research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The crystal structures of six (2E)-3-aryl-1-(5-halogeno­thio­phen-2-yl)prop-2-en-1-ones

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Government First Grade College, Kumta 581 343, India, Research and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: jpjasinski@hotmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 15 August 2015; accepted 19 August 2015; online 26 August 2015)

The structures of six chalcones containing 5-halogeno­thio­phen-2-yl substituents are reported: (2E)-1-(5-chloro­thio­phen-2-yl)-3-(4-ethyl­phen­yl)prop-2-en-1-one, C15H13ClOS, (I), and (2E)-1-(5-bromo­thio­phen-2-yl)-3-(4-ethyl­phen­yl)prop-2-en-1-one, C15H13BrOS, (II), are isostructural in space group P-1, while (2E)-1-(5-chloro­thio­phen-2-yl)-3-(4-eth­oxy­phen­yl)prop-2-en-1-one, C15H13ClO2S, (III), and (2E)-1-(5-bromo­thio­phen-2-yl)-3-(4-eth­oxy­phen­yl)prop-2-en-1-one C15H13BrO2S, (IV), are isostructural in space group P21/c. There are no hydrogen bonds of any kind in the structures of compounds (I) and (II), but in the structures of compounds (III) and (IV), the mol­ecules are linked into C(7) chains by means of C—H⋯O hydrogen bonds. In the structure of (2E)-3-(4-bromo­phen­yl)-1-(5-chloro­thio­phen-2-yl)prop-2-en-1-one, C13H8BrClOS, (V), there are again no hydrogen bonds nor ππ stacking inter­actions but in that of (2E)-1-(5-bromo­thio­phen-2-yl)-3-(3-meth­oxy­phen­yl)prop-2-en-1-one, C14H11BrO2S, (VI), the mol­ecules are linked into C(5) chains by C—H⋯O hydrogen bonds. In each of compounds (I)–(VI), the mol­ecular skeletons are close to planarity, and there are short halogen⋯halogen contacts in the structures of compounds (II) and (V) and a short Br⋯O contact in the structure of compound (VI). Comparisons are made with the structures of some similar compounds.

1. Chemical context

Chalcones are important constituents of many natural products, and they are abundant in edible plants where they are considered to be precursors of flavonoids and isoflavonoids. They display a wide range of pharmacological properties including anti­bacterial (Tang et al., 2008[Tang, S.-P., Kuang, D.-Z., Feng, Y.-L., Li, W. & Chen, Z.-M. (2008). Acta Cryst. E64, o1123.]; Kumar et al., 2013a[Kumar, C. S. C., Loh, W.-S., Ooi, C. W., Quah, C. K. & Fun, H.-K. (2013a). Molecules, 18, 11996-12011.]), anti­cancer (Shin et al., 2013[Shin, S. Y., Yoon, H., Hwang, D., Ahn, S., Kim, D.-W., Koh, D., Lee, Y. H. & Lim, Y. (2013). Bioorg. Med. Chem. 21, 7018-7024.]), anti­fungal (Domínguez et al., 2001[Domínguez, J. N., Charris, J. E., Lobo, G., Gamboa de Domínguez, N., Moreno, M. M., Riggione, F., Sanchez, E., Olson, J. & Rosenthal, P. J. (2001). Eur. J. Med. Chem. 36, 555-560.]; Kumar et al., 2013a[Kumar, C. S. C., Loh, W.-S., Ooi, C. W., Quah, C. K. & Fun, H.-K. (2013a). Molecules, 18, 11996-12011.],b[Kumar, C. S. C., Loh, W.-S., Ooi, C. W., Quah, C. K. & Fun, H.-K. (2013b). Molecules, 18, 12707-12724.]), anti­malarial (Li et al., 1995[Li, R., Kenyon, G. L., Cohen, F. E., Chen, X., Gong, B., Domínguez, J. N., Davidson, E., Kurzban, G., Miller, R. E., Nuzum, E. O., Rosenthal, P. J. & McKerrow, J. H. (1995). J. Med. Chem. 38, 5031-5037.]) and anti­tubercular (Lin et al., 2002[Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L.-M., Nie, W. & Chen, F.-C. (2002). Bioorg. Med. Chem. 10, 2795-2802.]) activity. In addition, chalcone derivatives are also important materials in photonic applications because of their excellent blue-light transmittance and good crystallization ability (Goto et al., 1991[Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688-698.]; Uchida et al.,1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 315, 135-140.]; Indira et al., 2002[Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209-214.]; Sarojini et al., 2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54-59.]). In a continuation of our work on chalcones containing a thio­phen moiety (Naik et al., 2015[Naik, V. S., Shettigar, V., Berglin, T. S., Coburn, J. S., Jasinski, J. P. & Yathirajan, H. S. (2015). Acta Cryst. E71, 965-971.]), six new chalcones of this type, compounds (I)–(VI)[link] (Figs. 1[link]–6[link][link][link][link][link]) have now been synthesized and we report herein on their mol­ecular structures and supra­molecular assembly. Compounds (I)–(VI) were all prepared using condensation reactions, under basic conditions, between 2-acetyl-5-halogeno­thio­phens and substituted benzaldehydes.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of compound (IV)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5]
Figure 5
The mol­ecular structure of compound (V)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 6]
Figure 6
The mol­ecular structure of compound (VI)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

2. Structural commentary

Compounds (I)[link] and (II)[link] are isostructural in space group P[\overline{1}], while compounds (III)[link] and (IV)[link] are isostructural in space group P21/c. Although the unit-cell dimensions for compound (V)[link] are similar to those for compounds (I)[link] and (II)[link], a detailed comparison of the atomic coordinates for compounds (I)[link], (II)[link] and (V)[link] indicates that there is no simple relationship between those of (I)[link] and (II)[link] on the one hand and those of (V)[link] on the other. Although compound (VI)[link] crystallizes in the same space group as compounds (III)[link] and (IV)[link], the unit-cell dimensions for (VI)[link] are very different from those for (III)[link] and (IV)[link].

Although the mol­ecules of compounds (I)–(VI) all lie in general positions, the non-H atoms of the mol­ecular skeletons are quite close to being co-planar, apart from the terminal C atoms of the ethyl groups in compounds (I)–(IV), as shown by the dihedral angles in Table 1[link]. The values of these angles demonstrate the very close conformational similarity between the mol­ecules of the three compounds, (I)[link], (II)[link] and (V)[link], which crystallize in space group P[\overline{1}], and between those of the three compounds, (III)[link], (IV)[link] and (VI)[link], in P21/c. In the mol­ecules of each of (I)–(V), the 5-halogenothienyl unit adopts the same orientation, with S11—C12—C1—C2 torsion angles close to 180° (Table 1[link]). There is no evidence in any of the structures reported here for orientational disorder of the type commonly observed with otherwise unsubstituted thienyl units; this is presumably a direct consequence of the presence of the halogen substituent.

Table 1
Selected dihedral, bond and torsion angles (°) for compounds (I)–(VI)

Parameter (I) (II) (III) (IV) (V) (VI)
Dihedral 1 2.74 (9) 3.46 (18) 2.80 (14) 3.11 (18) 3.66 (16) 7.70 (13)
Dihedral 2 10.23 (11) 10.5 (2) 3.71 (12) 2.99915) 9.74 (19) 3.10 (11)
Dihedral 3 11.62 (9) 11.78 (16) 6.49 (7) 6.03 (9) 11.96 (14) 5.20 (13)
             
C32—C33—O33           124.89 (19)
C34—C33—O33           114.96 (17)
C33—O33—C37           117.69 (16)
C33—C34—O34     116.33 (13) 116.2 (2)    
C35—C34—O34     123.98 (13) 124.2 (2)    
C34—O34—C37     117.57 (12) 117.45 (18)    
             
S11—C12—C1—C2 178.07 (10) 177.34 (18) −178.36 (12) −178.48 (16) 177.99 (19) −172.61 (16)
C32—C33—O33—C37           7.9 (3)
C33—C34—C37—C38 −97.5 (2) −92.6 (3)        
C33—C34—O34—C37     −175.99 (15) −176.45 (19)    
C34—O34—C37—C38     169.60 (16) 171.3 (2)    
`Dihedral 1' represents the dihedral angle between the spacer unit (C12,C1,C2,C3,C31) and the thienyl ring. `Dihedral 2' represents the dihedral angle between the spacer unit (C12,C1,C2,C3,C31) and the aryl ring. `Dihedral 3' represents the dihedral angle between the thienyl and aryl rings.

In each of compounds (III)[link], (IV)[link] and (VI)[link], all of which carry an alk­oxy substituent, the atom C37 (Figs. 3[link], 4[link] and 6[link]) lies close to the plane of the adjacent aryl ring: the displacements of the atoms C37 from these planes are 0.117 (3), 0.097 (4) and 0.186 (4) Å, respectively. Consistent with these observations, the corresponding pairs of exocyclic C—C—O angles (Table 1[link]) differ significantly, as typically found for alk­oxy­benzenes with near-planar mol­ecular skeletons (Seip & Seip, 1973[Seip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024-4027.]; Ferguson et al., 1996[Ferguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420-423.]). Whereas the whole eth­oxy group in each of compounds (III)[link] and (IV)[link] is nearly coplanar with the adjacent aryl ring, this is far from the case for compounds (I)[link] and (II)[link] (Table 1[link], Figs. 1[link]–4[link][link][link]).

The bond distances in compounds (I)–(VI) all lie within the usual ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

3. Supra­molecular inter­actions

There are no direction-specific inter­molecular inter­actions in the structure of compound (I)[link]; hydrogen bonds of C—H⋯O and C—H⋯π types are absent, as are ππ stacking inter­actions. Hydrogen bonds and ππ stacking inter­actions are also absent from the structure of compound (II)[link], but in this structure there is a short inter­molecular Br⋯Br contact, with parameters Br15⋯Br15i = 3.4917 (5) Å and C15—Br15⋯Br15i = 151.37 (8)° [symmetry code: (i) −x + 1, −y + 1, −z + 2]. The Br ⋯Br distance is significantly shorter than the van der Waals contact distance of 3.70 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]; Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]), while the observed C—Br⋯Br angle is consistent with the results of a database analysis of such contacts (Ramasubbu et al., 1986[Ramasubbu, N., Parthasarathy, R. & Murray-Rust, P. (1986). J. Am. Chem. Soc. 108, 4308-4314.]), which found that such angles were, in general, clustered around 165°.

In each of compounds (III)[link] and (IV)[link], a single C—H⋯O hydrogen bond having the carbonyl O atom as the acceptor (Table 2[link]) links mol­ecules related by c-glide symmetry into zigzag C(7) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chains running parallel to the [001] direction (Fig. 7[link]). Two chains of this type, related to one another by inversion, pass through each unit cell, but there are no direction-specific inter­actions between adjacent chains: in particular there are no short inter­molecular Br⋯Br contacts in the structure of compound (IV)[link], thus differing in this respect from compound (II)[link].

Table 2
Hydrogen bond parameters (Å, °) for compounds (III)[link], (IV)[link] and (VI)

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(III) C36—H36⋯O6i 0.95 2.52 3.4649 (18) 173
(IV) C36—H36⋯O6i 0.95 2.52 3.464 (2) 172
(VI) C13—H13⋯O1ii 0.95 2.54 3.446 (3) 159
Symmetry codes: (i) x, −y + [{3\over 2}], z + [{1\over 2}]; (ii) −x + 1, y − [{1\over 2}], −z + [{3\over 2}].
[Figure 7]
Figure 7
Part of the crystal structure of compound (III)[link], showing the formation of a hydrogen-bonded C(7) chain running parallel to the [001] direction. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (x, −y + [{3\over 2}], z + [{1\over 2}]) and (x, −y + [{3\over 2}], z + [{1\over 2}]), respectively.

There are neither hydrogen bonds nor ππ stacking inter­actions in the structure of compound (V)[link]. However, the structure contains a fairly short inter­molecular Cl⋯Cl contact, although, rather surprisingly, there are no short contacts of either Br⋯Br or Br⋯Cl types. For the contact C15—Cl15⋯Cl15ii [symmetry code: (ii) −x + 1, −y, −z + 2], the geometrical parameters are Cl⋯Clii = 3.4825 (11) Å and C—Cl⋯Clii = 167.83 (10)°. The Cl⋯Cl distances is thus just at the van der Waals contact distance 3.48 Å (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]) and so this contact cannot be regarded as structurally significant: however, it may be noted that the angle C—Cl⋯Clii is entirely consistent with the results of a database analysis (Ramasubbu et al., 1986[Ramasubbu, N., Parthasarathy, R. & Murray-Rust, P. (1986). J. Am. Chem. Soc. 108, 4308-4314.]).

A single C—H⋯O hydrogen bond (Table 2[link]) links the mol­ecules of compound (VI)[link] which are related by the 21 screw axis along ([1\over2], y, [3\over4]) into a C(5) chain running parallel to the [010] direction (Fig. 8[link]). Two chains of this type, related to one another by inversion, pass through each unit cell, but there are no direction-specific inter­actions between adjacent chains. Not only are C—H⋯π hydrogen bonds and ππ stacking inter­actions absent from the crystal structure of compound (VI)[link], but neither are there any short Br⋯Br contacts of the type found in compound (II)[link]. There is however a short inter­molecular Br⋯O contact with parameters Br15⋯O33iii = 2.9770 (16) Å and C15—Br15⋯O33iii = 167.21 (7)° [symmetry code: (iii) x − , y, z + 1].

[Figure 8]
Figure 8
Part of the crystal structure of compound (VI)[link], showing the formation of a hydrogen-bonded C(5) chain running parallel to the [010] direction. For the sake of clarity, the H atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (−x + 1, y − [{1\over 2}], −z + [{3\over 2}]), (−x + 1, y + [{1\over 2}], −z + [{3\over 2}]) and (x, y − 1, z), respectively.

All of the compounds reported here crystallize either in space group P[\overline{1}] or in P21/c, and there appear to be some inter­esting connections between the space groups and the nature of the direction-specific inter­molecular inter­actions manifested in the various structures. Thus although all six of the compounds described here contain carbonyl groups, only in compounds (III)[link], (IV)[link] and (VI)[link] do the O atoms of these units participate as acceptors in C—H⋯O hydrogen bonds: these happen to be the three examples which crystallize in space group P21/c. Of the three 5-bromo­thienyl derivatives reported here, a short Br⋯Br contact occurs only in compound (II)[link], the only example of this group which crystallizes in space group P[\overline{1}].

4. Database survey

The structures of a number of (2E)-3-aryl-1-(5-chloro­thio­phen-2-yl)-prop-2-en-1-one derivatives closely related to compounds (I)–(VI) have been reported recently, usually in the form of brief reports on single structures in which no comparisons with related compounds were made, and sometimes with little or no mention of the supra­molecular assembly. It is thus of inter­est briefly to compare the supra­molecular assembly in these compounds with that in compounds (I)–(VI). Compound (VII) (see Scheme below) is isomeric with compound (V)[link], and these two compounds differ only in the exchange of the halogen location. Despite this, they are not isomorphous as compound (VII) crystallizes in space group P21/c (Kavitha et al., 2013[Kavitha, H. D., Roopashree, K. R., Vepuri, S. B., Devarajegowda, H. C. & Devaru, V. B. (2013). Acta Cryst. E69, o859.]), as opposed to P[\overline{1}] for compound (V)[link]. There are two C—H⋯π contacts in the structure of compound (VII), but both of these have long H⋯D distances and small D—H⋯A angles, and so are probably not structurally significant. There is, however, a short inter­molecular Br⋯Cl contact for which the Br⋯Cl distance of 3.5746 (11) Å (not 3.698 (1) Å as stated in the original report), is larger than the sum, 3.55 Å (Rowland & Taylor (1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]), of the van der Waals radii.

For compound (VIII) (Vepuri et al., 2012[Vepuri, S. B., Devarajegowda, H. C., Jeyaseelan, S., Anbazhagan, S. & Prasad, Y. R. (2012). Acta Cryst. E68, o3456.]), which provides a genuine example of Z′ = 2 in space group Cc (Baur & Kassner, 1992[Baur, W. H. & Kassner, D. (1992). Acta Cryst. B48, 356-369.]; Marsh, 1997[Marsh, R. E. (1997). Acta Cryst. B53, 317-322.], 2004[Marsh, R. E. (2004). Acta Cryst. B60, 252-253.]), there are no significant direction inter­actions in the structure: in particular there are neither C—H⋯O hydrogen bonds nor short Br⋯Br contacts. Compounds (IX) (Prabhu et al., 2011b[Prabhu, A. N., Jayarama, A., Sankolli, R., Guru Row, T. N. & Upadhyaya, V. (2011b). Acta Cryst. E67, o2665.]) and (X) (Prabhu et al., 2014[Prabhu, A. N., Jayarama, A., Upadhyaya, V. & Subramanya Bhat, K. (2014). Chem. Sci. Trans. 3, 530-539.]) are isostructural, and (X) was described as forming chains built from two independent C—H⋯O hydrogen bonds. However, one of these contacts involves a methyl C—H bond and the other has a C—H⋯O angle of only 130° (cf. Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]), so that neither can be regarded as structurally significant. On the other hand the structure of (IX) contains a significant aromatic ππ stacking inter­action between the phenyl rings of inversion-related mol­ecules, although this was apparently overlooked in the original report. The phenyl rings of the mol­ecules at (x, y, z) and (−x + 2, −y + 2, −z + 2) are strictly parallel with an inter­planar spacing of 3.5113 (8) Å: the ring centroid separation is 3.6535 (11) Å, corresponding to a ring-centroid offset of 1.009 (2) Å, so leading to the formation of a centrosymmetric π-stacked dimer (Fig. 9[link]).

[Figure 9]
Figure 9
Part of the crystal structure of compound (IX), showing the formation of a centrosymmetric π-stacked dimer. For the sake of clarity, the H atoms and the unit-cell outline have been omitted. The original atomic coordinates (Prabhu et al., 2011b[Prabhu, A. N., Jayarama, A., Sankolli, R., Guru Row, T. N. & Upadhyaya, V. (2011b). Acta Cryst. E67, o2665.]) have been used and the S atom marked with an asterisk (*) is at the symmetry position (−x + 2, −y + 2, −z + 2).

The original report on compound (XI) (Sunitha et al., 2012[Sunitha, K., Devarajegowda, H. C., Al-eryani, W. F. A., Prasad, Y. R. & Kumar, A. U. M. (2012). Acta Cryst. E68, o61.]) provides no analysis or description of the supra­molecular assembly. Examination of the original atomic coordinates shows firstly that mol­ecules related by a c-glide plane are linked by a nearly linear C—H⋯O hydrogen bond, forming a C(6) chain running parallel to the [001] direction, and secondly that inversion-related pairs of mol­ecules are linked by a ππ stacking inter­action involving the phenyl rings of the mol­ecules at (x, y, z) and (−x + 1, −y + 1, −z), with inter­planar spacing 3.4465 (10) Å, ring-centroid separation 3.749 (3) Å and ring-centroid offset 1.475 (3) Å. The combined effect of these two types of inter­action is the formation of a sheet lying parallel to (100); see Fig. 10[link].

[Scheme 2]
[Figure 10]
Figure 10
A stereoview of part of the crystal structure of compound (XI), showing the formation of sheets parallel to (100) built from π-stacked hydrogen-bonded C(6) chains. The original atomic coordinates (Sunitha et al., 2012[Sunitha, K., Devarajegowda, H. C., Al-eryani, W. F. A., Prasad, Y. R. & Kumar, A. U. M. (2012). Acta Cryst. E68, o61.]) have been used and, for the sake of clarity, the H atoms not involved in the motif shown have been omitted.

There are two inter­molecular C—H⋯O contacts in the structure of compound (XII) which were described (Prabhu et al., 2011a[Prabhu, A. N., Jayarama, A., Row, T. N. G. & Upadhyaya, V. (2011a). Acta Cryst. E67, o2086.]) as joining the mol­ecules into chains: however, for these two contacts the H⋯O distances, 2.68 and 2.71 Å, both exceed the sum of the van der Waals radii, 2.65 Å (Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]), so that these contacts certainly cannot be regarded as hydrogen bonds. Simple C(11) chains are formed in the structure of compound (XIII) built from C—H⋯O hydrogen bonds (Vepuri et al., 2011[Vepuri, S. B., Devarajegowda, H. C., Al-eryani, W. F. A., Lavanya, K. & Anbazhagan, S. (2011). Acta Cryst. E67, o3474.]), but there are no short Br⋯Br contacts in either of (XI) and (XIII).

5. Synthesis and crystallization

For the synthesis of each compound, an equimolar mixture (0.01 mol of each component) of the appropriate 2-acetyl-5-halogeno­thio­phen and the appropriately-substituted benz­alde­hyde was dissolved in a mixture of methanol (20 ml) and aqueous sodium hydroxide solution (5 ml of 30% w/v solution). The mixtures were all stirred at ambient temperature for 4 h, and then poured into ice-cold water (250 ml): the resulting solid products were collected by filtration and dried in air at 323 K. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in acetone: melting points: (I)[link] 384 K, (II)[link] 423 K, (III)[link] 415 K. (IV)[link] 403 K, (V)[link] 423 K and (VI)[link] 390 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were located in difference Fourier maps and subsequently treated as riding atoms in geometrically idealized positions with C—H distances 0.95 Å (alkenyl, aromatic and heteroaromatic), 0.98 Å (CH3) or 0.99 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for other H atoms. The low-angle reflections ([\overline{1}],2,1) for compound (III)[link] and (2,1,2) for compound (VI)[link], which had been attenuated by the beam stop, were omitted from the final refinements for these structures.

Table 3
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C15H13ClOS C15H13BrOS C15H13ClO2S
Mr 276.76 321.21 292.76
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 173 173 173
a, b, c (Å) 6.0154 (5), 8.6358 (5), 14.0548 (9) 5.9745 (6), 8.6636 (7), 14.3039 (12) 16.3577 (6), 7.4518 (4), 11.0892 (4)
α, β, γ (°) 74.428 (5), 88.225 (6), 70.417 (6) 74.731 (7), 88.146 (7), 70.334 (8) 90, 92.260 (3), 90
V3) 661.23 (8) 671.29 (11) 1350.66 (10)
Z 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.43 3.20 0.43
Crystal size (mm) 0.58 × 0.32 × 0.29 0.45 × 0.22 × 0.16 0.50 × 0.28 × 0.17
 
Data collection
Diffractometer Agilent Eos Gemini Agilent Eos Gemini Agilent Eos Gemini
Absorption correction Multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]) Multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]) Multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.750, 0.883 0.326, 0.599 0.789, 0.929
No. of measured, independent and observed [I > 2σ(I)] reflections 6596, 3861, 3262 6997, 3915, 3089 7925, 3933, 3102
Rint 0.028 0.042 0.038
(sin θ/λ)max−1) 0.703 0.703 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 1.06 0.041, 0.090, 1.04 0.041, 0.111, 1.06
No. of reflections 3861 3915 3933
No. of parameters 165 165 173
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −0.34 0.59, −0.63 0.28, −0.39
  (IV) (V) (VI)
Crystal data
Chemical formula C15H13BrO2S C13H8BrClOS C14H11BrO2S
Mr 337.21 327.60 323.19
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 173 173 173
a, b, c (Å) 16.5498 (7), 7.5069 (4), 11.1574 (5) 6.0152 (8), 8.5691 (12), 13.1824 (9) 9.2726 (6), 11.3948 (8), 12.1472 (7)
α, β, γ (°) 90, 92.618 (4), 90 75.25 (1), 81.446 (8), 70.281 (12) 90, 93.273 (6), 90
V3) 1384.72 (11) 617.09 (14) 1281.37 (14)
Z 4 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 3.11 3.69 3.36
Crystal size (mm) 0.58 × 0.32 × 0.29 0.41 × 0.20 × 0.18 0.54 × 0.42 × 0.31
 
Data collection
Diffractometer Agilent Eos Gemini Agilent Eos Gemini Agilent Eos Gemini
Absorption correction Multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]) Multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]) Multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.261, 0.405 0.298, 0.514 0.216, 0.353
No. of measured, independent and observed [I > 2σ(I)] reflections 8866, 4040, 3189 6674, 3599, 2817 8260, 3722, 2914
Rint 0.037 0.026 0.035
(sin θ/λ)max−1) 0.703 0.703 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.078, 1.03 0.042, 0.100, 1.03 0.034, 0.075, 1.02
No. of reflections 4040 3599 3722
No. of parameters 174 154 164
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.54, −0.43 1.43, −0.53 0.49, −0.46
Computer programs: CrysAlis PRO and CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2008[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 and PLATON.

(I) (2E)-1-(5-Chlorothiophen-2-yl)-3-(4-ethylphenyl)prop-2-en-1-one top
Crystal data top
C15H13ClOSZ = 2
Mr = 276.76F(000) = 288
Triclinic, P1Dx = 1.390 Mg m3
a = 6.0154 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6358 (5) ÅCell parameters from 4320 reflections
c = 14.0548 (9) Åθ = 3.4–32.6°
α = 74.428 (5)°µ = 0.43 mm1
β = 88.225 (6)°T = 173 K
γ = 70.417 (6)°Needle, colourless
V = 661.23 (8) Å30.58 × 0.32 × 0.29 mm
Data collection top
Agilent Eos Gemini
diffractometer
3262 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.028
ω scansθmax = 30.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 78
Tmin = 0.750, Tmax = 0.883k = 1112
6596 measured reflectionsl = 1919
3861 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.1938P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.119(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.57 e Å3
3861 reflectionsΔρmin = 0.34 e Å3
165 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.019 (5)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6919 (3)0.25997 (18)0.55004 (11)0.0231 (3)
O10.9071 (2)0.23082 (16)0.54537 (9)0.0327 (3)
C20.5468 (3)0.22773 (19)0.47997 (11)0.0238 (3)
H20.37980.26440.48310.029*
C30.6465 (3)0.14771 (18)0.41211 (11)0.0240 (3)
H30.81440.10550.41460.029*
S110.73786 (7)0.36484 (5)0.71337 (3)0.02478 (12)
C120.5682 (3)0.33247 (18)0.62836 (11)0.0213 (3)
C130.3333 (3)0.38074 (19)0.64782 (11)0.0240 (3)
H130.21380.37190.60910.029*
C140.2884 (3)0.4450 (2)0.73162 (11)0.0261 (3)
H140.13630.48450.75570.031*
C150.4915 (3)0.44302 (19)0.77353 (11)0.0236 (3)
Cl150.51445 (8)0.51198 (6)0.87520 (3)0.03470 (13)
C310.5211 (3)0.11904 (18)0.33424 (11)0.0224 (3)
C320.6526 (3)0.03119 (19)0.26918 (11)0.0263 (3)
H320.81990.01660.27950.032*
C330.5411 (3)0.0132 (2)0.18973 (12)0.0282 (3)
H330.63370.04650.14640.034*
C340.2974 (3)0.08041 (19)0.17246 (11)0.0264 (3)
C350.1656 (3)0.1642 (2)0.23891 (12)0.0292 (3)
H350.00190.20960.22910.035*
C360.2743 (3)0.1824 (2)0.31864 (12)0.0272 (3)
H360.18060.23850.36320.033*
C370.1759 (4)0.0704 (2)0.08306 (13)0.0344 (4)
H37A0.02770.04760.10220.041*
H37B0.27940.02590.05940.041*
C380.1187 (4)0.2345 (3)0.00031 (15)0.0464 (5)
H38A0.04010.22320.05680.070*
H38B0.26530.25630.02040.070*
H38C0.01380.32990.02250.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0237 (7)0.0227 (6)0.0224 (7)0.0066 (5)0.0010 (5)0.0066 (5)
O10.0225 (5)0.0439 (7)0.0342 (6)0.0081 (5)0.0011 (5)0.0188 (5)
C20.0226 (7)0.0257 (7)0.0240 (7)0.0077 (6)0.0001 (5)0.0085 (6)
C30.0240 (7)0.0246 (7)0.0234 (7)0.0078 (6)0.0003 (5)0.0067 (5)
S110.02067 (19)0.0317 (2)0.0247 (2)0.00974 (15)0.00090 (13)0.01084 (15)
C120.0220 (7)0.0211 (6)0.0211 (6)0.0077 (5)0.0015 (5)0.0057 (5)
C130.0218 (7)0.0289 (7)0.0248 (7)0.0108 (6)0.0001 (5)0.0102 (6)
C140.0223 (7)0.0310 (7)0.0279 (8)0.0099 (6)0.0043 (6)0.0122 (6)
C150.0272 (7)0.0247 (6)0.0211 (7)0.0104 (6)0.0009 (5)0.0077 (5)
Cl150.0419 (2)0.0431 (2)0.0267 (2)0.01768 (19)0.00181 (16)0.01764 (17)
C310.0260 (7)0.0221 (6)0.0194 (6)0.0084 (6)0.0016 (5)0.0061 (5)
C320.0276 (7)0.0250 (7)0.0251 (7)0.0061 (6)0.0031 (6)0.0086 (6)
C330.0358 (8)0.0268 (7)0.0261 (7)0.0114 (6)0.0069 (6)0.0137 (6)
C340.0373 (9)0.0252 (7)0.0220 (7)0.0161 (6)0.0021 (6)0.0080 (6)
C350.0271 (8)0.0344 (8)0.0314 (8)0.0129 (7)0.0024 (6)0.0144 (7)
C360.0268 (7)0.0322 (7)0.0269 (7)0.0109 (6)0.0052 (6)0.0145 (6)
C370.0424 (10)0.0422 (9)0.0284 (8)0.0219 (8)0.0006 (7)0.0155 (7)
C380.0593 (13)0.0413 (10)0.0343 (10)0.0091 (9)0.0109 (9)0.0118 (8)
Geometric parameters (Å, º) top
C1—O11.2361 (19)C31—C361.401 (2)
C1—C121.471 (2)C32—C331.390 (2)
C1—C21.474 (2)C32—H320.9500
C2—C31.337 (2)C33—C341.386 (2)
C2—H20.9500C33—H330.9500
C3—C311.466 (2)C34—C351.399 (2)
C3—H30.9500C34—C371.509 (2)
S11—C151.7105 (16)C35—C361.385 (2)
S11—C121.7300 (14)C35—H350.9500
C12—C131.374 (2)C36—H360.9500
C13—C141.414 (2)C37—C381.519 (3)
C13—H130.9500C37—H37A0.9900
C14—C151.365 (2)C37—H37B0.9900
C14—H140.9500C38—H38A0.9800
C15—Cl151.7146 (15)C38—H38B0.9800
C31—C321.401 (2)C38—H38C0.9800
O1—C1—C12119.59 (13)C33—C32—H32119.6
O1—C1—C2123.61 (14)C31—C32—H32119.6
C12—C1—C2116.79 (13)C34—C33—C32121.34 (14)
C3—C2—C1121.02 (14)C34—C33—H33119.3
C3—C2—H2119.5C32—C33—H33119.3
C1—C2—H2119.5C33—C34—C35117.93 (14)
C2—C3—C31126.11 (14)C33—C34—C37121.69 (15)
C2—C3—H3116.9C35—C34—C37120.34 (16)
C31—C3—H3116.9C36—C35—C34121.33 (16)
C15—S11—C1290.59 (7)C36—C35—H35119.3
C13—C12—C1131.06 (13)C34—C35—H35119.3
C13—C12—S11111.68 (11)C35—C36—C31120.66 (14)
C1—C12—S11117.26 (11)C35—C36—H36119.7
C12—C13—C14112.81 (13)C31—C36—H36119.7
C12—C13—H13123.6C34—C37—C38111.86 (14)
C14—C13—H13123.6C34—C37—H37A109.2
C15—C14—C13111.43 (14)C38—C37—H37A109.2
C15—C14—H14124.3C34—C37—H37B109.2
C13—C14—H14124.3C38—C37—H37B109.2
C14—C15—S11113.49 (11)H37A—C37—H37B107.9
C14—C15—Cl15126.35 (13)C37—C38—H38A109.5
S11—C15—Cl15120.16 (9)C37—C38—H38B109.5
C32—C31—C36117.93 (14)H38A—C38—H38B109.5
C32—C31—C3119.01 (14)C37—C38—H38C109.5
C36—C31—C3122.99 (13)H38A—C38—H38C109.5
C33—C32—C31120.75 (15)H38B—C38—H38C109.5
O1—C1—C2—C36.9 (2)C12—S11—C15—Cl15179.17 (9)
C12—C1—C2—C3173.77 (13)C2—C3—C31—C32179.46 (15)
C1—C2—C3—C31175.39 (13)C2—C3—C31—C363.6 (2)
O1—C1—C12—C13177.79 (15)C36—C31—C32—C332.2 (2)
C2—C1—C12—C131.6 (2)C3—C31—C32—C33174.90 (13)
O1—C1—C12—S112.53 (19)C31—C32—C33—C340.3 (2)
C2—C1—C12—S11178.07 (10)C32—C33—C34—C351.4 (2)
C15—S11—C12—C130.13 (12)C32—C33—C34—C37176.37 (14)
C15—S11—C12—C1179.87 (11)C33—C34—C35—C361.1 (2)
C1—C12—C13—C14179.89 (14)C37—C34—C35—C36176.71 (15)
S11—C12—C13—C140.20 (17)C34—C35—C36—C310.9 (2)
C12—C13—C14—C150.18 (19)C32—C31—C36—C352.5 (2)
C13—C14—C15—S110.07 (17)C3—C31—C36—C35174.48 (14)
C13—C14—C15—Cl15179.21 (11)C33—C34—C37—C3897.5 (2)
C12—S11—C15—C140.03 (12)C35—C34—C37—C3880.2 (2)
(II) (2E)-1-(5-Bromothiophen-2-yl)-3-(4-ethylphenyl)prop-2-en-1-one top
Crystal data top
C15H13BrOSZ = 2
Mr = 321.21F(000) = 324
Triclinic, P1Dx = 1.589 Mg m3
a = 5.9745 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6636 (7) ÅCell parameters from 4444 reflections
c = 14.3039 (12) Åθ = 3.4–32.8°
α = 74.731 (7)°µ = 3.20 mm1
β = 88.146 (7)°T = 173 K
γ = 70.334 (8)°Needle, colourless
V = 671.29 (11) Å30.45 × 0.22 × 0.16 mm
Data collection top
Agilent Eos Gemini
diffractometer
3089 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.042
ω scansθmax = 30.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 68
Tmin = 0.326, Tmax = 0.599k = 1212
6997 measured reflectionsl = 2017
3915 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0284P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.59 e Å3
3915 reflectionsΔρmin = 0.63 e Å3
165 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0046 (13)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6905 (4)0.2599 (3)0.54692 (19)0.0229 (5)
O10.9055 (3)0.2306 (3)0.54185 (14)0.0324 (4)
C20.5458 (4)0.2270 (3)0.47838 (18)0.0243 (5)
H20.37750.26520.48130.029*
C30.6430 (4)0.1457 (3)0.41244 (19)0.0245 (5)
H30.81210.10240.41490.029*
S110.73910 (10)0.36381 (8)0.70722 (5)0.02472 (15)
C120.5672 (4)0.3334 (3)0.62337 (18)0.0201 (5)
C130.3321 (4)0.3826 (3)0.64308 (19)0.0237 (5)
H130.21050.37520.60510.028*
C140.2892 (4)0.4455 (3)0.72571 (19)0.0257 (5)
H140.13610.48550.74960.031*
C150.4928 (4)0.4419 (3)0.76705 (18)0.0226 (5)
Br150.52162 (5)0.51602 (4)0.87603 (2)0.03340 (11)
C310.5186 (4)0.1155 (3)0.33650 (18)0.0228 (5)
C320.6500 (4)0.0257 (3)0.27336 (19)0.0260 (5)
H320.81830.02320.28390.031*
C330.5396 (5)0.0066 (3)0.1957 (2)0.0287 (6)
H330.63350.05420.15350.034*
C340.2949 (5)0.0745 (3)0.17838 (19)0.0269 (5)
C350.1633 (4)0.1596 (4)0.2431 (2)0.0294 (6)
H350.00530.20540.23350.035*
C360.2716 (4)0.1791 (3)0.32083 (19)0.0270 (5)
H360.17670.23650.36410.032*
C370.1733 (5)0.0654 (4)0.0903 (2)0.0368 (7)
H37A0.27070.03680.07030.044*
H37B0.01680.05360.10740.044*
C380.1372 (6)0.2197 (4)0.0072 (2)0.0462 (8)
H38A0.05420.21010.04790.069*
H38B0.29210.22900.01190.069*
H38C0.04140.32120.02680.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0230 (11)0.0202 (12)0.0231 (13)0.0046 (10)0.0008 (10)0.0051 (10)
O10.0224 (9)0.0440 (12)0.0324 (11)0.0077 (8)0.0034 (8)0.0176 (10)
C20.0209 (11)0.0284 (14)0.0249 (13)0.0083 (10)0.0031 (10)0.0096 (11)
C30.0253 (12)0.0258 (13)0.0232 (13)0.0095 (10)0.0025 (10)0.0070 (11)
S110.0193 (3)0.0315 (4)0.0256 (3)0.0089 (3)0.0004 (2)0.0111 (3)
C120.0205 (10)0.0213 (12)0.0208 (12)0.0090 (9)0.0006 (9)0.0071 (10)
C130.0216 (11)0.0272 (13)0.0261 (13)0.0106 (10)0.0011 (10)0.0107 (11)
C140.0216 (11)0.0295 (14)0.0293 (14)0.0096 (10)0.0062 (10)0.0131 (12)
C150.0275 (11)0.0215 (12)0.0207 (12)0.0095 (10)0.0039 (10)0.0073 (10)
Br150.04273 (18)0.03937 (19)0.02491 (16)0.01791 (13)0.00177 (11)0.01472 (13)
C310.0266 (12)0.0234 (13)0.0202 (12)0.0100 (10)0.0046 (10)0.0074 (10)
C320.0278 (12)0.0226 (13)0.0275 (14)0.0060 (10)0.0044 (10)0.0105 (11)
C330.0382 (14)0.0253 (14)0.0280 (15)0.0127 (11)0.0095 (11)0.0146 (12)
C340.0360 (13)0.0277 (14)0.0248 (13)0.0197 (11)0.0042 (11)0.0088 (11)
C350.0262 (12)0.0346 (15)0.0329 (15)0.0138 (11)0.0044 (11)0.0140 (13)
C360.0271 (12)0.0309 (14)0.0271 (14)0.0113 (11)0.0070 (10)0.0136 (12)
C370.0421 (15)0.0477 (19)0.0337 (16)0.0244 (14)0.0052 (13)0.0212 (15)
C380.0543 (19)0.048 (2)0.0350 (18)0.0118 (16)0.0089 (15)0.0155 (16)
Geometric parameters (Å, º) top
C1—O11.226 (3)C31—C321.397 (3)
C1—C121.464 (3)C32—C331.383 (3)
C1—C21.468 (3)C32—H320.9500
C2—C31.328 (3)C33—C341.383 (4)
C2—H20.9500C33—H330.9500
C3—C311.461 (3)C34—C351.394 (3)
C3—H30.9500C34—C371.507 (3)
S11—C151.705 (2)C35—C361.379 (3)
S11—C121.729 (2)C35—H350.9500
C12—C131.367 (3)C36—H360.9500
C13—C141.409 (3)C37—C381.494 (5)
C13—H130.9500C37—H37A0.9900
C14—C151.358 (3)C37—H37B0.9900
C14—H140.9500C38—H38A0.9800
C15—Br151.868 (2)C38—H38B0.9800
C31—C361.393 (3)C38—H38C0.9800
O1—C1—C12119.6 (2)C33—C32—H32119.4
O1—C1—C2123.1 (2)C31—C32—H32119.4
C12—C1—C2117.3 (2)C34—C33—C32121.2 (2)
C3—C2—C1122.0 (2)C34—C33—H33119.4
C3—C2—H2119.0C32—C33—H33119.4
C1—C2—H2119.0C33—C34—C35117.6 (2)
C2—C3—C31127.2 (2)C33—C34—C37121.8 (2)
C2—C3—H3116.4C35—C34—C37120.5 (2)
C31—C3—H3116.4C36—C35—C34121.7 (2)
C15—S11—C1290.81 (11)C36—C35—H35119.2
C13—C12—C1131.3 (2)C34—C35—H35119.2
C13—C12—S11111.33 (17)C35—C36—C31120.7 (2)
C1—C12—S11117.35 (16)C35—C36—H36119.6
C12—C13—C14112.9 (2)C31—C36—H36119.6
C12—C13—H13123.6C38—C37—C34112.1 (2)
C14—C13—H13123.6C38—C37—H37A109.2
C15—C14—C13111.9 (2)C34—C37—H37A109.2
C15—C14—H14124.1C38—C37—H37B109.2
C13—C14—H14124.1C34—C37—H37B109.2
C14—C15—S11113.11 (17)H37A—C37—H37B107.9
C14—C15—Br15126.95 (18)C37—C38—H38A109.5
S11—C15—Br15119.93 (13)C37—C38—H38B109.5
C36—C31—C32117.6 (2)H38A—C38—H38B109.5
C36—C31—C3122.8 (2)C37—C38—H38C109.5
C32—C31—C3119.5 (2)H38A—C38—H38C109.5
C33—C32—C31121.2 (2)H38B—C38—H38C109.5
O1—C1—C2—C37.6 (4)C12—S11—C15—Br15178.81 (16)
C12—C1—C2—C3173.3 (3)C2—C3—C31—C363.5 (4)
C1—C2—C3—C31175.6 (2)C2—C3—C31—C32179.5 (3)
O1—C1—C12—C13177.6 (3)C36—C31—C32—C332.6 (4)
C2—C1—C12—C131.5 (4)C3—C31—C32—C33174.6 (2)
O1—C1—C12—S113.5 (3)C31—C32—C33—C340.6 (4)
C2—C1—C12—S11177.34 (18)C32—C33—C34—C351.3 (4)
C15—S11—C12—C130.0 (2)C32—C33—C34—C37175.7 (2)
C15—S11—C12—C1179.1 (2)C33—C34—C35—C361.2 (4)
C1—C12—C13—C14179.0 (3)C37—C34—C35—C36175.8 (3)
S11—C12—C13—C140.1 (3)C34—C35—C36—C310.8 (4)
C12—C13—C14—C150.2 (3)C32—C31—C36—C352.7 (4)
C13—C14—C15—S110.2 (3)C3—C31—C36—C35174.4 (2)
C13—C14—C15—Br15178.79 (19)C33—C34—C37—C3892.6 (3)
C12—S11—C15—C140.1 (2)C35—C34—C37—C3884.4 (3)
(III) (2E)-1-(5-Chlorothiophen-2-yl)-3-(4-ethoxyphenyl)prop-2-en-1-one top
Crystal data top
C15H13ClO2SF(000) = 608
Mr = 292.76Dx = 1.440 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.3577 (6) ÅCell parameters from 4472 reflections
b = 7.4518 (4) Åθ = 3.6–32.8°
c = 11.0892 (4) ŵ = 0.43 mm1
β = 92.260 (3)°T = 173 K
V = 1350.66 (10) Å3Needle, colourless
Z = 40.50 × 0.28 × 0.17 mm
Data collection top
Agilent Eos Gemini
diffractometer
3102 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.038
ω scansθmax = 30.0°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 2312
Tmin = 0.789, Tmax = 0.929k = 910
7925 measured reflectionsl = 1515
3933 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0511P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3933 reflectionsΔρmax = 0.28 e Å3
173 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.48158 (9)0.8068 (2)0.36984 (12)0.0216 (3)
O10.46622 (7)0.8563 (2)0.26556 (9)0.0323 (3)
C20.42015 (9)0.7307 (2)0.44768 (12)0.0224 (3)
H20.43600.69500.52750.027*
C30.34250 (9)0.7104 (2)0.40898 (12)0.0203 (3)
H30.32960.74700.32840.024*
S110.63794 (2)0.91918 (6)0.33294 (3)0.02406 (12)
C120.56528 (9)0.8246 (2)0.42167 (12)0.0200 (3)
C130.59796 (9)0.7742 (2)0.53208 (13)0.0219 (3)
H3130.56700.72050.59320.026*
C140.68245 (9)0.8104 (2)0.54546 (13)0.0233 (3)
H140.71510.78400.61600.028*
C150.71118 (9)0.8880 (2)0.44464 (13)0.0217 (3)
Cl150.81004 (2)0.95089 (6)0.42162 (4)0.03018 (12)
C310.27552 (9)0.6388 (2)0.47614 (12)0.0189 (3)
C320.19780 (9)0.6176 (2)0.41992 (13)0.0229 (3)
H320.19000.64880.33720.027*
C330.13266 (9)0.5529 (2)0.48145 (14)0.0245 (3)
H330.08070.53940.44120.029*
C340.14307 (9)0.5074 (2)0.60284 (13)0.0215 (3)
C350.21977 (9)0.5257 (2)0.66077 (13)0.0220 (3)
H350.22740.49400.74340.026*
C360.28472 (9)0.5902 (2)0.59763 (13)0.0212 (3)
H360.33690.60170.63770.025*
O340.07523 (7)0.44649 (17)0.65798 (10)0.0274 (3)
C370.08278 (10)0.4097 (3)0.78481 (14)0.0304 (4)
H37A0.10870.51250.82810.036*
H37B0.11700.30190.79990.036*
C380.00225 (12)0.3790 (3)0.82785 (18)0.0427 (5)
H38A0.02810.28060.78170.064*
H38B0.03470.48860.81610.064*
H38C0.00070.34760.91370.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0198 (7)0.0260 (8)0.0190 (6)0.0008 (7)0.0008 (5)0.0012 (6)
O10.0234 (6)0.0528 (9)0.0206 (5)0.0050 (6)0.0009 (4)0.0065 (5)
C20.0215 (7)0.0261 (8)0.0196 (6)0.0009 (7)0.0016 (5)0.0003 (6)
C30.0214 (7)0.0216 (8)0.0180 (6)0.0004 (6)0.0018 (5)0.0024 (5)
S110.02107 (19)0.0335 (2)0.01778 (18)0.00399 (17)0.00259 (14)0.00242 (15)
C120.0185 (7)0.0230 (8)0.0185 (6)0.0016 (6)0.0033 (5)0.0008 (5)
C130.0212 (7)0.0255 (8)0.0192 (6)0.0018 (7)0.0026 (5)0.0020 (6)
C140.0216 (7)0.0250 (8)0.0231 (7)0.0011 (7)0.0022 (5)0.0013 (6)
C150.0185 (7)0.0209 (8)0.0258 (7)0.0007 (6)0.0014 (6)0.0041 (6)
Cl150.01899 (19)0.0340 (3)0.0378 (2)0.00428 (17)0.00436 (16)0.00219 (17)
C310.0175 (6)0.0190 (8)0.0202 (6)0.0008 (6)0.0009 (5)0.0031 (6)
C320.0214 (7)0.0276 (9)0.0195 (7)0.0005 (7)0.0018 (5)0.0001 (6)
C330.0176 (7)0.0297 (9)0.0260 (7)0.0006 (7)0.0040 (6)0.0026 (6)
C340.0172 (7)0.0217 (8)0.0257 (7)0.0007 (6)0.0032 (6)0.0024 (6)
C350.0202 (7)0.0269 (8)0.0188 (7)0.0010 (7)0.0008 (5)0.0003 (6)
C360.0174 (7)0.0247 (8)0.0213 (7)0.0003 (6)0.0021 (5)0.0021 (6)
O340.0190 (5)0.0351 (7)0.0283 (6)0.0048 (5)0.0039 (4)0.0023 (5)
C370.0279 (8)0.0358 (10)0.0279 (8)0.0025 (8)0.0072 (7)0.0027 (7)
C380.0357 (10)0.0494 (13)0.0440 (10)0.0071 (10)0.0159 (8)0.0049 (9)
Geometric parameters (Å, º) top
C1—O11.2302 (17)C32—C331.375 (2)
C1—C21.465 (2)C32—H320.9500
C1—C121.4698 (19)C33—C341.392 (2)
C2—C31.333 (2)C33—H330.9500
C2—H20.9500C34—O341.3654 (19)
C3—C311.451 (2)C34—C351.394 (2)
C3—H30.9500C35—C361.381 (2)
S11—C151.7049 (15)C35—H350.9500
S11—C121.7233 (15)C36—H360.9500
C12—C131.369 (2)O34—C371.4335 (19)
C13—C141.410 (2)C37—C381.506 (2)
C13—H3130.9500C37—H37A0.9900
C14—C151.359 (2)C37—H37B0.9900
C14—H140.9500C38—H38A0.9800
C15—Cl151.7125 (15)C38—H38B0.9800
C31—C361.398 (2)C38—H38C0.9800
C31—C321.4027 (19)
O1—C1—C2123.41 (13)C31—C32—H32119.2
O1—C1—C12119.55 (13)C32—C33—C34119.86 (14)
C2—C1—C12117.04 (12)C32—C33—H33120.1
C3—C2—C1121.42 (13)C34—C33—H33120.1
C3—C2—H2119.3O34—C34—C33116.33 (13)
C1—C2—H2119.3O34—C34—C35123.98 (13)
C2—C3—C31127.28 (13)C33—C34—C35119.69 (14)
C2—C3—H3116.4C36—C35—C34119.79 (14)
C31—C3—H3116.4C36—C35—H35120.1
C15—S11—C1290.58 (7)C34—C35—H35120.1
C13—C12—C1130.54 (14)C35—C36—C31121.54 (14)
C13—C12—S11111.66 (11)C35—C36—H36119.2
C1—C12—S11117.79 (10)C31—C36—H36119.2
C12—C13—C14112.83 (13)C34—O34—C37117.57 (12)
C12—C13—H313123.6O34—C37—C38107.17 (14)
C14—C13—H313123.6O34—C37—H37A110.3
C15—C14—C13111.36 (13)C38—C37—H37A110.3
C15—C14—H14124.3O34—C37—H37B110.3
C13—C14—H14124.3C38—C37—H37B110.3
C14—C15—S11113.57 (11)H37A—C37—H37B108.5
C14—C15—Cl15126.75 (12)C37—C38—H38A109.5
S11—C15—Cl15119.67 (9)C37—C38—H38B109.5
C36—C31—C32117.42 (13)H38A—C38—H38B109.5
C36—C31—C3122.39 (13)C37—C38—H38C109.5
C32—C31—C3120.20 (12)H38A—C38—H38C109.5
C33—C32—C31121.70 (13)H38B—C38—H38C109.5
C33—C32—H32119.2
O1—C1—C2—C30.0 (3)C2—C3—C31—C364.0 (3)
C12—C1—C2—C3179.55 (15)C2—C3—C31—C32176.64 (16)
C1—C2—C3—C31179.46 (15)C36—C31—C32—C330.5 (2)
O1—C1—C12—C13177.31 (17)C3—C31—C32—C33178.92 (15)
C2—C1—C12—C133.1 (3)C31—C32—C33—C340.2 (3)
O1—C1—C12—S111.2 (2)C32—C33—C34—O34179.12 (15)
C2—C1—C12—S11178.36 (12)C32—C33—C34—C350.7 (2)
C15—S11—C12—C130.49 (13)O34—C34—C35—C36179.38 (15)
C15—S11—C12—C1178.32 (13)C33—C34—C35—C360.5 (2)
C1—C12—C13—C14178.12 (16)C34—C35—C36—C310.3 (2)
S11—C12—C13—C140.50 (18)C32—C31—C36—C350.8 (2)
C12—C13—C14—C150.2 (2)C3—C31—C36—C35178.63 (15)
C13—C14—C15—S110.15 (19)C33—C34—O34—C37175.99 (15)
C13—C14—C15—Cl15179.02 (12)C35—C34—O34—C373.9 (2)
C12—S11—C15—C140.37 (14)C34—O34—C37—C38169.60 (16)
C12—S11—C15—Cl15178.87 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C36—H36···O1i0.952.523.4649 (18)173
Symmetry code: (i) x, y+3/2, z+1/2.
(IV) (2E)-1-(5-Bromothiophen-2-yl)-3-(4-ethoxyphenyl)prop-2-en-1-one top
Crystal data top
C15H13BrO2SF(000) = 680
Mr = 337.21Dx = 1.617 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.5498 (7) ÅCell parameters from 4590 reflections
b = 7.5069 (4) Åθ = 3.3–32.8°
c = 11.1574 (5) ŵ = 3.11 mm1
β = 92.618 (4)°T = 173 K
V = 1384.72 (11) Å3Needle, colourless
Z = 40.58 × 0.32 × 0.29 mm
Data collection top
Agilent Eos Gemini
diffractometer
3189 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.037
ω scansθmax = 30.0°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 2323
Tmin = 0.261, Tmax = 0.405k = 107
8866 measured reflectionsl = 1510
4040 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.027P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max = 0.002
S = 1.03Δρmax = 0.54 e Å3
4040 reflectionsΔρmin = 0.43 e Å3
174 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0142 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47683 (13)0.8021 (3)0.37094 (19)0.0214 (5)
O10.46163 (10)0.8474 (2)0.26618 (14)0.0325 (4)
C20.41612 (13)0.7286 (3)0.44882 (19)0.0219 (5)
H20.43160.69770.52920.026*
C30.33987 (13)0.7040 (3)0.40968 (19)0.0198 (4)
H30.32740.73510.32840.024*
S110.63142 (3)0.91205 (8)0.33350 (5)0.02358 (14)
C120.55978 (13)0.8208 (3)0.42271 (19)0.0197 (4)
C130.59275 (14)0.7744 (3)0.5328 (2)0.0237 (5)
H3130.56250.72310.59430.028*
C140.67601 (13)0.8103 (3)0.5458 (2)0.0227 (5)
H140.70830.78650.61650.027*
C150.70441 (13)0.8830 (3)0.44500 (19)0.0197 (4)
Br150.81072 (2)0.95080 (3)0.41891 (2)0.02718 (9)
C310.27341 (12)0.6353 (3)0.47671 (18)0.0174 (4)
C320.19658 (13)0.6155 (3)0.42083 (19)0.0220 (5)
H320.18880.64550.33840.026*
C330.13207 (14)0.5537 (3)0.4821 (2)0.0228 (5)
H330.08060.54040.44200.027*
C340.14246 (13)0.5107 (3)0.6032 (2)0.0201 (4)
C350.21844 (14)0.5284 (3)0.6608 (2)0.0214 (5)
H350.22590.49870.74330.026*
C360.28283 (13)0.5889 (3)0.59792 (19)0.0195 (4)
H360.33460.59930.63780.023*
O340.07528 (9)0.4517 (2)0.65781 (15)0.0260 (4)
C370.08296 (15)0.4163 (3)0.7841 (2)0.0294 (5)
H37A0.10740.51980.82700.035*
H37B0.11800.31110.79970.035*
C380.00045 (16)0.3818 (4)0.8261 (3)0.0414 (7)
H38A0.02590.28610.77800.062*
H38B0.03300.49040.81720.062*
H38C0.00310.34620.91070.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0219 (11)0.0234 (11)0.0191 (11)0.0007 (9)0.0017 (8)0.0020 (9)
O10.0238 (9)0.0546 (11)0.0189 (8)0.0044 (8)0.0014 (7)0.0074 (8)
C20.0217 (11)0.0276 (12)0.0164 (11)0.0005 (9)0.0019 (8)0.0022 (9)
C30.0230 (11)0.0200 (10)0.0164 (10)0.0005 (9)0.0033 (8)0.0013 (9)
S110.0220 (3)0.0332 (3)0.0157 (3)0.0040 (2)0.0026 (2)0.0027 (2)
C120.0191 (11)0.0228 (11)0.0173 (10)0.0009 (9)0.0041 (8)0.0003 (9)
C130.0237 (12)0.0246 (11)0.0228 (12)0.0026 (10)0.0019 (9)0.0039 (10)
C140.0225 (11)0.0236 (11)0.0216 (11)0.0020 (9)0.0033 (9)0.0020 (9)
C150.0169 (10)0.0189 (10)0.0233 (11)0.0011 (9)0.0015 (8)0.0016 (9)
Br150.01970 (13)0.02854 (14)0.03363 (15)0.00331 (9)0.00473 (9)0.00198 (10)
C310.0179 (10)0.0166 (10)0.0176 (10)0.0017 (8)0.0012 (8)0.0029 (8)
C320.0235 (12)0.0252 (11)0.0170 (11)0.0002 (10)0.0024 (9)0.0011 (9)
C330.0162 (11)0.0269 (12)0.0250 (12)0.0015 (9)0.0024 (9)0.0018 (10)
C340.0177 (11)0.0195 (10)0.0232 (11)0.0006 (9)0.0030 (9)0.0028 (9)
C350.0224 (11)0.0247 (11)0.0170 (11)0.0004 (9)0.0006 (8)0.0014 (9)
C360.0162 (10)0.0229 (11)0.0194 (11)0.0002 (9)0.0009 (8)0.0013 (9)
O340.0185 (8)0.0340 (9)0.0259 (9)0.0048 (7)0.0041 (6)0.0010 (7)
C370.0293 (13)0.0333 (13)0.0261 (12)0.0032 (11)0.0074 (10)0.0028 (11)
C380.0353 (15)0.0489 (16)0.0414 (16)0.0083 (13)0.0154 (12)0.0042 (14)
Geometric parameters (Å, º) top
C1—O11.232 (3)C32—C331.375 (3)
C1—C21.466 (3)C32—H320.9500
C1—C121.472 (3)C33—C341.392 (3)
C2—C31.329 (3)C33—H330.9500
C2—H20.9500C34—O341.366 (3)
C3—C311.453 (3)C34—C351.392 (3)
C3—H30.9500C35—C361.379 (3)
S11—C151.708 (2)C35—H350.9500
S11—C121.724 (2)C36—H360.9500
C12—C131.366 (3)O34—C371.434 (3)
C13—C141.405 (3)C37—C381.501 (3)
C13—H3130.9500C37—H37A0.9900
C14—C151.353 (3)C37—H37B0.9900
C14—H140.9500C38—H38A0.9800
C15—Br151.867 (2)C38—H38B0.9800
C31—C361.398 (3)C38—H38C0.9800
C31—C321.398 (3)
O1—C1—C2123.4 (2)C31—C32—H32119.2
O1—C1—C12119.5 (2)C32—C33—C34119.8 (2)
C2—C1—C12117.09 (19)C32—C33—H33120.1
C3—C2—C1121.6 (2)C34—C33—H33120.1
C3—C2—H2119.2O34—C34—C33116.2 (2)
C1—C2—H2119.2O34—C34—C35124.2 (2)
C2—C3—C31127.6 (2)C33—C34—C35119.7 (2)
C2—C3—H3116.2C36—C35—C34120.0 (2)
C31—C3—H3116.2C36—C35—H35120.0
C15—S11—C1290.62 (10)C34—C35—H35120.0
C13—C12—C1131.0 (2)C35—C36—C31121.3 (2)
C13—C12—S11111.31 (17)C35—C36—H36119.4
C1—C12—S11117.70 (16)C31—C36—H36119.4
C12—C13—C14113.2 (2)C34—O34—C37117.45 (18)
C12—C13—H313123.4O34—C37—C38107.3 (2)
C14—C13—H313123.4O34—C37—H37A110.2
C15—C14—C13111.6 (2)C38—C37—H37A110.2
C15—C14—H14124.2O34—C37—H37B110.2
C13—C14—H14124.2C38—C37—H37B110.2
C14—C15—S11113.31 (16)H37A—C37—H37B108.5
C14—C15—Br15127.23 (17)C37—C38—H38A109.5
S11—C15—Br15119.46 (12)C37—C38—H38B109.5
C36—C31—C32117.6 (2)H38A—C38—H38B109.5
C36—C31—C3122.2 (2)C37—C38—H38C109.5
C32—C31—C3120.17 (19)H38A—C38—H38C109.5
C33—C32—C31121.7 (2)H38B—C38—H38C109.5
C33—C32—H32119.2
O1—C1—C2—C30.8 (4)C2—C3—C31—C361.7 (4)
C12—C1—C2—C3178.9 (2)C2—C3—C31—C32179.1 (2)
C1—C2—C3—C31179.0 (2)C36—C31—C32—C330.4 (3)
O1—C1—C12—C13176.9 (2)C3—C31—C32—C33178.9 (2)
C2—C1—C12—C132.9 (4)C31—C32—C33—C340.6 (3)
O1—C1—C12—S111.8 (3)C32—C33—C34—O34179.5 (2)
C2—C1—C12—S11178.48 (16)C32—C33—C34—C350.9 (3)
C15—S11—C12—C130.85 (18)O34—C34—C35—C36179.9 (2)
C15—S11—C12—C1178.06 (17)C33—C34—C35—C360.3 (3)
C1—C12—C13—C14178.1 (2)C34—C35—C36—C310.6 (3)
S11—C12—C13—C140.6 (3)C32—C31—C36—C351.0 (3)
C12—C13—C14—C150.1 (3)C3—C31—C36—C35178.3 (2)
C13—C14—C15—S110.8 (3)C33—C34—O34—C37176.45 (19)
C13—C14—C15—Br15179.32 (16)C35—C34—O34—C374.0 (3)
C12—S11—C15—C140.92 (18)C34—O34—C37—C38171.3 (2)
C12—S11—C15—Br15179.15 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C36—H36···O1i0.952.523.464 (2)172
Symmetry code: (i) x, y+3/2, z+1/2.
(V) (2E)-3-(4-Bromophenyl)-1-(5-chlorothiophen-2-yl)prop-2-en-1-one top
Crystal data top
C13H8BrClOSZ = 2
Mr = 327.60F(000) = 324
Triclinic, P1Dx = 1.763 Mg m3
a = 6.0152 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5691 (12) ÅCell parameters from 4058 reflections
c = 13.1824 (9) Åθ = 3.2–32.8°
α = 75.25 (1)°µ = 3.69 mm1
β = 81.446 (8)°T = 173 K
γ = 70.281 (12)°Needle, colourless
V = 617.09 (14) Å30.41 × 0.20 × 0.18 mm
Data collection top
Agilent Eos Gemini
diffractometer
2817 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.026
ω scansθmax = 30.0°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 88
Tmin = 0.298, Tmax = 0.514k = 1012
6674 measured reflectionsl = 1818
3599 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.3839P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3599 reflectionsΔρmax = 1.43 e Å3
154 parametersΔρmin = 0.53 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3079 (5)0.7031 (4)0.5481 (2)0.0219 (5)
O10.0931 (3)0.7382 (3)0.54196 (16)0.0316 (5)
C20.4552 (5)0.7932 (4)0.4740 (2)0.0233 (5)
H20.62210.75240.47810.028*
C30.3594 (5)0.9316 (4)0.4008 (2)0.0235 (5)
H30.19140.97310.40240.028*
S110.25627 (12)0.46020 (9)0.72271 (5)0.02442 (15)
C120.4287 (5)0.5637 (3)0.63199 (19)0.0209 (5)
C130.6614 (5)0.4996 (4)0.6548 (2)0.0230 (5)
H130.78210.54120.61410.028*
C140.7041 (5)0.3649 (4)0.7453 (2)0.0234 (5)
H140.85550.30550.77190.028*
C150.5014 (5)0.3316 (3)0.7890 (2)0.0228 (5)
Cl150.47267 (14)0.18017 (10)0.89894 (5)0.03458 (18)
C310.4883 (5)1.0255 (3)0.3183 (2)0.0215 (5)
C320.3621 (5)1.1691 (3)0.2476 (2)0.0236 (5)
H320.19431.20920.25750.028*
C330.4754 (5)1.2549 (4)0.1632 (2)0.0250 (5)
H330.38681.35090.11510.030*
C340.7182 (5)1.1974 (4)0.1513 (2)0.0247 (6)
Br340.87986 (6)1.31203 (4)0.03812 (2)0.03776 (12)
C350.8519 (5)1.0562 (4)0.2200 (2)0.0268 (6)
H351.01971.01770.20990.032*
C360.7356 (5)0.9725 (4)0.3037 (2)0.0255 (6)
H360.82550.87750.35190.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0238 (13)0.0213 (13)0.0195 (12)0.0059 (10)0.0023 (10)0.0036 (10)
O10.0206 (10)0.0337 (12)0.0348 (11)0.0058 (9)0.0044 (8)0.0004 (9)
C20.0221 (12)0.0250 (14)0.0221 (12)0.0089 (11)0.0016 (10)0.0022 (10)
C30.0238 (13)0.0227 (14)0.0232 (12)0.0067 (11)0.0019 (10)0.0043 (10)
S110.0193 (3)0.0278 (4)0.0247 (3)0.0094 (3)0.0003 (2)0.0015 (3)
C120.0232 (13)0.0203 (13)0.0196 (11)0.0090 (10)0.0011 (10)0.0023 (9)
C130.0223 (12)0.0255 (14)0.0226 (12)0.0108 (11)0.0015 (10)0.0031 (10)
C140.0216 (12)0.0241 (14)0.0231 (12)0.0054 (11)0.0050 (10)0.0029 (10)
C150.0259 (13)0.0216 (13)0.0206 (12)0.0084 (11)0.0022 (10)0.0025 (10)
Cl150.0439 (4)0.0324 (4)0.0251 (3)0.0175 (3)0.0011 (3)0.0046 (3)
C310.0228 (13)0.0213 (13)0.0206 (12)0.0070 (10)0.0027 (10)0.0043 (10)
C320.0227 (13)0.0203 (14)0.0237 (12)0.0013 (10)0.0050 (10)0.0035 (10)
C330.0279 (14)0.0201 (13)0.0242 (13)0.0045 (11)0.0082 (11)0.0005 (10)
C340.0307 (14)0.0243 (14)0.0206 (12)0.0133 (12)0.0031 (10)0.0005 (10)
Br340.03904 (19)0.0438 (2)0.02867 (17)0.02171 (15)0.00236 (12)0.00715 (13)
C350.0224 (13)0.0262 (15)0.0302 (14)0.0080 (11)0.0060 (11)0.0005 (11)
C360.0217 (13)0.0247 (14)0.0259 (13)0.0054 (11)0.0061 (10)0.0018 (10)
Geometric parameters (Å, º) top
C1—O11.234 (3)C14—H140.9500
C1—C121.469 (4)C15—Cl151.712 (3)
C1—C21.469 (4)C31—C321.398 (4)
C2—C31.338 (4)C31—C361.400 (4)
C2—H20.9500C32—C331.393 (4)
C3—C311.469 (4)C32—H320.9500
C3—H30.9500C33—C341.374 (4)
S11—C151.718 (3)C33—H330.9500
S11—C121.733 (3)C34—C351.390 (4)
C12—C131.369 (4)C34—Br341.898 (3)
C13—C141.418 (4)C35—C361.388 (4)
C13—H130.9500C35—H350.9500
C14—C151.357 (4)C36—H360.9500
O1—C1—C12120.0 (2)C14—C15—S11113.4 (2)
O1—C1—C2123.2 (2)Cl15—C15—S11119.76 (16)
C12—C1—C2116.8 (2)C32—C31—C36117.8 (2)
C3—C2—C1121.4 (2)C32—C31—C3119.6 (2)
C3—C2—H2119.3C36—C31—C3122.6 (2)
C1—C2—H2119.3C33—C32—C31121.8 (3)
C2—C3—C31126.4 (3)C33—C32—H32119.1
C2—C3—H3116.8C31—C32—H32119.1
C31—C3—H3116.8C34—C33—C32118.4 (2)
C15—S11—C1290.62 (13)C34—C33—H33120.8
C13—C12—C1131.2 (2)C32—C33—H33120.8
C13—C12—S11111.4 (2)C33—C34—C35122.0 (2)
C1—C12—S11117.45 (19)C33—C34—Br34119.8 (2)
C12—C13—C14113.2 (2)C35—C34—Br34118.3 (2)
C12—C13—H13123.4C36—C35—C34118.7 (3)
C14—C13—H13123.4C36—C35—H35120.6
C15—C14—C13111.4 (2)C34—C35—H35120.6
C15—C14—H14124.3C35—C36—C31121.3 (3)
C13—C14—H14124.3C35—C36—H36119.4
C14—C15—Cl15126.9 (2)C31—C36—H36119.4
O1—C1—C2—C36.9 (4)C12—S11—C15—C140.1 (2)
C12—C1—C2—C3173.8 (3)C12—S11—C15—Cl15179.89 (18)
C1—C2—C3—C31175.7 (2)C2—C3—C31—C32179.7 (3)
O1—C1—C12—C13179.2 (3)C2—C3—C31—C363.6 (4)
C2—C1—C12—C130.1 (4)C36—C31—C32—C331.9 (4)
O1—C1—C12—S112.7 (4)C3—C31—C32—C33175.0 (2)
C2—C1—C12—S11177.99 (19)C31—C32—C33—C341.3 (4)
C15—S11—C12—C130.4 (2)C32—C33—C34—C350.7 (4)
C15—S11—C12—C1178.8 (2)C32—C33—C34—Br34179.3 (2)
C1—C12—C13—C14178.7 (3)C33—C34—C35—C360.7 (4)
S11—C12—C13—C140.6 (3)Br34—C34—C35—C36179.3 (2)
C12—C13—C14—C150.5 (3)C34—C35—C36—C311.4 (4)
C13—C14—C15—Cl15179.8 (2)C32—C31—C36—C352.0 (4)
C13—C14—C15—S110.1 (3)C3—C31—C36—C35174.9 (3)
(VI) (2E)-1-(5-Bromothiophen-2-yl)-3-(3-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C14H11BrO2SF(000) = 648
Mr = 323.19Dx = 1.675 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.2726 (6) ÅCell parameters from 4224 reflections
b = 11.3948 (8) Åθ = 3.4–32.7°
c = 12.1472 (7) ŵ = 3.36 mm1
β = 93.273 (6)°T = 173 K
V = 1281.37 (14) Å3Block, colourless
Z = 40.54 × 0.42 × 0.31 mm
Data collection top
Agilent Eos Gemini
diffractometer
2914 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.035
ω scansθmax = 30.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 1312
Tmin = 0.216, Tmax = 0.353k = 1516
8260 measured reflectionsl = 1617
3722 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0293P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
3722 reflectionsΔρmax = 0.49 e Å3
164 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4180 (2)0.29186 (18)0.72203 (17)0.0205 (4)
O10.41175 (17)0.39954 (13)0.71617 (13)0.0310 (4)
C20.5005 (2)0.22053 (19)0.64696 (17)0.0217 (4)
H20.50780.13820.65840.026*
C30.5653 (2)0.26916 (19)0.56325 (15)0.0204 (4)
H30.55450.35160.55490.024*
S110.22557 (6)0.31118 (4)0.88317 (4)0.02124 (12)
C120.3390 (2)0.23001 (18)0.80567 (16)0.0180 (4)
C130.3392 (2)0.11390 (18)0.83642 (17)0.0232 (4)
H130.39520.05530.80310.028*
C140.2474 (2)0.09085 (19)0.92288 (17)0.0245 (5)
H140.23420.01550.95420.029*
C150.1805 (2)0.18936 (17)0.95556 (16)0.0192 (4)
Br150.05413 (2)0.20408 (2)1.06918 (2)0.02654 (8)
C310.6513 (2)0.20960 (18)0.48261 (16)0.0178 (4)
C320.7142 (2)0.27779 (18)0.40207 (16)0.0185 (4)
H320.69800.36010.39960.022*
C330.7994 (2)0.22577 (18)0.32643 (16)0.0192 (4)
C340.8214 (2)0.10536 (18)0.32844 (17)0.0242 (5)
H340.87960.06950.27610.029*
C350.7583 (2)0.0380 (2)0.40685 (17)0.0279 (5)
H350.77300.04450.40780.034*
C360.6737 (2)0.08920 (18)0.48427 (17)0.0237 (5)
H360.63140.04200.53820.028*
O330.86717 (16)0.28429 (13)0.24569 (13)0.0256 (3)
C370.8641 (3)0.40869 (19)0.24766 (19)0.0309 (5)
H37A0.91660.43940.18610.046*
H37B0.90990.43680.31740.046*
H37C0.76370.43580.24080.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0191 (10)0.0234 (11)0.0194 (10)0.0018 (8)0.0043 (8)0.0007 (9)
O10.0368 (9)0.0211 (8)0.0371 (9)0.0005 (7)0.0201 (7)0.0008 (7)
C20.0216 (10)0.0232 (10)0.0208 (10)0.0029 (9)0.0072 (8)0.0020 (9)
C30.0200 (10)0.0211 (10)0.0204 (10)0.0034 (8)0.0038 (8)0.0012 (9)
S110.0244 (3)0.0195 (2)0.0210 (3)0.0029 (2)0.0104 (2)0.0005 (2)
C120.0177 (10)0.0208 (10)0.0161 (9)0.0013 (8)0.0051 (7)0.0045 (8)
C130.0277 (11)0.0197 (10)0.0229 (11)0.0033 (9)0.0071 (8)0.0024 (9)
C140.0305 (12)0.0203 (10)0.0237 (11)0.0000 (9)0.0099 (9)0.0023 (9)
C150.0179 (10)0.0249 (11)0.0152 (9)0.0025 (8)0.0042 (7)0.0017 (8)
Br150.02519 (12)0.03558 (14)0.01992 (12)0.00135 (9)0.01063 (8)0.00304 (9)
C310.0153 (9)0.0249 (10)0.0133 (9)0.0004 (8)0.0020 (7)0.0016 (8)
C320.0194 (10)0.0184 (9)0.0179 (9)0.0011 (8)0.0026 (7)0.0005 (8)
C330.0175 (10)0.0233 (10)0.0169 (9)0.0017 (8)0.0029 (7)0.0029 (9)
C340.0296 (11)0.0234 (10)0.0206 (10)0.0044 (9)0.0100 (8)0.0038 (9)
C350.0384 (13)0.0199 (10)0.0265 (11)0.0052 (9)0.0103 (9)0.0017 (9)
C360.0306 (11)0.0214 (11)0.0197 (10)0.0008 (9)0.0079 (8)0.0025 (9)
O330.0301 (8)0.0232 (8)0.0252 (8)0.0013 (6)0.0166 (6)0.0030 (7)
C370.0375 (13)0.0220 (11)0.0346 (13)0.0010 (10)0.0147 (10)0.0066 (10)
Geometric parameters (Å, º) top
C1—O11.230 (2)C31—C361.388 (3)
C1—C121.467 (3)C31—C321.402 (3)
C1—C21.469 (3)C32—C331.380 (3)
C2—C31.331 (3)C32—H320.9500
C2—H20.9500C33—O331.368 (2)
C3—C311.465 (3)C33—C341.387 (3)
C3—H30.9500C34—C351.379 (3)
S11—C151.708 (2)C34—H340.9500
S11—C121.7206 (19)C35—C361.387 (3)
C12—C131.375 (3)C35—H350.9500
C13—C141.414 (3)C36—H360.9500
C13—H130.9500O33—C371.418 (2)
C14—C151.353 (3)C37—H37A0.9800
C14—H140.9500C37—H37B0.9800
C15—Br151.8681 (18)C37—H37C0.9800
O1—C1—C12119.71 (18)C32—C31—C3118.29 (19)
O1—C1—C2122.72 (19)C33—C32—C31120.24 (19)
C12—C1—C2117.57 (19)C33—C32—H32119.9
C3—C2—C1121.2 (2)C31—C32—H32119.9
C3—C2—H2119.4O33—C33—C32124.89 (19)
C1—C2—H2119.4O33—C33—C34114.96 (17)
C2—C3—C31127.2 (2)C32—C33—C34120.15 (18)
C2—C3—H3116.4C35—C34—C33119.68 (18)
C31—C3—H3116.4C35—C34—H34120.2
C15—S11—C1291.15 (10)C33—C34—H34120.2
C13—C12—C1131.11 (18)C34—C35—C36120.8 (2)
C13—C12—S11111.13 (14)C34—C35—H35119.6
C1—C12—S11117.76 (15)C36—C35—H35119.6
C12—C13—C14112.87 (18)C35—C36—C31119.76 (19)
C12—C13—H13123.6C35—C36—H36120.1
C14—C13—H13123.6C31—C36—H36120.1
C15—C14—C13111.69 (18)C33—O33—C37117.69 (16)
C15—C14—H14124.2O33—C37—H37A109.5
C13—C14—H14124.2O33—C37—H37B109.5
C14—C15—S11113.17 (15)H37A—C37—H37B109.5
C14—C15—Br15127.49 (15)O33—C37—H37C109.5
S11—C15—Br15119.32 (11)H37A—C37—H37C109.5
C36—C31—C32119.33 (18)H37B—C37—H37C109.5
C36—C31—C3122.38 (18)
O1—C1—C2—C34.7 (4)C12—S11—C15—Br15178.16 (13)
C12—C1—C2—C3174.42 (19)C2—C3—C31—C361.0 (3)
C1—C2—C3—C31179.66 (19)C2—C3—C31—C32178.2 (2)
O1—C1—C12—C13172.7 (2)C36—C31—C32—C331.0 (3)
C2—C1—C12—C138.2 (4)C3—C31—C32—C33178.14 (18)
O1—C1—C12—S116.5 (3)C31—C32—C33—O33179.10 (19)
C2—C1—C12—S11172.61 (16)C31—C32—C33—C341.1 (3)
C15—S11—C12—C130.11 (17)O33—C33—C34—C35179.8 (2)
C15—S11—C12—C1179.23 (17)C32—C33—C34—C350.4 (3)
C1—C12—C13—C14179.2 (2)C33—C34—C35—C360.4 (4)
S11—C12—C13—C140.0 (2)C34—C35—C36—C310.5 (4)
C12—C13—C14—C150.2 (3)C32—C31—C36—C350.2 (3)
C13—C14—C15—S110.3 (3)C3—C31—C36—C35178.9 (2)
C13—C14—C15—Br15177.96 (15)C32—C33—O33—C377.9 (3)
C12—S11—C15—C140.22 (18)C34—C33—O33—C37172.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.952.543.446 (3)159
Symmetry code: (i) x+1, y1/2, z+3/2.
Selected dihedral, bond and torsion angles (°) for compounds (I)–(VI) top
Parameter(I)(II)(III)(IV)(V)(VI)
Dihedral 12.74 (9)3.46 (18)2.80 (14)3.11 (18)3.66 (16)7.70 (13)
Dihedral 210.23 (11)10.5 (2)3.71 (12)2.99915)9.74 (19)3.10 (11)
Dihedral 311.62 (9)11.78 (16)6.49 (7)6.03 (9)11.96 (14)5.20 (13)
C32—C33—O33124.89 (19)
C34—C33—O33114.96 (17)
C33—O33—C37117.69 (16)
C33—C34—O34116.33 (13)116.2 (2)
C35—C34—O34123.98 (13)124.2 (2)
C34—O34—C37117.57 (12)117.45 (18)
S11—C12—C1—C2
178.07 (10)177.34 (18)-178.36 (12)-178.48 (16)177.99 (19)-172.61 (16)
C32—C33—O33—C377.9 (3)
C33—C34—C37—C38-97.5 (2)-92.6 (3)
C33—C34—O34—C37-175.99 (15)-176.45 (19)
C34—O34—C37—C38169.60 (16)171.3 (2)
`Dihedral 1' represents the dihedral angle between the spacer unit (C12,C1,C2,C3,C31) and the thienyl ring. `Dihedral 2' represents the dihedral angle between the spacer unit (C12,C1,C2,C3,C31) and the aryl ring. `Dihedral 3' represents the dihedral angle between the thienyl and aryl rings.
Hydrogen bond parameters (Å, °) for compounds (III), (IV) and (VI) top
CompoundD—H···AD—HH···AD···AD—H···A
(III)C36—H36···O6i0.952.523.4649 (18)173
(IV)C36—H36···O6i0.952.523.464 (2)172
(VI)C13—H13···O1ii0.952.543.446 (3)159
Symmetry codes: (i) x, -y + 3/2, z + 1/2; (ii) -x + 1, y - 1/2, -z + 3/2.
 

Acknowledgements

VSN thanks the Government First Grade College, Kumta for research facilities. JPJ acknowledges the NSF–MRI program (grant No. 1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationBaur, W. H. & Kassner, D. (1992). Acta Cryst. B48, 356–369.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationDomínguez, J. N., Charris, J. E., Lobo, G., Gamboa de Domínguez, N., Moreno, M. M., Riggione, F., Sanchez, E., Olson, J. & Rosenthal, P. J. (2001). Eur. J. Med. Chem. 36, 555–560.  Web of Science PubMed Google Scholar
First citationFerguson, G., Glidewell, C. & Patterson, I. L. J. (1996). Acta Cryst. C52, 420–423.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.  CrossRef CAS Web of Science Google Scholar
First citationIndira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.  Web of Science CrossRef CAS Google Scholar
First citationKavitha, H. D., Roopashree, K. R., Vepuri, S. B., Devarajegowda, H. C. & Devaru, V. B. (2013). Acta Cryst. E69, o859.  CSD CrossRef IUCr Journals Google Scholar
First citationKumar, C. S. C., Loh, W.-S., Ooi, C. W., Quah, C. K. & Fun, H.-K. (2013a). Molecules, 18, 11996–12011.  CSD CrossRef CAS PubMed Google Scholar
First citationKumar, C. S. C., Loh, W.-S., Ooi, C. W., Quah, C. K. & Fun, H.-K. (2013b). Molecules, 18, 12707–12724.  CSD CrossRef CAS PubMed Google Scholar
First citationLi, R., Kenyon, G. L., Cohen, F. E., Chen, X., Gong, B., Domínguez, J. N., Davidson, E., Kurzban, G., Miller, R. E., Nuzum, E. O., Rosenthal, P. J. & McKerrow, J. H. (1995). J. Med. Chem. 38, 5031–5037.  CrossRef CAS PubMed Google Scholar
First citationLin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L.-M., Nie, W. & Chen, F.-C. (2002). Bioorg. Med. Chem. 10, 2795–2802.  CrossRef PubMed CAS Google Scholar
First citationMarsh, R. E. (1997). Acta Cryst. B53, 317–322.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMarsh, R. E. (2004). Acta Cryst. B60, 252–253.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaik, V. S., Shettigar, V., Berglin, T. S., Coburn, J. S., Jasinski, J. P. & Yathirajan, H. S. (2015). Acta Cryst. E71, 965–971.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPrabhu, A. N., Jayarama, A., Row, T. N. G. & Upadhyaya, V. (2011a). Acta Cryst. E67, o2086.  CSD CrossRef IUCr Journals Google Scholar
First citationPrabhu, A. N., Jayarama, A., Sankolli, R., Guru Row, T. N. & Upadhyaya, V. (2011b). Acta Cryst. E67, o2665.  CSD CrossRef IUCr Journals Google Scholar
First citationPrabhu, A. N., Jayarama, A., Upadhyaya, V. & Subramanya Bhat, K. (2014). Chem. Sci. Trans. 3, 530–539.  Google Scholar
First citationRamasubbu, N., Parthasarathy, R. & Murray-Rust, P. (1986). J. Am. Chem. Soc. 108, 4308–4314.  CrossRef CAS Web of Science Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CSD CrossRef CAS Web of Science Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSeip, H. M. & Seip, R. (1973). Acta Chem. Scand. 27, 4024–4027.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, S. Y., Yoon, H., Hwang, D., Ahn, S., Kim, D.-W., Koh, D., Lee, Y. H. & Lim, Y. (2013). Bioorg. Med. Chem. 21, 7018–7024.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSunitha, K., Devarajegowda, H. C., Al-eryani, W. F. A., Prasad, Y. R. & Kumar, A. U. M. (2012). Acta Cryst. E68, o61.  CSD CrossRef IUCr Journals Google Scholar
First citationTang, S.-P., Kuang, D.-Z., Feng, Y.-L., Li, W. & Chen, Z.-M. (2008). Acta Cryst. E64, o1123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abdureyim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A. Mol. Cryst. Liq. Cryst. 315, 135–140.  CrossRef Google Scholar
First citationVepuri, S. B., Devarajegowda, H. C., Al-eryani, W. F. A., Lavanya, K. & Anbazhagan, S. (2011). Acta Cryst. E67, o3474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVepuri, S. B., Devarajegowda, H. C., Jeyaseelan, S., Anbazhagan, S. & Prasad, Y. R. (2012). Acta Cryst. E68, o3456.  CSD CrossRef IUCr Journals Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds