organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o510-o511

Crystal structure of 1′-(prop-2-yn-1-yl)-1,4-di­hydro­spiro­[benzo[d][1,3]oxazine-2,3′-indolin]-2′-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 602 020, India
*Correspondence e-mail: aspandian59@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 11 June 2015; accepted 22 June 2015; online 27 June 2015)

In the title compound, C18H14N2O2, the six-membered oxazine ring adopts a half-chair conformation and its mean plane makes a dihedral angle of 83.23 (7)° with the pyrrolidine ring of the indoline ring system. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds, forming chains along [100]. The chains are linked by C—H⋯π inter­actions, forming slabs parallel to (001).

1. Related literature

For the biological activity of spiro compounds, see: James et al. (1991[James, D., Kunze, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.]); Kobayashi et al. (1991[Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron, 47, 6617-6622.]). For the use of 1,3-dipolar cyclo­addition reactions in the construction of spiro compounds, see: Caramella & Grunanger (1984[Caramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.]). For applications of spiro­oxazine derivatives, see: Chibisov & Görner (1999[Chibisov, A. K. & Görner, H. (1999). J. Phys. Chem. A, 103, 5211-5216.]). For the synthetic method, see: Kamalraja et al. (2014[Kamalraja, J., Murugasan, P. & Perumal, P. T. (2014). RSC Adv. 4, 19422-19432.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H14N2O2

  • Mr = 290.31

  • Triclinic, [P \overline 1]

  • a = 5.5571 (3) Å

  • b = 8.5404 (4) Å

  • c = 15.4542 (9) Å

  • α = 85.884 (3)°

  • β = 86.814 (3)°

  • γ = 74.125 (3)°

  • V = 703.17 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

2.2. Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.984

  • 16184 measured reflections

  • 3231 independent reflections

  • 2350 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.106

  • S = 1.06

  • 3231 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of rings C1–C6 and C9–C14, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.13 2.9641 (16) 164
C4—H4⋯Cg4ii 0.93 2.90 3.6572 (19) 140
C8—H8ACg4iii 0.97 2.86 3.6636 (17) 141
C16—H16BCg3iv 0.97 2.79 3.5341 (18) 134
Symmetry codes: (i) x+1, y, z; (ii) x+1, y-1, z; (iii) -x+1, -y+1, -z+1; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Synthesis and crystallization top

A mixture of N-propargylisatin (1.0 mmol), and 2-amino­benzyl­alcohol (1.0 mmol) was refluxed in ethanol, in the presence of InCl3 (10 mol%), for 2 h. After the reaction was complete as indicated by TLC, the reaction mixture was cooled to room temperature. The solid that formed was filtered, dried and recrystallized in ethanol or di­chloro­methane to obtain in good yield (89%) of the pure title product as block-like colourless crystals.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The N- and C-bound H atoms were positioned geometrically (N—H = 0.86 Å, C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(N,C).

Structural commentary top

Spiro compounds represent an important class of naturally occurring substances, which in many cases exhibit useful biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-dipolar cyclo­addition reactions are widely used for construction of spiro-compounds (Caramella & Grunanger, 1984). It has also been reported that spiro-oxazine derivatives have real or potential applications in many fields such as protection, decoration, display, memory, switches, photography, photometry and photomechanics (Chibisov & Görner, 1999). Efforts have been made to design this industrially and biologically active hetrocyclic compounds by making or breaking carbon-carbon (C—C) and carbon-hetero atom (C—X) (Kamalraja et al., 2014). This InCl3-mediated compound have been synthesized as a part of the effort carried to develop eco-friendly potential compound by new synthetic method.

The molecular structure of the title compound is illustrated in Fig 1. The oxazine ring (O1/N1/C7/C8/C9/C14) adopts a half chair confirmation, and its mean plane makes a dihedral angle of 83.23 (7) ° with the pyrrolidine ring (O1/N1/C8/C9/C14) of the indolinone ring system. The indole ring system is essentially planar, with atoms C16 and O2 deviating from its mean plane by -0.0130 and 0.0273 Å, respectively. The dihedral angle between the benzene ring (C1—C6) of the indoline ring system and the benzene ring (C9—C14) of the mean plane of the 2,4-di­hydro-1H-benzo[d][1,3] oxazine ring system is 76.94 (8) °.

In the crystal, molecules are linked via N—H···O hydrogen bonds (Table 1) forming chains along [100], as shown in Fig 2. The chains are linked by C—H···π inter­actions forming slabs parallel to (001); see Table 1.

Related literature top

For the biological activity of spiro compounds, see: James et al. (1991); Kobayashi et al. (1991). For the use of 1,3-dipolar cycloaddition reactions in the construction of spiro compounds, see: Caramella & Grunanger (1984). For applications of spirooxazine derivatives, see: Chibisov & Görner (1999). For the synthetic method, see: Kamalraja et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
1'-(prop-2-yn-1-yl)-1,4-dihydrospiro[benzo[d][1,3]oxazine-2,3'-indolin]-2'-one top
Crystal data top
C18H14N2O2Z = 2
Mr = 290.31F(000) = 304
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5571 (3) ÅCell parameters from 2350 reflections
b = 8.5404 (4) Åθ = 2.5–27.6°
c = 15.4542 (9) ŵ = 0.09 mm1
α = 85.884 (3)°T = 293 K
β = 86.814 (3)°Block, colourless
γ = 74.125 (3)°0.21 × 0.19 × 0.18 mm
V = 703.17 (6) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3231 independent reflections
Radiation source: fine-focus sealed tube2350 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and ϕ scansθmax = 27.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 77
Tmin = 0.981, Tmax = 0.984k = 1111
16184 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.1883P]
where P = (Fo2 + 2Fc2)/3
3231 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H14N2O2γ = 74.125 (3)°
Mr = 290.31V = 703.17 (6) Å3
Triclinic, P1Z = 2
a = 5.5571 (3) ÅMo Kα radiation
b = 8.5404 (4) ŵ = 0.09 mm1
c = 15.4542 (9) ÅT = 293 K
α = 85.884 (3)°0.21 × 0.19 × 0.18 mm
β = 86.814 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3231 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2350 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.984Rint = 0.031
16184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.06Δρmax = 0.15 e Å3
3231 reflectionsΔρmin = 0.21 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44655 (19)0.31187 (12)0.35868 (6)0.0365 (3)
N10.6584 (2)0.48707 (15)0.28492 (8)0.0383 (3)
H10.79530.48690.25600.046*
O20.14706 (18)0.52580 (13)0.21423 (7)0.0413 (3)
N20.3795 (2)0.29626 (15)0.15105 (8)0.0352 (3)
C60.7141 (3)0.21178 (17)0.23854 (9)0.0322 (3)
C90.3552 (3)0.59601 (17)0.39673 (9)0.0321 (3)
C140.5492 (2)0.61191 (17)0.33911 (9)0.0299 (3)
C70.5434 (2)0.35940 (17)0.27729 (9)0.0296 (3)
C130.6337 (3)0.75102 (18)0.33677 (10)0.0379 (3)
H130.76730.76000.29960.045*
C150.3291 (2)0.40839 (17)0.21203 (9)0.0306 (3)
C80.2756 (3)0.44185 (18)0.40275 (10)0.0369 (3)
H8A0.25980.40710.46350.044*
H8B0.11200.46350.37820.044*
C100.2424 (3)0.7231 (2)0.44848 (10)0.0428 (4)
H100.11060.71420.48650.051*
C10.6078 (3)0.17761 (17)0.16557 (9)0.0329 (3)
C120.5198 (3)0.87512 (19)0.38939 (11)0.0453 (4)
H120.57670.96810.38770.054*
C170.3297 (3)0.31873 (19)0.00454 (11)0.0432 (4)
C160.2147 (3)0.2998 (2)0.08103 (10)0.0442 (4)
H16A0.06510.38940.08790.053*
H16B0.16410.19940.08510.053*
C50.9381 (3)0.11227 (19)0.26579 (10)0.0420 (4)
H51.01130.13490.31440.050*
C110.3219 (3)0.8629 (2)0.44470 (11)0.0481 (4)
H110.24250.94830.47920.058*
C30.9441 (3)0.05574 (19)0.14768 (12)0.0501 (4)
H31.02330.14770.11770.060*
C20.7189 (3)0.04466 (19)0.11901 (11)0.0438 (4)
H20.64620.02270.07010.053*
C41.0533 (3)0.0227 (2)0.21942 (12)0.0496 (4)
H41.20560.09150.23690.060*
C180.4183 (4)0.3288 (2)0.07400 (13)0.0641 (5)
H180.48910.33680.12950.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0434 (6)0.0375 (5)0.0296 (5)0.0140 (5)0.0021 (4)0.0025 (4)
N10.0319 (6)0.0435 (7)0.0449 (7)0.0192 (6)0.0108 (5)0.0129 (6)
O20.0295 (5)0.0451 (6)0.0435 (6)0.0000 (5)0.0013 (4)0.0031 (5)
N20.0304 (6)0.0400 (7)0.0345 (7)0.0064 (5)0.0075 (5)0.0056 (5)
C60.0310 (7)0.0313 (7)0.0336 (7)0.0080 (6)0.0025 (6)0.0011 (6)
C90.0294 (7)0.0403 (8)0.0267 (7)0.0093 (6)0.0037 (6)0.0011 (6)
C140.0263 (7)0.0343 (7)0.0294 (7)0.0078 (6)0.0055 (5)0.0013 (6)
C70.0286 (7)0.0343 (7)0.0270 (7)0.0106 (6)0.0007 (5)0.0003 (6)
C130.0370 (8)0.0390 (8)0.0406 (8)0.0154 (7)0.0039 (6)0.0001 (7)
C150.0260 (7)0.0342 (7)0.0321 (7)0.0102 (6)0.0018 (6)0.0012 (6)
C80.0350 (8)0.0468 (9)0.0310 (7)0.0155 (7)0.0041 (6)0.0023 (6)
C100.0388 (9)0.0531 (9)0.0352 (8)0.0096 (7)0.0022 (7)0.0084 (7)
C10.0317 (7)0.0305 (7)0.0365 (8)0.0085 (6)0.0032 (6)0.0002 (6)
C120.0525 (10)0.0362 (8)0.0502 (10)0.0149 (7)0.0113 (8)0.0037 (7)
C170.0513 (10)0.0395 (8)0.0392 (9)0.0107 (7)0.0122 (7)0.0028 (7)
C160.0373 (8)0.0585 (10)0.0390 (9)0.0140 (7)0.0111 (7)0.0057 (7)
C50.0376 (8)0.0429 (9)0.0426 (9)0.0054 (7)0.0098 (7)0.0008 (7)
C110.0531 (10)0.0440 (9)0.0449 (9)0.0060 (8)0.0048 (8)0.0142 (7)
C30.0519 (10)0.0332 (8)0.0597 (11)0.0012 (7)0.0001 (8)0.0083 (8)
C20.0480 (9)0.0363 (8)0.0469 (9)0.0084 (7)0.0061 (7)0.0087 (7)
C40.0412 (9)0.0395 (9)0.0596 (11)0.0032 (7)0.0066 (8)0.0013 (8)
C180.0887 (15)0.0581 (12)0.0450 (11)0.0205 (11)0.0025 (10)0.0033 (9)
Geometric parameters (Å, º) top
O1—C71.4168 (16)C9—C81.495 (2)
O1—C81.4347 (17)C14—C131.390 (2)
N1—C141.3872 (17)C7—C151.5525 (19)
N1—C71.4212 (17)C13—C121.373 (2)
O2—C151.2150 (16)C10—C111.378 (2)
N2—C151.3554 (18)C1—C21.368 (2)
N2—C11.4078 (18)C12—C111.377 (2)
N2—C161.4497 (18)C17—C181.163 (2)
C6—C51.370 (2)C17—C161.454 (2)
C6—C11.3861 (19)C5—C41.384 (2)
C6—C71.4964 (19)C3—C41.375 (2)
C9—C101.381 (2)C3—C21.385 (2)
C9—C141.3888 (19)
C7—O1—C8114.81 (10)C6—C7—C15101.78 (11)
C14—N1—C7119.77 (11)C12—C13—C14119.93 (15)
C15—N2—C1111.34 (11)O2—C15—N2125.26 (13)
C15—N2—C16123.33 (12)O2—C15—C7126.81 (13)
C1—N2—C16125.32 (12)N2—C15—C7107.93 (11)
C5—C6—C1120.23 (13)O1—C8—C9113.31 (11)
C5—C6—C7130.43 (13)C11—C10—C9121.15 (15)
C1—C6—C7109.30 (12)C2—C1—C6121.96 (14)
C10—C9—C14118.87 (14)C2—C1—N2128.46 (13)
C10—C9—C8121.35 (13)C6—C1—N2109.58 (12)
C14—C9—C8119.77 (12)C13—C12—C11120.49 (15)
N1—C14—C9119.32 (12)C18—C17—C16177.26 (18)
N1—C14—C13120.65 (13)N2—C16—C17113.13 (13)
C9—C14—C13120.03 (13)C6—C5—C4118.59 (15)
O1—C7—N1111.37 (11)C12—C11—C10119.46 (15)
O1—C7—C6108.82 (11)C4—C3—C2121.54 (15)
N1—C7—C6113.52 (11)C1—C2—C3117.24 (15)
O1—C7—C15108.92 (10)C3—C4—C5120.44 (15)
N1—C7—C15111.96 (11)
C7—N1—C14—C911.5 (2)N1—C7—C15—N2124.05 (12)
C7—N1—C14—C13169.20 (13)C6—C7—C15—N22.48 (14)
C10—C9—C14—N1177.99 (13)C7—O1—C8—C941.18 (16)
C8—C9—C14—N13.0 (2)C10—C9—C8—O1167.24 (13)
C10—C9—C14—C132.7 (2)C14—C9—C8—O111.71 (19)
C8—C9—C14—C13176.28 (13)C14—C9—C10—C111.1 (2)
C8—O1—C7—N155.09 (15)C8—C9—C10—C11177.88 (14)
C8—O1—C7—C6179.03 (11)C5—C6—C1—C20.6 (2)
C8—O1—C7—C1568.86 (14)C7—C6—C1—C2177.30 (13)
C14—N1—C7—O139.97 (17)C5—C6—C1—N2179.83 (13)
C14—N1—C7—C6163.21 (12)C7—C6—C1—N21.91 (16)
C14—N1—C7—C1582.24 (15)C15—N2—C1—C2178.94 (15)
C5—C6—C7—O165.35 (19)C16—N2—C1—C20.4 (2)
C1—C6—C7—O1112.28 (13)C15—N2—C1—C60.21 (16)
C5—C6—C7—N159.3 (2)C16—N2—C1—C6179.52 (14)
C1—C6—C7—N1123.10 (13)C14—C13—C12—C110.0 (2)
C5—C6—C7—C15179.75 (15)C15—N2—C16—C17118.22 (16)
C1—C6—C7—C152.62 (14)C1—N2—C16—C1762.5 (2)
N1—C14—C13—C12178.50 (13)C18—C17—C16—N2133 (4)
C9—C14—C13—C122.2 (2)C1—C6—C5—C40.5 (2)
C1—N2—C15—O2178.55 (13)C7—C6—C5—C4176.88 (15)
C16—N2—C15—O22.1 (2)C13—C12—C11—C101.6 (2)
C1—N2—C15—C71.51 (15)C9—C10—C11—C121.1 (2)
C16—N2—C15—C7177.82 (13)C6—C1—C2—C30.0 (2)
O1—C7—C15—O267.59 (17)N2—C1—C2—C3179.08 (15)
N1—C7—C15—O256.01 (18)C4—C3—C2—C10.6 (3)
C6—C7—C15—O2177.58 (13)C2—C3—C4—C50.7 (3)
O1—C7—C15—N2112.35 (12)C6—C5—C4—C30.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of rings C1–C6 and C9–C14, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.132.9641 (16)164
C4—H4···Cg4ii0.932.903.6572 (19)140
C8—H8A···Cg4iii0.972.863.6636 (17)141
C16—H16B···Cg3iv0.972.793.5341 (18)134
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x+1, y+1, z+1; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of rings C1–C6 and C9–C14, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.132.9641 (16)164
C4—H4···Cg4ii0.932.903.6572 (19)140
C8—H8A···Cg4iii0.972.863.6636 (17)141
C16—H16B···Cg3iv0.972.793.5341 (18)134
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1, z; (iii) x+1, y+1, z+1; (iv) x1, y, z.
 

Acknowledgements

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291–312. New York: Wiley.  Google Scholar
First citationChibisov, A. K. & Görner, H. (1999). J. Phys. Chem. A, 103, 5211–5216.  CrossRef CAS Google Scholar
First citationJames, D., Kunze, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137–1140.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKamalraja, J., Murugasan, P. & Perumal, P. T. (2014). RSC Adv. 4, 19422–19432.  CSD CrossRef CAS Google Scholar
First citationKobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron, 47, 6617–6622.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages o510-o511
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds