselin, C., Jonquoy, A., Mugniery, E., Legeai-Mallet, L., Busca, P. & Le Merrer, Y. (2010). Org. Biomol. Chem. 8, 2164-2173.]) have produced a library of pyrido[2,3-d]py­rimi­dines designed as inhibitors of FGFR3 tyrosine kinase. Ramana Reddy et al. (2014[Reddy, M. V. R., Akula, B., Cosenza, S. C., Athuluridivakar, S., Mallireddigari, M. R., Pallela, V. R., Billa, V. K., Subbaiah, D. R. C. V., Bharathi, E. V., Carpio, R. V.-D., Padgaonkar, A., Baker, S. J. & Reddy, E. P. (2014). J. Med. Chem. 57, 578-599.]) have shown that such compounds are potent inhibitors of cyclin-dependent Kinase 4 (CDK4) and AMPK-related Kinase 5 (ARK5). A series of pyrazolo [4,3-d]pyrimidin-7-ones were synthesizied to study their pyrido kinases (CDKs) inhibitory activities (Geffken et al. 2011[Geffken, D., Soliman, R., Soliman, F. S. G., Abdel-Khalek, M. M. & Issa, D. A. E. (2011). Med. Chem. Res. 20, 408-420.]). The anti­tumor activity of some new pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidin-5-one derivatives have also been studied (El-Nassan, 2011[El-Nassan, H. B. (2011). Eur. J. Med. Chem. 46, 2031-2036.]), and the anti­tumor activity of pyrido[2,3-d]pyrimidine and pyrido[2,3-d][1,2,4]triazolo[4,3-a]pyrimidine derivatives that induce apoptosis through G1 cell-cycle arrest have been reported on by Fares et al. (2014[Fares, M., Abou-Seri, S. M., Abdel-Aziz, H. A., Abbas, S. E.-S., Youssef, M. M. & Eladwy, R. A. (2014). Eur. J. Med. Chem. 83, 155-166.]). The above observations prompted us to synthesize the title compound, which contains a pyrido[2,3-d]pyrimidin-4-one moiety, and we report herein on its crystal structure.

[Scheme 1]

2. Structural commentary

In the mol­ecular structure of the title compound (Fig. 1[link]), the three fused rings of the 8,9-di­hydro­pyrido[2,3-d]pyrrolo[1,2-a]pyrimidin-5(7H)-one moiety (N1–N3/C1–C10), are essentially planar (r.m.s. deviation = 0.023 Å), with the maximum deviation from the mean plane being 0.036 (2) Å for atom C8. The nitro­benzene ring (C12–C17) is inclined to this mean plane by 6.8 (1)°, while the nitro group (N4/O2/O3) is inclined to the benzene ring by 15.0 (3)°.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules are linked via C—H⋯O and C—H⋯N hydrogen bonds, forming layers lying parallel to (101); see Fig. 2[link] and Table 1[link]. Within the layers there are R22(7), R33(17), and R33(21) graph-set motifs present (Fig. 2[link]). The layers are separated by an average inter­planar distance of ca 3.4 Å, but there are no significant inter­layer inter­actions present (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N3i 0.93 2.58 3.292 (3) 133
C4—H4⋯N1i 0.93 2.57 3.480 (3) 166
C13—H13⋯O3ii 0.93 2.51 3.363 (3) 153
C16—H16⋯O1iii 0.93 2.45 3.259 (3) 145
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y+1, z.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, H atoms not involved in hydrogen bonding have been omitted.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title compound. The hydrogen bonds and inter­planar distances (of ca 3.4 Å) are shown as dashed lines (see Table 1[link]). For clarity, H atoms not involved in hydrogen bonding have been omitted.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update November 2015; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) was carried out for various substructures (S1 and S2; Fig. 4[link]) resembling the title compound. For substructure S1 (8,9-di­hydro­pyrido[2,3-d]pyrrolo­[1,2-a]pyrimidin-5(7H)-one), no hits were obtained. For substructure S2 (4H-3λ2-pyrido[2,3-d]pyrimidin-4-one), seven hits were found. Two of these compounds have substructure S3 (pyrido[2′,3′:4,5]pyrimido[1,2-a]indol-5(11H)-one), viz 9-fluoro­pyrido[2′,3′:4,5]pyrimido[1,2-a]indole-5,11-dione (refcode NIJYIP; CCDC 269950; Hicks et al., 2005[Hicks, R. P., Nichols, D. A., DiTusa, C. A., Sullivan, D. J., Hartell, M. G., Koser, B. W. & Bhattacharjee, A. K. (2005). Internet Electronic J. Mol. Des. 4, 751-764.]), and 9-bromo­pyrido[2′,3′:4,5]pyrimido[1,2-a]indole-5,11-dione (refcode NIJYOV; CCDC 218226; DiTusa, 2003[DiTusa, C. A. (2003). Private communication. CCDC, Cambridge, UK.]). They are classed as tryptanthrins, which have been shown to have strong anti­bacterial activity, for example, against malaria (Hicks et al., 2005[Hicks, R. P., Nichols, D. A., DiTusa, C. A., Sullivan, D. J., Hartell, M. G., Koser, B. W. & Bhattacharjee, A. K. (2005). Internet Electronic J. Mol. Des. 4, 751-764.]).

[Figure 4]
Figure 4
Substructures used for the database survey.

5. Synthesis and crystallization

To a mixture of 2,3-tri­methyl­enepyrido[2,3-d]pyrimidin-4-one (0.094 g, 0.5 mmol) and p-nitro­benzaldehyde (0.094 g, 0.6 mmol) was added acetic acid (3 ml, 98%). This mixture was refluxed in an oil bath (ca. 423-433 K) for 5 h after which it was left to stand for 24 h. During this time a yellow precipitate formed. It was filtered and washed with distilled water, giving yellow crystals of the title compound (yield: 0.144 g, 0.45 mmol, 90%; m.p. 567–568 K). Yellow block-like crystals suitable for X-ray analysis were grown from a solution of ethanol:water (2:1) by slow evaporation at room temperature. The title product is insoluble in benzene, chloro­form, acetic acid, acetone, DMF, and DMSO, but soluble in tri­fluoro­acetic acid. 1H NMR (400MHz, CDCl3, δ, p.p.m., J/Hz): 3.15 (2H, td, J = 6.5; 2.9, β-CH2), 4.16 (2H, t, J = 6.5, γ-CH2), 7.44 (2H, d, J = 8.8, H-2′,6′), 7.60 (1H, dd, J = 7.9; 5.9, H-6), 7.83 (1H, t, J = 2.9, =CH), 7.98 (2H, d, J = 8.8, H-3′,5′), 8.63 (1H, dd, J = 5.9; 1.7, H-5), 9.00 (1H, dd, J = 7.9; 1.7, H-7). Rf = 0.47 (chloro­form:methanol, 10:1).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions and included in the final cycles of refinement using a riding-model approximation: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C17H12N4O3
Mr 320.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 7.1755 (3), 11.5855 (3), 17.2515 (5)
β (°) 90.360 (3)
V3) 1434.12 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.88
Crystal size (mm) 0.20 × 0.18 × 0.15
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Ruby
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.928, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10375, 2965, 2194
Rint 0.045
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.175, 1.08
No. of reflections 2965
No. of parameters 217
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.20
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97, XP and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-9-(4-Nitrobenzylidene)-8,9-dihydropyrido[2,3-d]pyrrolo[1,2-a]pyrimidin-5(7H)-one top
Crystal data top
C17H12N4O3F(000) = 664
Mr = 320.31Dx = 1.483 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 7.1755 (3) ÅCell parameters from 2842 reflections
b = 11.5855 (3) Åθ = 4.6–75.6°
c = 17.2515 (5) ŵ = 0.88 mm1
β = 90.360 (3)°T = 293 K
V = 1434.12 (8) Å3Block, yellow
Z = 40.20 × 0.18 × 0.15 mm
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
2194 reflections with I > 2σ(I)
Detector resolution: 10.2576 pixels mm-1Rint = 0.045
ω scansθmax = 76.0°, θmin = 4.6°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 89
Tmin = 0.928, Tmax = 1.000k = 714
10375 measured reflectionsl = 2120
2965 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0826P)2 + 0.3825P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2965 reflectionsΔρmax = 0.31 e Å3
217 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7005 (3)0.09081 (15)0.54727 (12)0.0677 (6)
O20.9284 (3)0.88109 (16)0.33072 (13)0.0718 (6)
O30.9755 (5)0.7632 (2)0.23673 (14)0.0913 (9)
N10.6413 (3)0.24377 (15)0.62105 (12)0.0462 (5)
N20.7312 (3)0.10238 (16)0.52922 (11)0.0446 (5)
N30.5181 (4)0.18637 (18)0.73866 (13)0.0584 (6)
N40.9345 (3)0.78291 (19)0.30362 (13)0.0560 (6)
C10.7062 (3)0.21345 (18)0.55449 (13)0.0428 (5)
C20.6831 (4)0.00730 (19)0.57260 (15)0.0471 (5)
C30.5521 (4)0.0476 (2)0.70117 (16)0.0527 (6)
H30.56550.12530.68910.063*
C40.4772 (4)0.0150 (2)0.76967 (16)0.0572 (7)
H40.43620.06980.80510.069*
C50.4631 (5)0.1021 (2)0.78581 (16)0.0611 (7)
H50.41140.12320.83300.073*
C60.5898 (3)0.15420 (19)0.66978 (14)0.0454 (5)
C70.6088 (3)0.03714 (19)0.64897 (13)0.0441 (5)
C80.7641 (3)0.29244 (19)0.49255 (13)0.0428 (5)
C90.8364 (4)0.2207 (2)0.42615 (14)0.0506 (6)
H9A0.96780.23560.41780.061*
H9B0.76850.23790.37870.061*
C100.8050 (4)0.0949 (2)0.45079 (15)0.0526 (6)
H10A0.71670.05720.41640.063*
H10B0.92130.05220.45030.063*
C110.7470 (3)0.4070 (2)0.50057 (14)0.0452 (5)
H110.69390.43080.54690.054*
C120.7990 (3)0.50060 (19)0.44770 (13)0.0422 (5)
C130.8910 (4)0.4833 (2)0.37725 (15)0.0502 (6)
H130.92310.40890.36210.060*
C140.9345 (4)0.5759 (2)0.33012 (14)0.0495 (6)
H140.99380.56430.28300.059*
C150.8886 (3)0.6858 (2)0.35404 (13)0.0459 (5)
C160.8010 (4)0.7066 (2)0.42325 (14)0.0474 (5)
H160.77320.78160.43850.057*
C170.7552 (3)0.6140 (2)0.46970 (14)0.0465 (5)
H170.69440.62700.51630.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1034 (16)0.0362 (9)0.0640 (12)0.0012 (9)0.0249 (11)0.0063 (8)
O20.1033 (17)0.0415 (10)0.0708 (13)0.0056 (10)0.0169 (12)0.0069 (9)
O30.151 (2)0.0669 (14)0.0568 (13)0.0001 (14)0.0446 (15)0.0151 (10)
N10.0638 (12)0.0332 (9)0.0419 (10)0.0014 (8)0.0163 (9)0.0002 (7)
N20.0558 (11)0.0365 (9)0.0416 (10)0.0003 (8)0.0106 (8)0.0027 (7)
N30.0854 (16)0.0414 (11)0.0485 (12)0.0009 (10)0.0222 (11)0.0014 (9)
N40.0722 (14)0.0476 (11)0.0485 (12)0.0036 (10)0.0120 (10)0.0120 (9)
C10.0499 (12)0.0336 (10)0.0448 (12)0.0002 (8)0.0075 (9)0.0014 (8)
C20.0582 (13)0.0356 (11)0.0476 (13)0.0007 (9)0.0096 (10)0.0010 (9)
C30.0683 (15)0.0383 (11)0.0516 (14)0.0024 (11)0.0052 (12)0.0048 (10)
C40.0755 (17)0.0467 (13)0.0496 (14)0.0040 (12)0.0113 (12)0.0123 (11)
C50.087 (2)0.0504 (14)0.0460 (14)0.0001 (13)0.0224 (13)0.0072 (11)
C60.0562 (13)0.0387 (11)0.0414 (11)0.0005 (9)0.0095 (10)0.0026 (9)
C70.0517 (12)0.0374 (11)0.0433 (12)0.0003 (9)0.0073 (10)0.0014 (9)
C80.0496 (12)0.0422 (12)0.0368 (11)0.0013 (9)0.0102 (9)0.0022 (9)
C90.0649 (14)0.0481 (12)0.0389 (12)0.0027 (11)0.0120 (10)0.0025 (10)
C100.0688 (16)0.0437 (12)0.0455 (13)0.0001 (11)0.0116 (12)0.0053 (10)
C110.0559 (13)0.0409 (11)0.0390 (11)0.0001 (9)0.0124 (9)0.0010 (9)
C120.0498 (12)0.0401 (11)0.0369 (11)0.0017 (9)0.0083 (9)0.0012 (8)
C130.0695 (15)0.0378 (11)0.0435 (13)0.0005 (10)0.0154 (11)0.0026 (9)
C140.0687 (15)0.0463 (12)0.0335 (11)0.0020 (11)0.0165 (10)0.0013 (9)
C150.0558 (13)0.0405 (11)0.0415 (12)0.0039 (9)0.0040 (10)0.0074 (9)
C160.0604 (14)0.0377 (11)0.0440 (12)0.0016 (9)0.0095 (10)0.0019 (9)
C170.0552 (13)0.0438 (12)0.0406 (12)0.0019 (10)0.0115 (10)0.0006 (9)
Geometric parameters (Å, º) top
O1—C21.225 (3)C8—C111.340 (3)
O2—N41.231 (3)C8—C91.510 (3)
O3—N41.214 (3)C9—C101.535 (3)
N1—C11.291 (3)C9—H9A0.9700
N1—C61.387 (3)C9—H9B0.9700
N2—C11.371 (3)C10—H10A0.9700
N2—C21.377 (3)C10—H10B0.9700
N2—C101.459 (3)C11—C121.467 (3)
N3—C51.332 (3)C11—H110.9300
N3—C61.350 (3)C12—C131.401 (3)
N4—C151.461 (3)C12—C171.404 (3)
C1—C81.469 (3)C13—C141.383 (3)
C2—C71.466 (3)C13—H130.9300
C3—C41.355 (4)C14—C151.379 (3)
C3—C71.394 (3)C14—H140.9300
C3—H30.9300C15—C161.374 (3)
C4—C51.389 (4)C16—C171.380 (3)
C4—H40.9300C16—H160.9300
C5—H50.9300C17—H170.9300
C6—C71.410 (3)
C1—N1—C6115.76 (19)C8—C9—H9A110.7
C1—N2—C2123.0 (2)C10—C9—H9A110.7
C1—N2—C10113.55 (19)C8—C9—H9B110.7
C2—N2—C10123.40 (19)C10—C9—H9B110.7
C5—N3—C6116.8 (2)H9A—C9—H9B108.8
O3—N4—O2123.0 (2)N2—C10—C9104.79 (18)
O3—N4—C15118.5 (2)N2—C10—H10A110.8
O2—N4—C15118.5 (2)C9—C10—H10A110.8
N1—C1—N2125.9 (2)N2—C10—H10B110.8
N1—C1—C8125.7 (2)C9—C10—H10B110.8
N2—C1—C8108.39 (19)H10A—C10—H10B108.9
O1—C2—N2121.5 (2)C8—C11—C12130.1 (2)
O1—C2—C7125.3 (2)C8—C11—H11114.9
N2—C2—C7113.18 (19)C12—C11—H11114.9
C4—C3—C7119.1 (2)C13—C12—C17118.4 (2)
C4—C3—H3120.4C13—C12—C11123.8 (2)
C7—C3—H3120.4C17—C12—C11117.8 (2)
C3—C4—C5118.5 (2)C14—C13—C12120.5 (2)
C3—C4—H4120.8C14—C13—H13119.7
C5—C4—H4120.8C12—C13—H13119.7
N3—C5—C4124.8 (3)C15—C14—C13119.0 (2)
N3—C5—H5117.6C15—C14—H14120.5
C4—C5—H5117.6C13—C14—H14120.5
N3—C6—N1115.5 (2)C16—C15—C14122.3 (2)
N3—C6—C7121.8 (2)C16—C15—N4119.2 (2)
N1—C6—C7122.6 (2)C14—C15—N4118.5 (2)
C3—C7—C6118.9 (2)C15—C16—C17118.7 (2)
C3—C7—C2121.6 (2)C15—C16—H16120.7
C6—C7—C2119.5 (2)C17—C16—H16120.7
C11—C8—C1121.0 (2)C16—C17—C12121.1 (2)
C11—C8—C9131.0 (2)C16—C17—H17119.5
C1—C8—C9108.02 (19)C12—C17—H17119.5
C8—C9—C10105.11 (19)
C6—N1—C1—N21.3 (4)N1—C1—C8—C112.2 (4)
C6—N1—C1—C8178.0 (2)N2—C1—C8—C11177.2 (2)
C2—N2—C1—N12.0 (4)N1—C1—C8—C9178.3 (2)
C10—N2—C1—N1179.3 (2)N2—C1—C8—C92.4 (3)
C2—N2—C1—C8177.4 (2)C11—C8—C9—C10175.8 (3)
C10—N2—C1—C80.1 (3)C1—C8—C9—C103.7 (3)
C1—N2—C2—O1177.2 (3)C1—N2—C10—C92.5 (3)
C10—N2—C2—O10.2 (4)C2—N2—C10—C9179.7 (2)
C1—N2—C2—C71.9 (4)C8—C9—C10—N23.7 (3)
C10—N2—C2—C7178.9 (2)C1—C8—C11—C12178.5 (2)
C7—C3—C4—C51.2 (5)C9—C8—C11—C122.1 (5)
C6—N3—C5—C41.1 (5)C8—C11—C12—C134.0 (4)
C3—C4—C5—N30.0 (5)C8—C11—C12—C17176.6 (3)
C5—N3—C6—N1178.4 (3)C17—C12—C13—C141.1 (4)
C5—N3—C6—C71.0 (4)C11—C12—C13—C14179.6 (3)
C1—N1—C6—N3178.6 (2)C12—C13—C14—C151.0 (4)
C1—N1—C6—C70.8 (4)C13—C14—C15—C160.0 (4)
C4—C3—C7—C61.2 (4)C13—C14—C15—N4179.7 (2)
C4—C3—C7—C2177.2 (3)O3—N4—C15—C16165.0 (3)
N3—C6—C7—C30.1 (4)O2—N4—C15—C1614.5 (4)
N1—C6—C7—C3179.4 (2)O3—N4—C15—C1414.8 (4)
N3—C6—C7—C2178.4 (2)O2—N4—C15—C14165.7 (3)
N1—C6—C7—C21.0 (4)C14—C15—C16—C171.0 (4)
O1—C2—C7—C30.8 (4)N4—C15—C16—C17178.8 (2)
N2—C2—C7—C3179.9 (2)C15—C16—C17—C120.9 (4)
O1—C2—C7—C6177.7 (3)C13—C12—C17—C160.1 (4)
N2—C2—C7—C61.4 (3)C11—C12—C17—C16179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N3i0.932.583.292 (3)133
C4—H4···N1i0.932.573.480 (3)166
C13—H13···O3ii0.932.513.363 (3)153
C16—H16···O1iii0.932.453.259 (3)145
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

This work was supported by a Fundamental grant (FA-F7-T207: Theoretical aspects of formation of asymmetrical centers in biologically active heterocyclic mol­ecules) from the Academy of Sciences of the Republic of Uzbekistan.

References

First citationDiTusa, C. A. (2003). Private communication. CCDC, Cambridge, UK.  Google Scholar
First citationEl-Nassan, H. B. (2011). Eur. J. Med. Chem. 46, 2031–2036.  Web of Science CAS PubMed Google Scholar
First citationFares, M., Abou-Seri, S. M., Abdel-Aziz, H. A., Abbas, S. E.-S., Youssef, M. M. & Eladwy, R. A. (2014). Eur. J. Med. Chem. 83, 155–166.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGeffken, D., Soliman, R., Soliman, F. S. G., Abdel-Khalek, M. M. & Issa, D. A. E. (2011). Med. Chem. Res. 20, 408–420.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHicks, R. P., Nichols, D. A., DiTusa, C. A., Sullivan, D. J., Hartell, M. G., Koser, B. W. & Bhattacharjee, A. K. (2005). Internet Electronic J. Mol. Des. 4, 751–764.  CAS Google Scholar
First citationLe Corre, L., Girard, A. L., Aubertin, J., Radvanyi, F., Benoist-Lasselin, C., Jonquoy, A., Mugniery, E., Legeai-Mallet, L., Busca, P. & Le Merrer, Y. (2010). Org. Biomol. Chem. 8, 2164–2173.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationReddy, M. V. R., Akula, B., Cosenza, S. C., Athuluridivakar, S., Mallireddigari, M. R., Pallela, V. R., Billa, V. K., Subbaiah, D. R. C. V., Bharathi, E. V., Carpio, R. V.-D., Padgaonkar, A., Baker, S. J. & Reddy, E. P. (2014). J. Med. Chem. 57, 578–599.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds