organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-3-(4-hy­dr­oxy­benz­yl)-4-{[4-(methyl­sulfan­yl)benzyl­­idene]amino}-1H-1,2,4-triazole-5(4H)-thione

aDepartment of Chemistry, PA College of Engineering, Nadupadavu 574 153, D.K., Mangaluru, India, bDepartment of Industrial Chemistry, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, cDepartment of Chemistry, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, dDepartment of Materials Science, Mangalagangotri, Mangalore University, Mangaluru 574 199, India, and ePURSE Lab, Mangalagangotri, Mangalore University, Mangaluru 574 199, India
*Correspondence e-mail: madanmx@mangaloreuniversity.ac.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 4 November 2015; accepted 18 November 2015; online 21 November 2015)

In the title compound, C17H16N4OS2, the triazole and methyl­thio­benzyl­idene rings are nearly coplanar, making a dihedral angle of 6.52 (12)°. An intra­molecular C—H⋯S hydrogen bond forms an S(6) ring motif. The hy­droxy­benzyl ring is almost normal to the triazole and methyl­thio­benzyl­idene rings, making dihedral angles of 78.56 (12) and 84.79 (11)°, respectively. In the crystal, mol­ecules are linked through O—H⋯N and N—H⋯O hydrogen bonds, forming layers parallel to the ac plane. The layers are linked via C—H⋯N hydrogen bonds, forming a three-dimensional structure. In addition, a short ππ inter­action is observed [inter-centroid distance = 3.764 (3) Å], involving inversion-related methyl­thio­benzyl­idene rings.

1. Related literature

For the structure of a related compound, see: Manjula et al. (2015[Manjula, P. S., Sarojini, B. K., Narayana, B., Byrappa, K. & Madan Kumar, S. (2015). Acta Cryst. E71, o912-o913.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H16N4OS2

  • Mr = 356.46

  • Monoclinic, P 21 /c

  • a = 7.739 (5) Å

  • b = 28.161 (16) Å

  • c = 7.945 (4) Å

  • β = 100.407 (11)°

  • V = 1703.0 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.57 × 0.34 × 0.24 mm

2.2. Data collection

  • Rigaku Saturn724+ diffractometer

  • Absorption correction: numerical (NUMABS; Rigaku, 1999[Rigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.895, Tmax = 0.954

  • 8210 measured reflections

  • 3017 independent reflections

  • 2200 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.107

  • S = 1.06

  • 3017 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯S1 0.93 2.52 3.267 (3) 138
O1—H1⋯N2i 0.82 2.03 2.806 (3) 159
N1—H1A⋯O1ii 0.86 1.98 2.816 (3) 164
C17—H17C⋯N4iii 0.96 2.62 3.472 (4) 148
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z+1; (iii) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2011[Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Comment top

The title compound was synthesized, crystallized and its crystal structure is presented as part of our work on 3-methyl-1H-1,2,4-triazole-5(4H)-thione derivatives (Manjula et al., 2015).

The molecular structure of the title compound is as shown in Fig 1. The methylsulfanylbenzylidene and triazole rings are almost coplanar with a dihedral angle of 6.52 (12) °. The hydroxybenzyl ring makes dihedral angles of 78.56 (12) ° and 84.79 (11) ° with the triazole and methylthiobenzylidene rings, respectively. An intramolecular interaction of the type C10—H10···S1 is observed (Fig. 1 and Table 1).

In the crystal, the molecules are connected through O1—H1···N2 and N1—H1A···O1 hydrogen bonds (Table 1) forming layers parallel to (010). The layers are linked by C17—H17C···N4 hydrogen bonds forming a three-dimensional structure (Fig. 2 and Table 1) . In addition, a parallel slipped ππ (Cg···Cgi) interaction is observed with an inter-centroid distance of 3.764 (3) Å [Cg is the centroid of ring C11—C16; inter-planar distance = 3.500 (1) Å; slippage 1.384 Å; symmetry code: (i) -x, -y+1, -z+1].

Related literature top

For the structure of a related compound, see: Manjula et al. (2015).

Experimental top

The synthesis of title compound, (3), is illustrated in Fig. 3. A suspension of 4-(methylthio)benzaldehyde (2) (0.01 mol) in ethanol (15 ml) was added to 4-amino-3-(4-hydroxybenzyl)-1H-1,2,4-triazole-5(4H)-thione (1) (0.01 mol) and heated until a clear solution was obtained. To this a few drops of conc. H2SO4 were added as a catalyst and the mixture was refluxed for 36 h on a water bath. The precipitate formed was filtered and recrystallized from methanol to give the titled compound. Single crystals were obtained by recrystallization from acetic acid (m.p. 469—471 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were fixed geometrically (O-H = 0.82 Å, N-H = 0.86 Å, and C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(O,N,C).

Structure description top

The title compound was synthesized, crystallized and its crystal structure is presented as part of our work on 3-methyl-1H-1,2,4-triazole-5(4H)-thione derivatives (Manjula et al., 2015).

The molecular structure of the title compound is as shown in Fig 1. The methylsulfanylbenzylidene and triazole rings are almost coplanar with a dihedral angle of 6.52 (12) °. The hydroxybenzyl ring makes dihedral angles of 78.56 (12) ° and 84.79 (11) ° with the triazole and methylthiobenzylidene rings, respectively. An intramolecular interaction of the type C10—H10···S1 is observed (Fig. 1 and Table 1).

In the crystal, the molecules are connected through O1—H1···N2 and N1—H1A···O1 hydrogen bonds (Table 1) forming layers parallel to (010). The layers are linked by C17—H17C···N4 hydrogen bonds forming a three-dimensional structure (Fig. 2 and Table 1) . In addition, a parallel slipped ππ (Cg···Cgi) interaction is observed with an inter-centroid distance of 3.764 (3) Å [Cg is the centroid of ring C11—C16; inter-planar distance = 3.500 (1) Å; slippage 1.384 Å; symmetry code: (i) -x, -y+1, -z+1].

For the structure of a related compound, see: Manjula et al. (2015).

Computing details top

Data collection: CrystalClear (Rigaku, 2011); cell refinement: CrystalClear (Rigaku, 2011); data reduction: CrystalClear (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level and the intramolecular C—H···S hydrogen bond is drawn as a dashed line (see Table 1).
[Figure 2] Fig. 2. A viewed along the c axis of the crystal packing of the title compound. Hydrogen bonds are drawn as a dashed lines (see Table 1), and H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 3] Fig. 3. Reaction scheme.
(E)-3-(4-Hydroxybenzyl)-4-{[4-(methylsulfanyl)benzylidene]amino}-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C17H16N4OS2F(000) = 744
Mr = 356.46Dx = 1.390 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 7.739 (5) ÅCell parameters from 2021 reflections
b = 28.161 (16) Åθ = 3.0–25.3°
c = 7.945 (4) ŵ = 0.32 mm1
β = 100.407 (11)°T = 293 K
V = 1703.0 (17) Å3Prism, yellow
Z = 40.57 × 0.34 × 0.24 mm
Data collection top
Rigaku Saturn724+
diffractometer
2200 reflections with I > 2σ(I)
Detector resolution: 7.111 pixels mm-1Rint = 0.031
profile data from ω–scansθmax = 25.3°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 99
Tmin = 0.895, Tmax = 0.954k = 3333
8210 measured reflectionsl = 96
3017 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.239P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3017 reflectionsΔρmax = 0.16 e Å3
217 parametersΔρmin = 0.17 e Å3
0 restraints
Crystal data top
C17H16N4OS2V = 1703.0 (17) Å3
Mr = 356.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.739 (5) ŵ = 0.32 mm1
b = 28.161 (16) ÅT = 293 K
c = 7.945 (4) Å0.57 × 0.34 × 0.24 mm
β = 100.407 (11)°
Data collection top
Rigaku Saturn724+
diffractometer
3017 independent reflections
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
2200 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.954Rint = 0.031
8210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.06Δρmax = 0.16 e Å3
3017 reflectionsΔρmin = 0.17 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53353 (10)0.58782 (3)1.04260 (8)0.0612 (2)
S20.00577 (11)0.40779 (3)0.16264 (10)0.0797 (3)
O10.2083 (2)0.71862 (6)0.21145 (19)0.0526 (5)
H10.23990.74310.25310.063*
N10.6203 (2)0.67074 (7)0.9170 (2)0.0482 (5)
H1A0.66030.68181.01730.058*
N20.6227 (3)0.69644 (7)0.7707 (2)0.0469 (5)
N30.5039 (2)0.62570 (6)0.7141 (2)0.0386 (5)
N40.4256 (2)0.59134 (7)0.5984 (2)0.0410 (5)
C10.5514 (3)0.62736 (9)0.8925 (3)0.0414 (6)
C20.5495 (3)0.66794 (8)0.6491 (3)0.0403 (6)
C30.5120 (3)0.68017 (9)0.4640 (3)0.0490 (6)
H3A0.54760.65390.39910.059*
H3B0.58150.70770.44480.059*
C40.3195 (3)0.69085 (8)0.3991 (3)0.0401 (6)
C50.2392 (3)0.72987 (8)0.4562 (3)0.0482 (6)
H50.30450.75000.53600.058*
C60.0633 (3)0.73960 (8)0.3971 (3)0.0465 (6)
H60.01150.76610.43710.056*
C70.0348 (3)0.70997 (8)0.2788 (3)0.0407 (6)
C80.0426 (3)0.67050 (8)0.2227 (3)0.0494 (6)
H80.02340.64990.14470.059*
C90.2177 (3)0.66139 (8)0.2818 (3)0.0470 (6)
H90.26890.63480.24180.056*
C100.3768 (3)0.55258 (9)0.6531 (3)0.0459 (6)
H100.39490.54680.77020.055*
C110.2918 (3)0.51667 (8)0.5332 (3)0.0414 (6)
C120.2277 (3)0.47597 (9)0.5961 (3)0.0497 (6)
H120.24210.47170.71380.060*
C130.1424 (3)0.44141 (9)0.4884 (4)0.0539 (7)
H130.10070.41420.53370.065*
C140.1194 (3)0.44748 (9)0.3131 (3)0.0497 (6)
C150.1865 (3)0.48812 (9)0.2491 (3)0.0524 (7)
H150.17370.49230.13140.063*
C160.2715 (3)0.52218 (9)0.3575 (3)0.0477 (6)
H160.31570.54910.31250.057*
C170.0520 (4)0.35993 (11)0.2856 (4)0.0858 (10)
H17A0.11530.33650.21090.103*
H17B0.05260.34590.34970.103*
H17C0.12460.37140.36290.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0752 (5)0.0629 (5)0.0440 (4)0.0047 (4)0.0069 (3)0.0112 (3)
S20.0756 (6)0.0803 (6)0.0843 (6)0.0262 (5)0.0171 (4)0.0331 (5)
O10.0503 (11)0.0521 (11)0.0503 (10)0.0091 (9)0.0044 (8)0.0126 (8)
N10.0483 (13)0.0511 (13)0.0395 (12)0.0014 (10)0.0079 (9)0.0028 (10)
N20.0412 (12)0.0476 (12)0.0472 (12)0.0023 (10)0.0044 (9)0.0051 (10)
N30.0346 (11)0.0411 (11)0.0378 (11)0.0003 (9)0.0006 (9)0.0015 (9)
N40.0386 (11)0.0393 (12)0.0436 (11)0.0004 (9)0.0037 (9)0.0020 (9)
C10.0350 (13)0.0458 (14)0.0408 (14)0.0068 (11)0.0003 (11)0.0002 (11)
C20.0316 (13)0.0440 (14)0.0429 (14)0.0006 (11)0.0003 (11)0.0046 (11)
C30.0462 (15)0.0543 (16)0.0460 (15)0.0058 (13)0.0069 (12)0.0074 (12)
C40.0475 (14)0.0401 (14)0.0321 (13)0.0017 (11)0.0050 (11)0.0062 (10)
C50.0586 (17)0.0409 (14)0.0401 (14)0.0040 (13)0.0043 (12)0.0070 (11)
C60.0572 (17)0.0395 (14)0.0408 (14)0.0062 (12)0.0031 (12)0.0076 (11)
C70.0479 (15)0.0406 (14)0.0310 (12)0.0054 (12)0.0003 (11)0.0018 (10)
C80.0614 (17)0.0404 (14)0.0394 (14)0.0050 (13)0.0095 (12)0.0086 (11)
C90.0564 (17)0.0400 (14)0.0418 (14)0.0114 (12)0.0014 (12)0.0044 (11)
C100.0437 (15)0.0490 (16)0.0435 (14)0.0027 (12)0.0036 (11)0.0025 (12)
C110.0338 (13)0.0399 (14)0.0492 (15)0.0039 (11)0.0044 (11)0.0015 (11)
C120.0501 (15)0.0494 (16)0.0467 (15)0.0022 (13)0.0013 (12)0.0054 (12)
C130.0489 (16)0.0422 (15)0.0712 (19)0.0012 (13)0.0121 (14)0.0045 (13)
C140.0373 (14)0.0497 (16)0.0635 (18)0.0009 (12)0.0126 (12)0.0084 (13)
C150.0505 (16)0.0605 (17)0.0456 (15)0.0015 (14)0.0071 (12)0.0031 (13)
C160.0473 (15)0.0461 (15)0.0511 (16)0.0039 (12)0.0125 (12)0.0036 (12)
C170.063 (2)0.0600 (19)0.139 (3)0.0127 (16)0.031 (2)0.029 (2)
Geometric parameters (Å, º) top
S1—C11.655 (2)C6—H60.9300
S2—C141.752 (3)C6—C71.377 (3)
S2—C171.769 (3)C7—C81.375 (3)
O1—H10.8200C8—H80.9300
O1—C71.374 (3)C8—C91.376 (3)
N1—H1A0.8600C9—H90.9300
N1—N21.372 (2)C10—H100.9300
N1—C11.333 (3)C10—C111.462 (3)
N2—C21.304 (3)C11—C121.378 (3)
N3—N41.396 (2)C11—C161.386 (3)
N3—C11.399 (3)C12—H120.9300
N3—C21.368 (3)C12—C131.382 (3)
N4—C101.258 (3)C13—H130.9300
C2—C31.487 (3)C13—C141.383 (3)
C3—H3A0.9700C14—C151.390 (3)
C3—H3B0.9700C15—H150.9300
C3—C41.517 (3)C15—C161.375 (3)
C4—C51.379 (3)C16—H160.9300
C4—C91.383 (3)C17—H17A0.9600
C5—H50.9300C17—H17B0.9600
C5—C61.385 (3)C17—H17C0.9600
C14—S2—C17104.78 (14)C7—C8—H8120.0
C7—O1—H1109.5C7—C8—C9120.0 (2)
N2—N1—H1A122.4C9—C8—H8120.0
C1—N1—H1A122.4C4—C9—H9119.2
C1—N1—N2115.23 (18)C8—C9—C4121.6 (2)
C2—N2—N1103.43 (19)C8—C9—H9119.2
N4—N3—C1133.95 (19)N4—C10—H10119.9
C2—N3—N4117.69 (18)N4—C10—C11120.2 (2)
C2—N3—C1108.36 (19)C11—C10—H10119.9
C10—N4—N3119.70 (19)C12—C11—C10119.3 (2)
N1—C1—S1126.50 (18)C12—C11—C16118.4 (2)
N1—C1—N3101.73 (19)C16—C11—C10122.3 (2)
N3—C1—S1131.78 (19)C11—C12—H12119.2
N2—C2—N3111.2 (2)C11—C12—C13121.6 (2)
N2—C2—C3124.8 (2)C13—C12—H12119.2
N3—C2—C3123.9 (2)C12—C13—H13120.1
C2—C3—H3A109.0C12—C13—C14119.8 (2)
C2—C3—H3B109.0C14—C13—H13120.1
C2—C3—C4112.74 (18)C13—C14—S2124.5 (2)
H3A—C3—H3B107.8C13—C14—C15118.8 (2)
C4—C3—H3A109.0C15—C14—S2116.8 (2)
C4—C3—H3B109.0C14—C15—H15119.5
C5—C4—C3121.3 (2)C16—C15—C14120.9 (2)
C5—C4—C9117.7 (2)C16—C15—H15119.5
C9—C4—C3121.0 (2)C11—C16—H16119.8
C4—C5—H5119.3C15—C16—C11120.5 (2)
C4—C5—C6121.3 (2)C15—C16—H16119.8
C6—C5—H5119.3S2—C17—H17A109.5
C5—C6—H6120.1S2—C17—H17B109.5
C7—C6—C5119.9 (2)S2—C17—H17C109.5
C7—C6—H6120.1H17A—C17—H17B109.5
O1—C7—C6122.5 (2)H17A—C17—H17C109.5
O1—C7—C8118.0 (2)H17B—C17—H17C109.5
C8—C7—C6119.5 (2)
S2—C14—C15—C16177.44 (19)C2—C3—C4—C565.8 (3)
O1—C7—C8—C9177.6 (2)C2—C3—C4—C9113.4 (2)
N1—N2—C2—N30.7 (2)C3—C4—C5—C6179.9 (2)
N1—N2—C2—C3176.7 (2)C3—C4—C9—C8179.6 (2)
N2—N1—C1—S1178.79 (16)C4—C5—C6—C70.0 (3)
N2—N1—C1—N30.8 (2)C5—C4—C9—C80.3 (3)
N2—C2—C3—C4103.6 (3)C5—C6—C7—O1177.9 (2)
N3—N4—C10—C11178.90 (18)C5—C6—C7—C81.0 (3)
N3—C2—C3—C473.4 (3)C6—C7—C8—C91.4 (3)
N4—N3—C1—S10.2 (4)C7—C8—C9—C40.7 (4)
N4—N3—C1—N1179.7 (2)C9—C4—C5—C60.7 (3)
N4—N3—C2—N2179.30 (18)C10—C11—C12—C13178.4 (2)
N4—N3—C2—C33.4 (3)C10—C11—C16—C15178.2 (2)
N4—C10—C11—C12175.2 (2)C11—C12—C13—C140.3 (4)
N4—C10—C11—C164.2 (3)C12—C11—C16—C151.1 (3)
C1—N1—N2—C20.9 (3)C12—C13—C14—S2177.14 (19)
C1—N3—N4—C102.8 (3)C12—C13—C14—C151.4 (4)
C1—N3—C2—N20.2 (3)C13—C14—C15—C161.2 (4)
C1—N3—C2—C3177.1 (2)C14—C15—C16—C110.1 (4)
C2—N3—N4—C10177.9 (2)C16—C11—C12—C131.0 (4)
C2—N3—C1—S1179.21 (18)C17—S2—C14—C133.9 (2)
C2—N3—C1—N10.3 (2)C17—S2—C14—C15177.60 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···S10.932.523.267 (3)138
O1—H1···N2i0.822.032.806 (3)159
N1—H1A···O1ii0.861.982.816 (3)164
C17—H17C···N4iii0.962.623.472 (4)148
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y, z+1; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···S10.932.523.267 (3)138
O1—H1···N2i0.822.032.806 (3)159
N1—H1A···O1ii0.861.982.816 (3)164
C17—H17C···N4iii0.962.623.472 (4)148
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

The authors thank DST–PURSE, Mangalore University, Mangaluru, for providing the single-crystal X-ray diffraction facility. BKS and PSM gratefully acknowledge the Department of Chemistry, P. A. College of Engineering for providing research facilities.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationManjula, P. S., Sarojini, B. K., Narayana, B., Byrappa, K. & Madan Kumar, S. (2015). Acta Cryst. E71, o912–o913.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds