organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 2-amino-4-(4-chloro­phen­yl)-4H-1-benzothieno[3,2-b]pyran-3-carboxyl­ate

aDépartement de Chimie, Faculté des Sciences, Dhar Mehraz, BP 1796 Atlas, 30000 Fes, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: m.bakhouch@yahoo.fr

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 July 2015; accepted 25 July 2015; online 31 July 2015)

The title compound, C20H16ClNO3S, is built up from three fused rings, one five- and two six-membered rings, linked to a 3-eth­oxy­carbonyl group and to a 4-chloro­phenyl ring. The hydropyran ring has a flattened envelope conformation, with the C atom substituted by the 4-chloro­phenyl ring as the flap (displaced by 0.077 (2) Å from the plane through the other atoms). The fused three-ring system is quasi-planar (r.m.s. deviation = 0.057 Å), with the largest deviation from the mean plane being 0.106 (1) Å for the C atom substituted by the 4-chloro­phenyl ring. The 4-chloro­phenyl ring is approximately perpendicular to the mean plane of the fused ring system, as indicated by the dihedral angle of 77.32 (6)° between their mean planes. There is an intra­molecular N—H⋯O hydrogen bond forming an S(6) ring motif. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(12) ring motif. There are also short inter­molecular Cl⋯O inter­actions present [3.1226 (12) Å] between neighbouring mol­ecules.

1. Related literature

For the reactivity of the thio­aurones [(Z)-2-aryl­idene­benzo[b]thio­phen-3(2H)-ones], see: Boughaleb et al. (2010[Boughaleb, A., Al houari, G., Bennani, B., Daoudi, M., Garrigues, B., Kerbal, A. & El yazidi, M. (2010). J. Soc. Chim. Tunisie, 12, 109-115.], 2011[Boughaleb, A., Akhazzane, M., Alhouari, G., Bennani, B., Daoudi, M., Garrigues, B., Kerbal, A. & El yazidi, M. (2011). J. Soc. Chim. Tunisie, 13, 117-122.]); Bakhouch et al. (2014[Bakhouch, M., Al Houari, G., El Yazidi, M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o587.], 2015[Bakhouch, M., Al Houari, G., Daoudi, M., Kerbal, A. & El yazidi, M. (2015). Mediterr. J. Chem. 4, 9-17.]); Cabiddu et al. (2002[Cabiddu, M. G., Cabiddu, S., Cadoni, E., De Montis, S., Fattuoni, C., Melis, S. & Usai, M. (2002). Synthesis, 2002, 875-878.]); Pradhan et al. (2005[Pradhan, T. K., De, A. & Mortier, A. (2005). Tetrahedron, 61, 9007-9017.]). For the preparation of the title compound using condensation reactions, see: Daisley et al. (1982[Daisley, R. W., Elagbar, Z. A. & Walker, J. (1982). J. Heterocycl. Chem. 19, 1013-1016.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H16ClNO3S

  • Mr = 385.85

  • Triclinic, [P \overline 1]

  • a = 8.3606 (4) Å

  • b = 10.9186 (6) Å

  • c = 11.0971 (6) Å

  • α = 104.592 (2)°

  • β = 106.849 (2)°

  • γ = 102.174 (2)°

  • V = 893.09 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 K

  • 0.42 × 0.31 × 0.26 mm

2.2. Data collection

  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.673, Tmax = 0.746

  • 22918 measured reflections

  • 3892 independent reflections

  • 3422 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.097

  • S = 1.04

  • 3892 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3 0.86 2.07 2.6796 (18) 127
N1—H1A⋯O3i 0.86 2.18 2.8956 (15) 141
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013, PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comments top

During our studies on the synthesis of heterocyclic compounds (Boughaleb et al., 2010,2011), we decided to investigate thio­aurones [(Z)-2-aryl­idenebenzo[b]thio­phen-3(2H)-ones] as potential starting materials (Cabiddu et al., 2002; Pradhan et al., 2005). In continuation of our previous work (Boughaleb et al., 2011; Bakhouch et al., 2014), we described herein the behaviour of ethyl cyano­acetate with (Z)-2-(4-chloro­benzyl­idene)benzo[b]thio­phen-3(2H)-one. The title compound, was prepared by the action of ethyl cyano­acetate on (Z)-2-(4-chloro­benzyl­idene)benzo[b]thio­phen-3(2H)-one. The reaction was carried out in hot alcohol in the presence of piperidine as a basic catalyst (Daisley et al., 1982). Initially the condensation gave the Michael adducts which undergoes intra­molecular cyclization to afford an imino-pyran. The subsequent tautomeric transformation gives rise to the title compound, whose crystal structure we report on herein.

The molecule of the title compound, Fig. 1, is formed by three fused rings linked to an ethyl-3-carboxyl­ate group and to a 4-chloro­phenyl. The three fused rings (S1/C1—C11/O1) are nearly coplanar, with the maximum deviation from the mean plane being -0.106 (1) Å for atom C9. Its mean plane make a dihedral angle of 77.32 (6)° with the attached 4-chloro­phenyl ring. The pyran ring has a flat envelope conformation with atom C9, substituted by the 4-chloro­phenyl ring, as the flap. There is an intra­molecular N—H···O hydrogen bond, involving the amine and carboxyl ate group, forming an S(6) ring motif (Fig. 1 and Table 1).

In the crystal, molecules are linked by pairs of N—H···O hydrogen bonds forming inversion dimers with an R22(12) ring motif (Table 1 and Fig. 2). There are also short inter­molecular Cl1···O1i inter­actions present between neighbouring molecules [3.1226 (12) Å; symmetry code: (i) x, y+1, z; see Fig. 2].

Synthesis and crystallization top

In a 100 ml flask equipped with a condenser was dissolved 4 mmol of (Z)-2-(4-chloro­benzyl­idene)-1-benzo[b]thio­phen-3(2H)-one and 5 mmol of ethyl cyano­acetate in 30 ml of ethanol. Then, 1 ml of piperidine was added, and the reaction mixture was refluxed for 6 h. Thin layer chromatography revealed the formation of a single product. The organic phase was evaporated under reduce pressure. The resulting residue was recrystallized from ethanol (yield: 67%; m.p.: 405 K). Colourless block-like crystals of the title compound were obtained by slow evaporation of a solution in ethanol.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were located in a difference map and treated as riding: N—H = 0.86 Å, C–H = 0.93 - 0.98Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(N,C) for other H atoms.

Related literature top

For the reactivity of thioaurones [(Z)-2-arylidenebenzo[b]thiophen-3(2H)-ones], see: Boughaleb et al. (2010, 2011); Bakhouch et al. (2014, 2015); Cabiddu et al. (2002); Pradhan et al. (2005). For the preparation of the title compound using condensation reactions, see: Daisley et al. (1982).

Structure description top

During our studies on the synthesis of heterocyclic compounds (Boughaleb et al., 2010,2011), we decided to investigate thio­aurones [(Z)-2-aryl­idenebenzo[b]thio­phen-3(2H)-ones] as potential starting materials (Cabiddu et al., 2002; Pradhan et al., 2005). In continuation of our previous work (Boughaleb et al., 2011; Bakhouch et al., 2014), we described herein the behaviour of ethyl cyano­acetate with (Z)-2-(4-chloro­benzyl­idene)benzo[b]thio­phen-3(2H)-one. The title compound, was prepared by the action of ethyl cyano­acetate on (Z)-2-(4-chloro­benzyl­idene)benzo[b]thio­phen-3(2H)-one. The reaction was carried out in hot alcohol in the presence of piperidine as a basic catalyst (Daisley et al., 1982). Initially the condensation gave the Michael adducts which undergoes intra­molecular cyclization to afford an imino-pyran. The subsequent tautomeric transformation gives rise to the title compound, whose crystal structure we report on herein.

The molecule of the title compound, Fig. 1, is formed by three fused rings linked to an ethyl-3-carboxyl­ate group and to a 4-chloro­phenyl. The three fused rings (S1/C1—C11/O1) are nearly coplanar, with the maximum deviation from the mean plane being -0.106 (1) Å for atom C9. Its mean plane make a dihedral angle of 77.32 (6)° with the attached 4-chloro­phenyl ring. The pyran ring has a flat envelope conformation with atom C9, substituted by the 4-chloro­phenyl ring, as the flap. There is an intra­molecular N—H···O hydrogen bond, involving the amine and carboxyl ate group, forming an S(6) ring motif (Fig. 1 and Table 1).

In the crystal, molecules are linked by pairs of N—H···O hydrogen bonds forming inversion dimers with an R22(12) ring motif (Table 1 and Fig. 2). There are also short inter­molecular Cl1···O1i inter­actions present between neighbouring molecules [3.1226 (12) Å; symmetry code: (i) x, y+1, z; see Fig. 2].

For the reactivity of thioaurones [(Z)-2-arylidenebenzo[b]thiophen-3(2H)-ones], see: Boughaleb et al. (2010, 2011); Bakhouch et al. (2014, 2015); Cabiddu et al. (2002); Pradhan et al. (2005). For the preparation of the title compound using condensation reactions, see: Daisley et al. (1982).

Synthesis and crystallization top

In a 100 ml flask equipped with a condenser was dissolved 4 mmol of (Z)-2-(4-chloro­benzyl­idene)-1-benzo[b]thio­phen-3(2H)-one and 5 mmol of ethyl cyano­acetate in 30 ml of ethanol. Then, 1 ml of piperidine was added, and the reaction mixture was refluxed for 6 h. Thin layer chromatography revealed the formation of a single product. The organic phase was evaporated under reduce pressure. The resulting residue was recrystallized from ethanol (yield: 67%; m.p.: 405 K). Colourless block-like crystals of the title compound were obtained by slow evaporation of a solution in ethanol.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were located in a difference map and treated as riding: N—H = 0.86 Å, C–H = 0.93 - 0.98Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of the molecule structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N-H···O hydrogen bond is shown as a dashed line (see Table 1).
[Figure 2] Fig. 2. A view along the a axis of the crystal packing for the title compound. The hydrogen bonds are shown as dashed lines (see Table 1), and C-bound H atoms have been omitted for clarity.
Ethyl 2-amino-4-(4-chlorophenyl)-4H-1-benzothieno[3,2-b]pyran-3-carboxylate top
Crystal data top
C20H16ClNO3SZ = 2
Mr = 385.85F(000) = 400
Triclinic, P1Dx = 1.435 Mg m3
a = 8.3606 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.9186 (6) ÅCell parameters from 3892 reflections
c = 11.0971 (6) Åθ = 2.3–27.0°
α = 104.592 (2)°µ = 0.35 mm1
β = 106.849 (2)°T = 296 K
γ = 102.174 (2)°Block, colourless
V = 893.09 (8) Å30.42 × 0.31 × 0.26 mm
Data collection top
Bruker X8 APEX
diffractometer
3892 independent reflections
Radiation source: fine-focus sealed tube3422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
φ and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.673, Tmax = 0.746k = 1313
22918 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0548P)2 + 0.2464P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3892 reflectionsΔρmax = 0.30 e Å3
235 parametersΔρmin = 0.24 e Å3
Crystal data top
C20H16ClNO3Sγ = 102.174 (2)°
Mr = 385.85V = 893.09 (8) Å3
Triclinic, P1Z = 2
a = 8.3606 (4) ÅMo Kα radiation
b = 10.9186 (6) ŵ = 0.35 mm1
c = 11.0971 (6) ÅT = 296 K
α = 104.592 (2)°0.42 × 0.31 × 0.26 mm
β = 106.849 (2)°
Data collection top
Bruker X8 APEX
diffractometer
3892 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3422 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.746Rint = 0.029
22918 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
3892 reflectionsΔρmin = 0.24 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35626 (19)0.05325 (15)0.88366 (15)0.0351 (3)
C20.2174 (2)0.01998 (18)0.92720 (18)0.0471 (4)
H20.21280.07691.00330.057*
C30.0882 (2)0.0988 (2)0.85487 (19)0.0542 (4)
H30.00540.12230.88240.065*
C40.0936 (2)0.1852 (2)0.74085 (19)0.0539 (4)
H40.00340.26480.69310.065*
C50.2317 (2)0.15375 (17)0.69832 (16)0.0432 (4)
H50.23590.21200.62290.052*
C60.36455 (18)0.03341 (14)0.77004 (14)0.0325 (3)
C70.51995 (18)0.02422 (13)0.74848 (13)0.0296 (3)
C80.62124 (18)0.14449 (13)0.83590 (13)0.0294 (3)
C90.78415 (17)0.22422 (13)0.82693 (13)0.0281 (3)
H90.88040.25150.91310.034*
C100.82868 (17)0.13392 (13)0.72085 (13)0.0298 (3)
C110.71717 (18)0.01172 (13)0.63660 (13)0.0298 (3)
C120.75379 (16)0.34879 (13)0.79785 (13)0.0274 (3)
C130.7782 (2)0.46098 (14)0.90231 (14)0.0354 (3)
H130.82170.46170.98980.042*
C140.7389 (2)0.57212 (14)0.87879 (15)0.0385 (3)
H140.75400.64620.94940.046*
C150.67728 (18)0.57080 (13)0.74900 (15)0.0346 (3)
C160.6569 (2)0.46233 (15)0.64347 (15)0.0396 (3)
H160.61910.46370.55640.047*
C170.69348 (19)0.35146 (14)0.66880 (14)0.0349 (3)
H170.67720.27740.59770.042*
C180.99172 (18)0.18273 (14)0.70204 (14)0.0338 (3)
C191.2395 (2)0.37234 (19)0.76685 (18)0.0508 (4)
H19A1.29330.30860.73120.061*
H19B1.32630.43650.85010.061*
C201.1832 (4)0.4415 (3)0.6705 (3)0.1006 (10)
H20A1.28330.48640.65510.151*
H20B1.13100.50520.70630.151*
H20C1.09890.37770.58770.151*
N10.74061 (17)0.07170 (12)0.53678 (13)0.0404 (3)
H1A0.83480.05020.51990.048*
H1B0.66150.14690.48940.048*
O10.55816 (13)0.04447 (10)0.64299 (10)0.0341 (2)
O21.09024 (13)0.30414 (11)0.79199 (11)0.0412 (3)
O31.03951 (15)0.12634 (12)0.61632 (12)0.0503 (3)
S10.53387 (5)0.19821 (4)0.95704 (4)0.03808 (12)
Cl10.62208 (6)0.70800 (4)0.71743 (4)0.05029 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0365 (7)0.0397 (7)0.0395 (7)0.0175 (6)0.0224 (6)0.0158 (6)
C20.0454 (9)0.0575 (10)0.0523 (9)0.0213 (8)0.0346 (8)0.0170 (8)
C30.0390 (9)0.0698 (12)0.0624 (11)0.0136 (8)0.0341 (8)0.0206 (9)
C40.0365 (8)0.0595 (11)0.0591 (11)0.0042 (8)0.0223 (8)0.0119 (9)
C50.0378 (8)0.0492 (9)0.0420 (8)0.0101 (7)0.0203 (7)0.0099 (7)
C60.0316 (7)0.0393 (7)0.0351 (7)0.0159 (6)0.0179 (6)0.0158 (6)
C70.0324 (7)0.0354 (7)0.0311 (6)0.0175 (5)0.0190 (5)0.0131 (5)
C80.0348 (7)0.0329 (7)0.0307 (6)0.0173 (5)0.0202 (5)0.0121 (5)
C90.0306 (6)0.0313 (6)0.0270 (6)0.0136 (5)0.0150 (5)0.0087 (5)
C100.0312 (7)0.0333 (7)0.0335 (7)0.0163 (5)0.0192 (5)0.0116 (5)
C110.0336 (7)0.0330 (7)0.0331 (6)0.0172 (5)0.0198 (5)0.0133 (5)
C120.0250 (6)0.0296 (6)0.0292 (6)0.0092 (5)0.0134 (5)0.0076 (5)
C130.0428 (8)0.0348 (7)0.0273 (6)0.0137 (6)0.0131 (6)0.0063 (5)
C140.0444 (8)0.0291 (7)0.0364 (7)0.0118 (6)0.0135 (6)0.0023 (6)
C150.0305 (7)0.0283 (7)0.0430 (8)0.0097 (5)0.0104 (6)0.0113 (6)
C160.0444 (8)0.0427 (8)0.0309 (7)0.0170 (7)0.0100 (6)0.0123 (6)
C170.0405 (8)0.0347 (7)0.0280 (6)0.0148 (6)0.0122 (6)0.0053 (5)
C180.0327 (7)0.0387 (7)0.0360 (7)0.0155 (6)0.0183 (6)0.0115 (6)
C190.0330 (8)0.0570 (10)0.0541 (10)0.0021 (7)0.0224 (7)0.0070 (8)
C200.0660 (15)0.115 (2)0.130 (2)0.0027 (15)0.0361 (16)0.078 (2)
N10.0442 (7)0.0356 (6)0.0458 (7)0.0121 (5)0.0308 (6)0.0040 (5)
O10.0347 (5)0.0343 (5)0.0358 (5)0.0099 (4)0.0222 (4)0.0054 (4)
O20.0327 (5)0.0451 (6)0.0417 (6)0.0059 (4)0.0211 (5)0.0039 (5)
O30.0465 (6)0.0504 (7)0.0569 (7)0.0128 (5)0.0373 (6)0.0029 (5)
S10.0447 (2)0.0385 (2)0.0392 (2)0.01531 (16)0.02879 (17)0.00859 (15)
Cl10.0518 (2)0.0325 (2)0.0608 (3)0.01558 (17)0.00947 (19)0.01663 (18)
Geometric parameters (Å, º) top
C1—C21.396 (2)C12—C171.3837 (19)
C1—C61.4025 (19)C12—C131.3885 (18)
C1—S11.7412 (16)C13—C141.388 (2)
C2—C31.369 (3)C13—H130.9300
C2—H20.9300C14—C151.377 (2)
C3—C41.394 (3)C14—H140.9300
C3—H30.9300C15—C161.380 (2)
C4—C51.379 (2)C15—Cl11.7441 (14)
C4—H40.9300C16—C171.384 (2)
C5—C61.393 (2)C16—H160.9300
C5—H50.9300C17—H170.9300
C6—C71.4327 (18)C18—O31.2134 (17)
C7—C81.340 (2)C18—O21.3521 (18)
C7—O11.3821 (15)C19—O21.4507 (18)
C8—C91.4983 (18)C19—C201.484 (3)
C8—S11.7428 (13)C19—H19A0.9700
C9—C101.5235 (16)C19—H19B0.9700
C9—C121.5289 (17)C20—H20A0.9600
C9—H90.9800C20—H20B0.9600
C10—C111.366 (2)C20—H20C0.9600
C10—C181.4492 (19)N1—H1A0.8600
C11—N11.3371 (17)N1—H1B0.8600
C11—O11.3717 (16)
C2—C1—C6120.93 (15)C13—C12—C9119.77 (12)
C2—C1—S1126.81 (13)C14—C13—C12121.31 (13)
C6—C1—S1112.26 (10)C14—C13—H13119.3
C3—C2—C1118.18 (15)C12—C13—H13119.3
C3—C2—H2120.9C15—C14—C13118.84 (13)
C1—C2—H2120.9C15—C14—H14120.6
C2—C3—C4121.53 (15)C13—C14—H14120.6
C2—C3—H3119.2C14—C15—C16121.13 (13)
C4—C3—H3119.2C14—C15—Cl1119.42 (11)
C5—C4—C3120.57 (17)C16—C15—Cl1119.45 (11)
C5—C4—H4119.7C15—C16—C17119.13 (13)
C3—C4—H4119.7C15—C16—H16120.4
C4—C5—C6118.99 (15)C17—C16—H16120.4
C4—C5—H5120.5C12—C17—C16121.25 (13)
C6—C5—H5120.5C12—C17—H17119.4
C5—C6—C1119.78 (13)C16—C17—H17119.4
C5—C6—C7130.77 (13)O3—C18—O2121.50 (13)
C1—C6—C7109.45 (13)O3—C18—C10126.35 (14)
C8—C7—O1124.03 (12)O2—C18—C10112.14 (11)
C8—C7—C6115.98 (12)O2—C19—C20110.42 (16)
O1—C7—C6119.99 (12)O2—C19—H19A109.6
C7—C8—C9124.22 (11)C20—C19—H19A109.6
C7—C8—S1111.10 (10)O2—C19—H19B109.6
C9—C8—S1124.64 (10)C20—C19—H19B109.6
C8—C9—C10107.59 (11)H19A—C19—H19B108.1
C8—C9—C12109.14 (10)C19—C20—H20A109.5
C10—C9—C12113.90 (10)C19—C20—H20B109.5
C8—C9—H9108.7H20A—C20—H20B109.5
C10—C9—H9108.7C19—C20—H20C109.5
C12—C9—H9108.7H20A—C20—H20C109.5
C11—C10—C18118.03 (12)H20B—C20—H20C109.5
C11—C10—C9123.05 (11)C11—N1—H1A120.0
C18—C10—C9118.79 (12)C11—N1—H1B120.0
N1—C11—C10127.48 (13)H1A—N1—H1B120.0
N1—C11—O1108.97 (12)C11—O1—C7116.36 (11)
C10—C11—O1123.55 (11)C18—O2—C19116.32 (11)
C17—C12—C13118.29 (12)C1—S1—C891.21 (7)
C17—C12—C9121.86 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.862.072.6796 (18)127
N1—H1A···O3i0.862.182.8956 (15)141
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.862.072.6796 (18)127
N1—H1A···O3i0.862.182.8956 (15)141
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBakhouch, M., Al Houari, G., Daoudi, M., Kerbal, A. & El yazidi, M. (2015). Mediterr. J. Chem. 4, 9–17.  CrossRef Google Scholar
First citationBakhouch, M., Al Houari, G., El Yazidi, M., Saadi, M. & El Ammari, L. (2014). Acta Cryst. E70, o587.  CSD CrossRef IUCr Journals Google Scholar
First citationBoughaleb, A., Akhazzane, M., Alhouari, G., Bennani, B., Daoudi, M., Garrigues, B., Kerbal, A. & El yazidi, M. (2011). J. Soc. Chim. Tunisie, 13, 117–122.  CAS Google Scholar
First citationBoughaleb, A., Al houari, G., Bennani, B., Daoudi, M., Garrigues, B., Kerbal, A. & El yazidi, M. (2010). J. Soc. Chim. Tunisie, 12, 109–115.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabiddu, M. G., Cabiddu, S., Cadoni, E., De Montis, S., Fattuoni, C., Melis, S. & Usai, M. (2002). Synthesis, 2002, 875–878.  CrossRef Google Scholar
First citationDaisley, R. W., Elagbar, Z. A. & Walker, J. (1982). J. Heterocycl. Chem. 19, 1013–1016.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPradhan, T. K., De, A. & Mortier, A. (2005). Tetrahedron, 61, 9007–9017.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds