organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-1,3-bis­­(6-meth­oxy­naphthalen-2-yl)prop-2-en-1-one

aDepartment of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India, and bDepartment of Biotechnology and National Center for Catalysis Research, Indian Institute of Technology Madras, Chennai 600 036, India
*Correspondence e-mail: anjuc@iitm.ac.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 24 September 2015; accepted 19 October 2015; online 24 October 2015)

In the title compound, C25H20O3, the central –C(=O)—C=C– chain is disordered over two positions about the central C atom, with an occupancy ratio of 0.848 (6):0.152 (6). The mol­ecule is twisted with the two naphthalene ring systems being inclined to one another by 52.91 (9)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming a three-dimensional structure. The structure was refined as a two-component twin with a 180 ° rotation about the c* axis.

1. Related literature

For natural sources of chalcones and their derivatives, see: Anderson & Markham (2006[Anderson, O. M. & Markham, K. R. (2006). In Flavonoids Chemistry, Biochemistry and Applications. New York: Taylor and Francis.]); Yadav et al. (2011[Yadav, V. R., Prasad, S., Sung, B. & Aggarwal, B. B. (2011). Int. Immunopharmacol. 11, 295-309.]). For examples of their biological activities, see: Liu et al. (2011[Liu, X. F., Zheng, C. J., Sun, L. P., Liu, X. K. & Piao, H. R. (2011). Eur. J. Med. Chem. 46, 3469-3473.]); Siddiqui et al. (2012[Siddiqui, Z. N., Praveen, S., Musthafa, T. N., Ahmad, A. & Khan, A. U. (2012). J. Enzyme Inhib. Med. Chem. 27, 84-91.]). For their use as synthons for the preparation of five- and six-membered ring systems, see: Powers et al. (1998[Powers, D. G., Casebier, D. S., Fokas, D., Ryan, W. J., Troth, J. R. & Coffen, D. L. (1998). Tetrahedron, 54, 4085-4096.]). For their use as inter­mediates in the synthesis of pharmaceutical mol­ecules, see: Perozo-Rondon et al. (2006[Perozo-Rondon, E., Martín-Aranda, R. M., Casal, B., Duran-Valle, C. J., Lau, W. N., Zhang, X. F. & Yeung, K. L. (2006). Catal. Today, 114, 183-187.]). For the crystal structure of a closely related compound, 3-(6-meth­oxy-2-naphth­yl)-1-(2-naphth­yl)prop-2-en-1-one, see: Yathirajan et al. (2006[Yathirajan, H. S., Sarojini, B. K., Bindya, S., Narayana, B. & Bolte, M. (2006). Acta Cryst. E62, o4046-o4047.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C25H20O3

  • Mr = 368.41

  • Monoclinic P 21 /c

  • a = 6.027 (5) Å

  • b = 19.926 (5) Å

  • c = 15.415 (5) Å

  • β = 90.366 (5)°

  • V = 1851.2 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS: Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.951

  • 3345 measured reflections

  • 3345 independent reflections

  • 1837 reflections with I > 2σ(I)

  • Rint = 0.072

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.179

  • S = 1.13

  • 3345 reflections

  • 267 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of rings C5-C10 and C17-C22, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cg4i 0.93 2.86 3.543 (4) 131
C18—H18⋯Cg2ii 0.93 2.85 3.611 (4) 140
C23—H23⋯Cg2iii 0.93 2.88 3.592 (4) 134
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+2, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comments top

Hetero­aryl chalcones are well documented as important synthons for a number of pharmaceutically active molecules, and extensive investigations have demonstrated the biological properties of natural and synthetic chalcones. These properties are largely attributed to the presence of the a,ß-unsaturated ketone moiety in the chalcone (Anderson & Markham, 2006; Yadav et al., 2011). Chalcones are reported to possess many useful properties, for example anti­bacterial [Liu et al., 2011] and anti­fungal [Siddiqui et al., 2012]. These compounds are important synthons for the preparation of five- and six-membered ring systems [Powers et al., 1998] as well as inter­mediates in the synthesis of many pharmaceutically useful molecules [Perozo-Rondon et al., 2006]. Given such varied pharmacological activities and synthetic utilities, chalcones have always attracted chemists to develop newer molecules and study their biological activities. Adding to the list of active hetero­aryl chalcones for use in pharmaceutical applications and as an effective synthon for the preparation of five- and six-member ring systems, we report herein on the synthesis and crystal structure of the title compound.

In the title compound, Fig. 1, the central -C12(O2)—C13C14- chain is disordered over two positions about the central atom C13 with an occupancy ratio of 0.848 (6):0.152 (6) for atom O2 (O2A:O2B). The molecule is twisted with the two naphthalene ring systems being inclined to one another by 52.91 (9)°. This situation is similar to that in compound 3-(6-meth­oxy-2-naphthyl)-1-(2-naphthyl)­prop- 2-en-1-one (Yathirajan et al., 2006), where the two naphthalene ring systems are inclined to one another by 54.41 (3) °.

In the crystal, molecules are linked by C—H···π inter­actions forming a three-dimensional structure. There are no other intra- or inter-molecular inter­actions present.

Synthesis and crystallization top

To a stirred solution of 6-meth­oxy-2-naphthaldehyde (1.86 g, 10 mmol) in ethanol (10 ml), 1-(6-meth­oxy­naphthalen-2-yl) ethanone (2.00 g, 10 mmol) dissolved in ethanol (10 ml) was added portion wise. The reaction mixture was stirred at room temperature for an additional 20 min, during which time it turned to a homogeneous solution. KOH solution (40%, 2 ml) was then added drop wise and the resultant mixture was stirred at room temperature for 2 h. The precipitated product was then collected by filtration and purified by recrystallization from chloro­form–methanol (1:1 v/v, 10 ml), to afford 2.29 g (82%) of the title compound as yellow–brown needles (m.p.: 396-397 K). Colourless block-like crystals, suitable for X-ray diffraction, were obtained by crystallization from a 1 ml saturated solution in ethanol.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93-0.96 Å with Uiso(H) = 15.Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. The central -C12(O2)—C13C14- chain is disordered over two positions about the central atom C13 with an occupancy ratio of 0.848 (6):0.152 (6) for atom O2 (O2A:O2B). The structure was refined as a two-component twin: 180 ° rotation about the c* axis; BASF = 0.063 (1).

Related literature top

For natural sources of chalcones and their derivatives, see: Anderson & Markham (2006); Yadav et al. (2011). For examples of their biological activities, see: Liu et al. (2011); Siddiqui et al. (2012). For their use as synthons for the preparation of five- and six-membered ring systems, see: Powers et al. (1998). For their use as intermediates in the synthesis of pharmaceutical molecules, see: Perozo-Rondon et al. (2006). For the crystal structure of a closely related compound, 3-(6-methoxy-2-naphthyl)-1-(2-naphthyl)prop-2-en-1-one, see: Yathirajan et al. (2006).

Structure description top

Hetero­aryl chalcones are well documented as important synthons for a number of pharmaceutically active molecules, and extensive investigations have demonstrated the biological properties of natural and synthetic chalcones. These properties are largely attributed to the presence of the a,ß-unsaturated ketone moiety in the chalcone (Anderson & Markham, 2006; Yadav et al., 2011). Chalcones are reported to possess many useful properties, for example anti­bacterial [Liu et al., 2011] and anti­fungal [Siddiqui et al., 2012]. These compounds are important synthons for the preparation of five- and six-membered ring systems [Powers et al., 1998] as well as inter­mediates in the synthesis of many pharmaceutically useful molecules [Perozo-Rondon et al., 2006]. Given such varied pharmacological activities and synthetic utilities, chalcones have always attracted chemists to develop newer molecules and study their biological activities. Adding to the list of active hetero­aryl chalcones for use in pharmaceutical applications and as an effective synthon for the preparation of five- and six-member ring systems, we report herein on the synthesis and crystal structure of the title compound.

In the title compound, Fig. 1, the central -C12(O2)—C13C14- chain is disordered over two positions about the central atom C13 with an occupancy ratio of 0.848 (6):0.152 (6) for atom O2 (O2A:O2B). The molecule is twisted with the two naphthalene ring systems being inclined to one another by 52.91 (9)°. This situation is similar to that in compound 3-(6-meth­oxy-2-naphthyl)-1-(2-naphthyl)­prop- 2-en-1-one (Yathirajan et al., 2006), where the two naphthalene ring systems are inclined to one another by 54.41 (3) °.

In the crystal, molecules are linked by C—H···π inter­actions forming a three-dimensional structure. There are no other intra- or inter-molecular inter­actions present.

For natural sources of chalcones and their derivatives, see: Anderson & Markham (2006); Yadav et al. (2011). For examples of their biological activities, see: Liu et al. (2011); Siddiqui et al. (2012). For their use as synthons for the preparation of five- and six-membered ring systems, see: Powers et al. (1998). For their use as intermediates in the synthesis of pharmaceutical molecules, see: Perozo-Rondon et al. (2006). For the crystal structure of a closely related compound, 3-(6-methoxy-2-naphthyl)-1-(2-naphthyl)prop-2-en-1-one, see: Yathirajan et al. (2006).

Synthesis and crystallization top

To a stirred solution of 6-meth­oxy-2-naphthaldehyde (1.86 g, 10 mmol) in ethanol (10 ml), 1-(6-meth­oxy­naphthalen-2-yl) ethanone (2.00 g, 10 mmol) dissolved in ethanol (10 ml) was added portion wise. The reaction mixture was stirred at room temperature for an additional 20 min, during which time it turned to a homogeneous solution. KOH solution (40%, 2 ml) was then added drop wise and the resultant mixture was stirred at room temperature for 2 h. The precipitated product was then collected by filtration and purified by recrystallization from chloro­form–methanol (1:1 v/v, 10 ml), to afford 2.29 g (82%) of the title compound as yellow–brown needles (m.p.: 396-397 K). Colourless block-like crystals, suitable for X-ray diffraction, were obtained by crystallization from a 1 ml saturated solution in ethanol.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93-0.96 Å with Uiso(H) = 15.Ueq(C-methyl) and 1.2Ueq(C) for other H atoms. The central -C12(O2)—C13C14- chain is disordered over two positions about the central atom C13 with an occupancy ratio of 0.848 (6):0.152 (6) for atom O2 (O2A:O2B). The structure was refined as a two-component twin: 180 ° rotation about the c* axis; BASF = 0.063 (1).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Only the major component of the disordered O atom is shown.
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound.
(E)-1,3-Bis(6-methoxynaphthalen-2-yl)prop-2-en-1-one top
Crystal data top
C25H20O3F(000) = 776
Mr = 368.41Dx = 1.322 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.027 (5) ÅCell parameters from 4691 reflections
b = 19.926 (5) Åθ = 2.6–22.4°
c = 15.415 (5) ŵ = 0.09 mm1
β = 90.366 (5)°T = 293 K
V = 1851.2 (17) Å3Block, colourless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1837 reflections with I > 2σ(I)
Radiation source: Sealed tubeRint = 0.072
ω and φ scanθmax = 25.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS: Bruker, 2004)
h = 77
Tmin = 0.932, Tmax = 0.951k = 2323
3345 measured reflectionsl = 018
3345 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.061 w = 1/[σ2(Fo2) + (0.076P)2 + 0.242P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.179(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.19 e Å3
3345 reflectionsΔρmin = 0.16 e Å3
267 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0042 (12)
Crystal data top
C25H20O3V = 1851.2 (17) Å3
Mr = 368.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.027 (5) ŵ = 0.09 mm1
b = 19.926 (5) ÅT = 293 K
c = 15.415 (5) Å0.30 × 0.20 × 0.20 mm
β = 90.366 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3345 independent reflections
Absorption correction: multi-scan
(SADABS: Bruker, 2004)
1837 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.951Rint = 0.072
3345 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0612 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.13Δρmax = 0.19 e Å3
3345 reflectionsΔρmin = 0.16 e Å3
267 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.7149 (4)0.07041 (12)0.81151 (15)0.0752 (7)
O2A0.3022 (4)0.46629 (14)0.8854 (2)0.0831 (12)0.848 (6)
O2B0.3818 (18)0.5689 (8)0.9159 (10)0.075 (6)0.152 (6)
O31.0538 (4)0.94015 (12)0.91441 (16)0.0810 (8)
C10.9200 (6)0.05490 (18)0.7708 (3)0.0878 (12)
H1A0.92650.07690.71550.132*
H1B0.93110.00720.76280.132*
H1C1.04050.07010.80680.132*
C20.6696 (5)0.13625 (18)0.82763 (19)0.0588 (9)
C30.4657 (5)0.14718 (18)0.8680 (2)0.0637 (9)
H30.37640.11080.88210.076*
C40.3971 (5)0.20984 (18)0.88679 (19)0.0624 (9)
H40.26010.21610.91300.075*
C50.5308 (4)0.26629 (16)0.86723 (18)0.0507 (8)
C60.4623 (5)0.33174 (17)0.88371 (18)0.0582 (9)
H60.32250.33890.90710.070*
C70.5958 (5)0.38617 (16)0.86635 (19)0.0568 (8)
C80.8060 (5)0.37394 (18)0.8290 (2)0.0631 (9)
H80.90010.40980.81740.076*
C90.8711 (5)0.31106 (18)0.8100 (2)0.0619 (9)
H91.00840.30450.78420.074*
C100.7380 (4)0.25513 (16)0.82814 (18)0.0513 (8)
C110.8029 (5)0.18913 (17)0.80906 (19)0.0576 (8)
H110.93970.18150.78330.069*
C120.5122 (6)0.45453 (18)0.8827 (2)0.0683 (10)
H12B0.36020.46190.88640.082*0.152 (6)
C130.6636 (5)0.51023 (18)0.8930 (2)0.0664 (9)
H13A0.81280.50160.90390.080*
C140.5946 (5)0.57381 (18)0.8872 (2)0.0660 (9)
H14A0.44460.57960.87470.079*0.848 (6)
C150.7225 (5)0.63517 (17)0.89786 (19)0.0548 (8)
C160.6339 (5)0.69511 (17)0.87011 (19)0.0575 (9)
H160.49480.69480.84360.069*
C170.7436 (4)0.75620 (16)0.87992 (18)0.0514 (8)
C180.6536 (5)0.81769 (19)0.8512 (2)0.0628 (9)
H180.51630.81770.82340.075*
C190.7603 (5)0.87635 (18)0.8629 (2)0.0656 (9)
H190.69860.91610.84230.079*
C200.9658 (5)0.87709 (17)0.9066 (2)0.0613 (9)
C211.0620 (5)0.81927 (16)0.93433 (18)0.0534 (8)
H211.19990.82060.96170.064*
C220.9538 (4)0.75732 (16)0.92185 (17)0.0491 (7)
C231.0433 (5)0.69571 (16)0.94924 (19)0.0536 (8)
H231.18210.69530.97590.064*
C240.9338 (5)0.63677 (16)0.93804 (19)0.0573 (8)
H240.99860.59700.95700.069*
C251.2506 (6)0.94859 (18)0.9618 (3)0.0897 (12)
H25A1.22740.93511.02090.135*
H25B1.29410.99490.96030.135*
H25C1.36540.92150.93680.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0769 (16)0.0723 (18)0.0765 (16)0.0081 (12)0.0102 (13)0.0067 (13)
O2A0.0531 (19)0.084 (2)0.112 (2)0.0078 (14)0.0012 (15)0.0059 (17)
O2B0.039 (9)0.096 (13)0.091 (12)0.008 (7)0.008 (7)0.015 (9)
O30.0854 (17)0.0663 (17)0.0910 (18)0.0005 (13)0.0171 (14)0.0050 (13)
C10.081 (3)0.089 (3)0.093 (3)0.006 (2)0.014 (2)0.006 (2)
C20.055 (2)0.071 (2)0.0501 (19)0.0080 (17)0.0043 (15)0.0090 (17)
C30.057 (2)0.073 (3)0.061 (2)0.0186 (18)0.0040 (16)0.0117 (19)
C40.0439 (17)0.092 (3)0.052 (2)0.0166 (18)0.0061 (14)0.0073 (19)
C50.0416 (16)0.071 (2)0.0393 (16)0.0106 (15)0.0027 (13)0.0049 (16)
C60.0461 (18)0.088 (3)0.0403 (17)0.0165 (17)0.0003 (13)0.0003 (17)
C70.0517 (19)0.069 (2)0.0495 (19)0.0129 (16)0.0015 (14)0.0002 (16)
C80.056 (2)0.072 (3)0.061 (2)0.0228 (17)0.0017 (16)0.0061 (18)
C90.0464 (18)0.084 (3)0.056 (2)0.0174 (17)0.0040 (15)0.0064 (19)
C100.0419 (16)0.072 (2)0.0400 (16)0.0126 (16)0.0033 (13)0.0063 (16)
C110.0439 (17)0.079 (2)0.0501 (19)0.0083 (17)0.0025 (14)0.0114 (17)
C120.070 (2)0.082 (3)0.053 (2)0.021 (2)0.0053 (17)0.0013 (18)
C130.058 (2)0.075 (3)0.066 (2)0.0085 (19)0.0023 (16)0.0023 (19)
C140.0477 (19)0.082 (3)0.069 (2)0.0019 (18)0.0021 (16)0.014 (2)
C150.0490 (18)0.068 (2)0.0475 (18)0.0004 (16)0.0006 (14)0.0124 (16)
C160.0439 (17)0.077 (3)0.0512 (19)0.0023 (16)0.0057 (14)0.0156 (17)
C170.0464 (17)0.065 (2)0.0428 (17)0.0082 (16)0.0002 (14)0.0077 (15)
C180.0486 (18)0.086 (3)0.053 (2)0.0098 (18)0.0033 (15)0.0082 (19)
C190.063 (2)0.071 (3)0.063 (2)0.0156 (18)0.0007 (17)0.0020 (18)
C200.063 (2)0.064 (2)0.057 (2)0.0004 (18)0.0026 (16)0.0042 (17)
C210.0472 (17)0.066 (2)0.0469 (18)0.0018 (16)0.0007 (14)0.0005 (16)
C220.0457 (16)0.063 (2)0.0389 (16)0.0029 (15)0.0028 (13)0.0048 (15)
C230.0441 (17)0.070 (2)0.0469 (18)0.0016 (16)0.0069 (13)0.0036 (16)
C240.0536 (19)0.066 (2)0.0521 (19)0.0056 (16)0.0011 (15)0.0022 (16)
C250.081 (3)0.076 (3)0.112 (3)0.006 (2)0.013 (2)0.000 (2)
Geometric parameters (Å, º) top
O1—C21.363 (4)C12—C131.445 (4)
O1—C11.423 (4)C12—H12B0.9300
O2A—C121.288 (4)C13—C141.336 (4)
O2B—C141.363 (11)C13—H13A0.9300
O3—C201.369 (4)C14—C151.454 (4)
O3—C251.400 (4)C14—H14A0.9300
C1—H1A0.9600C15—C161.375 (4)
C1—H1B0.9600C15—C241.413 (4)
C1—H1C0.9600C16—C171.393 (4)
C2—C111.357 (4)C16—H160.9300
C2—C31.398 (4)C17—C181.410 (4)
C3—C41.347 (4)C17—C221.419 (4)
C3—H30.9300C18—C191.346 (4)
C4—C51.417 (4)C18—H180.9300
C4—H40.9300C19—C201.406 (5)
C5—C61.392 (4)C19—H190.9300
C5—C101.408 (4)C20—C211.358 (4)
C6—C71.377 (4)C21—C221.409 (4)
C6—H60.9300C21—H210.9300
C7—C81.416 (4)C22—C231.405 (4)
C7—C121.475 (4)C23—C241.358 (4)
C8—C91.346 (4)C23—H230.9300
C8—H80.9300C24—H240.9300
C9—C101.402 (4)C25—H25A0.9600
C9—H90.9300C25—H25B0.9600
C10—C111.404 (4)C25—H25C0.9600
C11—H110.9300
C2—O1—C1117.7 (3)C14—C13—H13A119.2
C20—O3—C25118.9 (3)C12—C13—H13A119.2
O1—C1—H1A109.5C13—C14—O2B101.7 (7)
O1—C1—H1B109.5C13—C14—C15128.7 (3)
H1A—C1—H1B109.5O2B—C14—C15121.5 (7)
O1—C1—H1C109.5C13—C14—H14A115.6
H1A—C1—H1C109.5C15—C14—H14A115.6
H1B—C1—H1C109.5C16—C15—C24117.6 (3)
C11—C2—O1126.1 (3)C16—C15—C14119.4 (3)
C11—C2—C3119.8 (3)C24—C15—C14123.0 (3)
O1—C2—C3114.1 (3)C15—C16—C17122.8 (3)
C4—C3—C2120.8 (3)C15—C16—H16118.6
C4—C3—H3119.6C17—C16—H16118.6
C2—C3—H3119.6C16—C17—C18123.0 (3)
C3—C4—C5120.9 (3)C16—C17—C22119.0 (3)
C3—C4—H4119.5C18—C17—C22118.0 (3)
C5—C4—H4119.5C19—C18—C17122.0 (3)
C6—C5—C10119.4 (3)C19—C18—H18119.0
C6—C5—C4122.4 (3)C17—C18—H18119.0
C10—C5—C4118.2 (3)C18—C19—C20119.5 (3)
C7—C6—C5121.9 (3)C18—C19—H19120.3
C7—C6—H6119.1C20—C19—H19120.3
C5—C6—H6119.1C21—C20—O3125.9 (3)
C6—C7—C8117.9 (3)C21—C20—C19121.0 (3)
C6—C7—C12119.6 (3)O3—C20—C19113.1 (3)
C8—C7—C12122.4 (3)C20—C21—C22120.3 (3)
C9—C8—C7120.8 (3)C20—C21—H21119.9
C9—C8—H8119.6C22—C21—H21119.9
C7—C8—H8119.6C23—C22—C21123.2 (3)
C8—C9—C10121.9 (3)C23—C22—C17117.6 (3)
C8—C9—H9119.0C21—C22—C17119.2 (3)
C10—C9—H9119.0C24—C23—C22122.2 (3)
C9—C10—C11122.8 (3)C24—C23—H23118.9
C9—C10—C5118.0 (3)C22—C23—H23118.9
C11—C10—C5119.1 (3)C23—C24—C15120.7 (3)
C2—C11—C10121.1 (3)C23—C24—H24119.6
C2—C11—H11119.4C15—C24—H24119.6
C10—C11—H11119.4O3—C25—H25A109.5
O2A—C12—C13118.5 (3)O3—C25—H25B109.5
O2A—C12—C7120.7 (3)H25A—C25—H25B109.5
C13—C12—C7120.8 (3)O3—C25—H25C109.5
C13—C12—H12B119.6H25A—C25—H25C109.5
C7—C12—H12B119.6H25B—C25—H25C109.5
C14—C13—C12121.7 (3)
C1—O1—C2—C110.5 (5)C12—C13—C14—O2B30.1 (7)
C1—O1—C2—C3179.7 (3)C12—C13—C14—C15178.3 (3)
C11—C2—C3—C41.7 (5)C13—C14—C15—C16165.1 (3)
O1—C2—C3—C4179.0 (3)O2B—C14—C15—C1652.0 (9)
C2—C3—C4—C50.9 (5)C13—C14—C15—C2416.7 (5)
C3—C4—C5—C6178.3 (3)O2B—C14—C15—C24126.2 (8)
C3—C4—C5—C100.4 (4)C24—C15—C16—C170.1 (4)
C10—C5—C6—C72.9 (4)C14—C15—C16—C17178.4 (3)
C4—C5—C6—C7178.4 (3)C15—C16—C17—C18179.7 (3)
C5—C6—C7—C81.4 (4)C15—C16—C17—C221.3 (4)
C5—C6—C7—C12178.2 (3)C16—C17—C18—C19178.6 (3)
C6—C7—C8—C90.9 (5)C22—C17—C18—C190.3 (4)
C12—C7—C8—C9175.8 (3)C17—C18—C19—C201.3 (5)
C7—C8—C9—C101.6 (5)C25—O3—C20—C216.3 (5)
C8—C9—C10—C11179.9 (3)C25—O3—C20—C19175.6 (3)
C8—C9—C10—C50.0 (4)C18—C19—C20—C212.4 (5)
C6—C5—C10—C92.2 (4)C18—C19—C20—O3179.4 (3)
C4—C5—C10—C9179.1 (3)O3—C20—C21—C22179.7 (3)
C6—C5—C10—C11177.9 (3)C19—C20—C21—C221.8 (5)
C4—C5—C10—C110.8 (4)C20—C21—C22—C23179.7 (3)
O1—C2—C11—C10179.5 (3)C20—C21—C22—C170.1 (4)
C3—C2—C11—C101.3 (4)C16—C17—C22—C231.8 (4)
C9—C10—C11—C2179.9 (3)C18—C17—C22—C23179.2 (3)
C5—C10—C11—C20.0 (4)C16—C17—C22—C21178.0 (3)
C6—C7—C12—O2A22.7 (5)C18—C17—C22—C211.0 (4)
C8—C7—C12—O2A154.0 (3)C21—C22—C23—C24178.7 (3)
C6—C7—C12—C13159.5 (3)C17—C22—C23—C241.2 (4)
C8—C7—C12—C1323.8 (5)C22—C23—C24—C150.0 (4)
O2A—C12—C13—C1414.0 (5)C16—C15—C24—C230.6 (4)
C7—C12—C13—C14163.8 (3)C14—C15—C24—C23177.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of rings C5-C10 and C17-C22, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg4i0.932.863.543 (4)131
C18—H18···Cg2ii0.932.853.611 (4)140
C23—H23···Cg2iii0.932.883.592 (4)134
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of rings C5-C10 and C17-C22, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cg4i0.932.863.543 (4)131
C18—H18···Cg2ii0.932.853.611 (4)140
C23—H23···Cg2iii0.932.883.592 (4)134
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x+2, y+1, z+2.
 

Acknowledgements

PNP is thankful to the Indian Institute of Technology, Madras, for an Institute postdoctoral fellowship. The authors thank SAIF, IIT Madras, for the spectral analysis.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAnderson, O. M. & Markham, K. R. (2006). In Flavonoids Chemistry, Biochemistry and Applications. New York: Taylor and Francis.  Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiu, X. F., Zheng, C. J., Sun, L. P., Liu, X. K. & Piao, H. R. (2011). Eur. J. Med. Chem. 46, 3469–3473.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPerozo-Rondon, E., Martín-Aranda, R. M., Casal, B., Duran-Valle, C. J., Lau, W. N., Zhang, X. F. & Yeung, K. L. (2006). Catal. Today, 114, 183–187.  CAS Google Scholar
First citationPowers, D. G., Casebier, D. S., Fokas, D., Ryan, W. J., Troth, J. R. & Coffen, D. L. (1998). Tetrahedron, 54, 4085–4096.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, Z. N., Praveen, S., Musthafa, T. N., Ahmad, A. & Khan, A. U. (2012). J. Enzyme Inhib. Med. Chem. 27, 84–91.  CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, V. R., Prasad, S., Sung, B. & Aggarwal, B. B. (2011). Int. Immunopharmacol. 11, 295–309.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYathirajan, H. S., Sarojini, B. K., Bindya, S., Narayana, B. & Bolte, M. (2006). Acta Cryst. E62, o4046–o4047.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds