organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-2-({[2-(1,3-dioxan-2-yl)phen­yl]imino}­meth­yl)phenol

aJiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
*Correspondence e-mail: sunxiaoqiang@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 April 2015; accepted 23 April 2015; online 30 April 2015)

The title compound, C17H17NO3, prepared by the condensation reaction of 2-(1,3-dioxan-2-yl)aniline and salicyl­aldehyde, has an E conformation about the C=N bond. The six-membered O-heterocycle adopts a chair conformation, with the bond to the aromatic ring located at its equatorial position. The dihedral angle between the aromatic rings is 36.54 (9)°. There is an intra­molecular N—H⋯O hydrogen bond forming an S(6) ring motif. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains along the a-axis direction. Within the chains, there are C—H⋯π inter­actions involving adjacent mol­ecules.

1. Related literature

For general background to acetals, see: Cismaş et al. (2005[Cismaş, C., Terec, A., Mager, S. & Grosu, I. (2005). Curr. Org. Chem. 9, 1287-1314.]); Sun et al. (2010[Sun, X., Yu, S.-L., Li, Z.-Y. & Yang, Y. (2010). J. Mol. Struct. 973, 152-156.]). For Schiff bases of salicyl­aldehyde having important applications in biological and pharmacological chemistry, see: Gupta & Sutar (2008[Gupta, K.-C. & Sutar, A.-K. (2008). Coord. Chem. Rev. 252, 1420-1450.]); Jiménez-Sánchez et al. (2013[Jiménez-Sánchez, A., Farfán, N. & Santillan, R. (2013). Tetrahedron Lett. 54, 5279-5283.]). For further background to related Schiff base ligands and their various properties, see: Arod et al. (2005[Arod, F., Gardon, M., Pattison, P. & Chapuis, G. (2005). Acta Cryst. C61, o317-o320.]); Chatziefthimiou et al. (2006[Chatziefthimiou, S.-D., Lazarou, Y.-G., Hadjoudis, E., Dziembowska, T. & Mavridis, I. M. (2006). J. Phys. Chem. B, 110, 23701-23709.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C17H17NO3

  • Mr = 283.32

  • Orthorhombic, P n a 21

  • a = 8.4873 (18) Å

  • b = 10.821 (2) Å

  • c = 16.232 (3) Å

  • V = 1490.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.26 × 0.24 × 0.22 mm

2.2. Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.981

  • 9005 measured reflections

  • 3123 independent reflections

  • 2494 reflections with I > 2σ(I)

  • Rint = 0.043

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 1.00

  • 3123 reflections

  • 190 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.85 1.90 2.632 (2) 144
C7—H7⋯O2i 0.93 2.48 3.364 (2) 160
C15—H15ACg1ii 0.97 2.77 3.694 (3) 160
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases of salicyl­aldehyde have important applications in biological chemistry and pharmacological chemistry (Gupta et al., 2008; Sánchez et al., 2013). In addition, Schiff bases of salicyl­aldehyde has good optical properties with the ability of distinctive ultraviolet absorption (Chatziefthimiou et al., 2006). Herein (E)-2-{[2-(1,3-dioxan-2-yl) phenyl) imino]­methyl} phenol was prepared by the condensation reaction of 2-(1,3-dioxan-2-yl) aniline and salicyl­aldehyde, and the structure was confirmed by X-ray diffraction analysis.

In the molecular structure of the title compound, Fig. 1, the two aromatic rings (C1—C6 and C8—C13) are linked by the double bond C7N1, with the dihedral angle between the two rings being 36.54 (9) °. The C7N1 bond is coplanar with the benzene ring (C1—C6), and atom N1 forms an intra­molecular hydrogen bond, O1—H1···N1, with the hydroxyl group on ring (C1—C6) [Fig. 1 and Table 1]. The six-membered O-heterocycle adopts a chair conformation with the (C8—C13) ring located at its equatorial position.

In the crystal, molecules are linked by C—H···O hydrogen bonds forming chain along the a axis. Within the chains there are C—H···π inter­actions involving adjacent molecules (Table 1 and Fig. 2).

Experimental top

A mixture of 2-(1,3-dioxan-2-yl) aniline (1.8 g, 10 mmol) and salicyl­aldehyde (1.32 g, 11 mmol) in 20 ml methanol, stirred for 20 h at room temperature. After the reaction had finished, the solution was left overnight at at 273 K, and yellow block-like crystals were obtained on slow evaporation of the solvent (yield: 82%; m.p.: 321 K).

Refinement top

The OH and C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms: O—H = 0.85 Å, C—H = 0.93-0.98 Å, with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C) for other H atoms.

Related literature top

For general background to acetals, see: Cismaş et al. (2005); Sun et al. (2010). For Schiff bases of salicylaldehyde having important applications in biological and pharmacological chemistry, see: Gupta & Sutar (2008); Jiménez-Sánchez et al. (2013). For further background to related Schiff base ligands and their various properties, see: Arod et al. (2005); Chatziefthimiou et al. (2006).

Structure description top

Schiff bases of salicyl­aldehyde have important applications in biological chemistry and pharmacological chemistry (Gupta et al., 2008; Sánchez et al., 2013). In addition, Schiff bases of salicyl­aldehyde has good optical properties with the ability of distinctive ultraviolet absorption (Chatziefthimiou et al., 2006). Herein (E)-2-{[2-(1,3-dioxan-2-yl) phenyl) imino]­methyl} phenol was prepared by the condensation reaction of 2-(1,3-dioxan-2-yl) aniline and salicyl­aldehyde, and the structure was confirmed by X-ray diffraction analysis.

In the molecular structure of the title compound, Fig. 1, the two aromatic rings (C1—C6 and C8—C13) are linked by the double bond C7N1, with the dihedral angle between the two rings being 36.54 (9) °. The C7N1 bond is coplanar with the benzene ring (C1—C6), and atom N1 forms an intra­molecular hydrogen bond, O1—H1···N1, with the hydroxyl group on ring (C1—C6) [Fig. 1 and Table 1]. The six-membered O-heterocycle adopts a chair conformation with the (C8—C13) ring located at its equatorial position.

In the crystal, molecules are linked by C—H···O hydrogen bonds forming chain along the a axis. Within the chains there are C—H···π inter­actions involving adjacent molecules (Table 1 and Fig. 2).

A mixture of 2-(1,3-dioxan-2-yl) aniline (1.8 g, 10 mmol) and salicyl­aldehyde (1.32 g, 11 mmol) in 20 ml methanol, stirred for 20 h at room temperature. After the reaction had finished, the solution was left overnight at at 273 K, and yellow block-like crystals were obtained on slow evaporation of the solvent (yield: 82%; m.p.: 321 K).

For general background to acetals, see: Cismaş et al. (2005); Sun et al. (2010). For Schiff bases of salicylaldehyde having important applications in biological and pharmacological chemistry, see: Gupta & Sutar (2008); Jiménez-Sánchez et al. (2013). For further background to related Schiff base ligands and their various properties, see: Arod et al. (2005); Chatziefthimiou et al. (2006).

Refinement details top

The OH and C-bound H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms: O—H = 0.85 Å, C—H = 0.93-0.98 Å, with Uiso(H) = 1.5Ueq(O) and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The intramolecular O—H···N hydrogen bond is shown as a dashed line (see Table 1 for details).
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound, view along the c axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details).
(E)-2-({[2-(1,3-Dioxan-2-yl)phenyl]imino}methyl)phenol top
Crystal data top
C17H17NO3F(000) = 600
Mr = 283.32Dx = 1.262 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3792 reflections
a = 8.4873 (18) Åθ = 2.3–26.4°
b = 10.821 (2) ŵ = 0.09 mm1
c = 16.232 (3) ÅT = 296 K
V = 1490.8 (5) Å3Block, yellow
Z = 40.26 × 0.24 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3123 independent reflections
Radiation source: fine-focus sealed tube2494 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
phi and ω scansθmax = 27.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1011
Tmin = 0.978, Tmax = 0.981k = 1313
9005 measured reflectionsl = 1721
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.020P]
where P = (Fo2 + 2Fc2)/3
3123 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C17H17NO3V = 1490.8 (5) Å3
Mr = 283.32Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 8.4873 (18) ŵ = 0.09 mm1
b = 10.821 (2) ÅT = 296 K
c = 16.232 (3) Å0.26 × 0.24 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3123 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2494 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.981Rint = 0.043
9005 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.097H-atom parameters constrained
S = 1.00Δρmax = 0.15 e Å3
3123 reflectionsΔρmin = 0.21 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36289 (19)0.02306 (15)0.41243 (12)0.0456 (4)
C20.4402 (2)0.0087 (2)0.48668 (13)0.0594 (5)
H20.43600.06680.51400.071*
C30.5234 (3)0.1054 (2)0.52064 (14)0.0666 (6)
H30.57490.09450.57070.080*
C40.5314 (2)0.2185 (2)0.48125 (14)0.0645 (5)
H40.58720.28350.50470.077*
C50.4561 (2)0.23357 (17)0.40717 (14)0.0567 (5)
H50.46160.30960.38070.068*
C60.37108 (19)0.13744 (15)0.37051 (12)0.0442 (4)
C70.2987 (2)0.15509 (15)0.29062 (12)0.0455 (4)
H70.30590.23240.26590.055*
C80.16825 (19)0.09047 (14)0.17144 (11)0.0409 (4)
C90.2536 (2)0.16144 (17)0.11485 (13)0.0507 (4)
H90.34940.19620.13030.061*
C100.1966 (2)0.18018 (19)0.03623 (13)0.0572 (5)
H100.25330.22880.00050.069*
C110.0567 (2)0.12752 (18)0.01177 (12)0.0549 (5)
H110.01850.14070.04120.066*
C120.0266 (2)0.05486 (16)0.06659 (12)0.0482 (4)
H120.12080.01880.04990.058*
C130.02793 (18)0.03466 (13)0.14640 (10)0.0390 (3)
C140.06859 (19)0.03996 (13)0.20547 (11)0.0415 (4)
H140.00190.08550.24240.050*
C150.2564 (3)0.0245 (2)0.31050 (16)0.0704 (6)
H15A0.32230.03340.34040.084*
H15B0.18910.06640.34990.084*
C160.3585 (2)0.1176 (2)0.26691 (17)0.0710 (6)
H16A0.41280.16850.30710.085*
H16B0.43710.07520.23400.085*
C170.2593 (3)0.1966 (2)0.21304 (19)0.0797 (7)
H17A0.19450.25000.24700.096*
H17B0.32670.24860.17940.096*
N10.22509 (16)0.06900 (12)0.25250 (9)0.0427 (3)
O10.28135 (16)0.07360 (11)0.38050 (9)0.0606 (4)
H10.23680.05450.33540.091*
O20.16132 (15)0.04108 (10)0.25196 (9)0.0536 (3)
O30.16055 (18)0.12428 (12)0.16085 (10)0.0670 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0412 (9)0.0476 (8)0.0479 (9)0.0025 (7)0.0094 (8)0.0012 (7)
C20.0610 (11)0.0654 (11)0.0517 (11)0.0032 (10)0.0004 (9)0.0117 (10)
C30.0688 (13)0.0826 (14)0.0484 (11)0.0044 (11)0.0071 (10)0.0028 (11)
C40.0687 (12)0.0662 (11)0.0586 (13)0.0109 (10)0.0074 (10)0.0122 (10)
C50.0586 (11)0.0474 (9)0.0642 (12)0.0064 (8)0.0016 (10)0.0024 (9)
C60.0400 (8)0.0445 (8)0.0480 (9)0.0015 (7)0.0043 (8)0.0020 (7)
C70.0459 (9)0.0382 (7)0.0525 (10)0.0014 (7)0.0030 (8)0.0037 (7)
C80.0410 (8)0.0364 (7)0.0452 (9)0.0001 (6)0.0038 (7)0.0011 (7)
C90.0460 (9)0.0530 (9)0.0531 (11)0.0096 (8)0.0056 (8)0.0053 (8)
C100.0583 (11)0.0591 (10)0.0542 (11)0.0029 (9)0.0128 (9)0.0105 (8)
C110.0559 (11)0.0643 (11)0.0446 (10)0.0081 (9)0.0046 (8)0.0013 (9)
C120.0428 (9)0.0521 (9)0.0496 (10)0.0037 (7)0.0009 (8)0.0063 (8)
C130.0376 (8)0.0335 (7)0.0460 (9)0.0031 (6)0.0042 (7)0.0044 (6)
C140.0361 (8)0.0364 (7)0.0519 (9)0.0016 (6)0.0014 (7)0.0004 (7)
C150.0669 (13)0.0810 (14)0.0632 (14)0.0131 (12)0.0203 (11)0.0020 (12)
C160.0464 (10)0.0842 (13)0.0824 (16)0.0132 (10)0.0135 (11)0.0118 (13)
C170.0778 (15)0.0588 (11)0.103 (2)0.0284 (11)0.0238 (14)0.0027 (13)
N10.0381 (7)0.0429 (6)0.0470 (8)0.0035 (5)0.0011 (7)0.0035 (6)
O10.0697 (8)0.0510 (6)0.0612 (8)0.0186 (6)0.0049 (7)0.0099 (7)
O20.0570 (7)0.0468 (6)0.0570 (7)0.0036 (5)0.0189 (6)0.0069 (6)
O30.0723 (9)0.0561 (7)0.0726 (10)0.0275 (7)0.0215 (8)0.0191 (7)
Geometric parameters (Å, º) top
C1—O11.357 (2)C10—H100.9300
C1—C21.381 (3)C11—C121.382 (3)
C1—C61.414 (2)C11—H110.9300
C2—C31.378 (3)C12—C131.393 (3)
C2—H20.9300C12—H120.9300
C3—C41.382 (3)C13—C141.497 (2)
C3—H30.9300C14—O21.399 (2)
C4—C51.372 (3)C14—O31.402 (2)
C4—H40.9300C14—H140.9800
C5—C61.399 (3)C15—O21.435 (2)
C5—H50.9300C15—C161.505 (3)
C6—C71.448 (3)C15—H15A0.9700
C7—N11.281 (2)C15—H15B0.9700
C7—H70.9300C16—C171.485 (3)
C8—C131.396 (2)C16—H16A0.9700
C8—C91.399 (2)C16—H16B0.9700
C8—N11.420 (2)C17—O31.426 (3)
C9—C101.380 (3)C17—H17A0.9700
C9—H90.9300C17—H17B0.9700
C10—C111.375 (3)O1—H10.8501
O1—C1—C2119.27 (16)C11—C12—H12119.4
O1—C1—C6121.05 (17)C13—C12—H12119.4
C2—C1—C6119.67 (17)C12—C13—C8119.10 (15)
C3—C2—C1120.50 (19)C12—C13—C14119.90 (14)
C3—C2—H2119.8C8—C13—C14120.91 (15)
C1—C2—H2119.8O2—C14—O3111.92 (14)
C2—C3—C4120.8 (2)O2—C14—C13108.36 (11)
C2—C3—H3119.6O3—C14—C13108.94 (15)
C4—C3—H3119.6O2—C14—H14109.2
C5—C4—C3119.21 (19)O3—C14—H14109.2
C5—C4—H4120.4C13—C14—H14109.2
C3—C4—H4120.4O2—C15—C16110.1 (2)
C4—C5—C6121.66 (19)O2—C15—H15A109.6
C4—C5—H5119.2C16—C15—H15A109.6
C6—C5—H5119.2O2—C15—H15B109.6
C5—C6—C1118.13 (17)C16—C15—H15B109.6
C5—C6—C7120.13 (16)H15A—C15—H15B108.2
C1—C6—C7121.71 (15)C17—C16—C15109.61 (17)
N1—C7—C6122.95 (15)C17—C16—H16A109.7
N1—C7—H7118.5C15—C16—H16A109.7
C6—C7—H7118.5C17—C16—H16B109.7
C13—C8—C9119.22 (16)C15—C16—H16B109.7
C13—C8—N1119.25 (14)H16A—C16—H16B108.2
C9—C8—N1121.46 (15)O3—C17—C16111.56 (16)
C10—C9—C8120.40 (18)O3—C17—H17A109.3
C10—C9—H9119.8C16—C17—H17A109.3
C8—C9—H9119.8O3—C17—H17B109.3
C11—C10—C9120.59 (18)C16—C17—H17B109.3
C11—C10—H10119.7H17A—C17—H17B108.0
C9—C10—H10119.7C7—N1—C8119.61 (14)
C10—C11—C12119.44 (19)C1—O1—H1111.6
C10—C11—H11120.3C14—O2—C15111.33 (13)
C12—C11—H11120.3C14—O3—C17112.17 (17)
C11—C12—C13121.21 (17)
O1—C1—C2—C3179.79 (19)C9—C8—C13—C122.4 (2)
C6—C1—C2—C30.8 (3)N1—C8—C13—C12179.32 (15)
C1—C2—C3—C40.0 (3)C9—C8—C13—C14178.78 (15)
C2—C3—C4—C50.4 (3)N1—C8—C13—C144.3 (2)
C3—C4—C5—C60.1 (3)C12—C13—C14—O294.14 (18)
C4—C5—C6—C10.7 (3)C8—C13—C14—O282.23 (17)
C4—C5—C6—C7177.36 (18)C12—C13—C14—O327.85 (19)
O1—C1—C6—C5179.50 (15)C8—C13—C14—O3155.78 (15)
C2—C1—C6—C51.1 (2)O2—C15—C16—C1752.4 (3)
O1—C1—C6—C72.5 (3)C15—C16—C17—O351.1 (3)
C2—C1—C6—C7176.88 (16)C6—C7—N1—C8174.91 (15)
C5—C6—C7—N1177.01 (16)C13—C8—N1—C7146.14 (15)
C1—C6—C7—N11.0 (3)C9—C8—N1—C737.0 (2)
C13—C8—C9—C102.6 (3)O3—C14—O2—C1560.3 (2)
N1—C8—C9—C10179.47 (18)C13—C14—O2—C15179.59 (16)
C8—C9—C10—C111.3 (3)C16—C15—O2—C1457.2 (2)
C9—C10—C11—C120.3 (3)O2—C14—O3—C1758.6 (2)
C10—C11—C12—C130.5 (3)C13—C14—O3—C17178.37 (16)
C11—C12—C13—C80.9 (2)C16—C17—O3—C1454.4 (3)
C11—C12—C13—C14177.32 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.851.902.632 (2)144
C7—H7···O2i0.932.483.364 (2)160
C15—H15A···Cg1ii0.972.773.694 (3)160
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.851.902.632 (2)144
C7—H7···O2i0.932.483.364 (2)160
C15—H15A···Cg1ii0.972.773.694 (3)160
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1, y, z.
 

Acknowledgements

We gratefully acknowledge financial support from the NSFC (No. 21002009), the Scientific and Technological Project of Jiangsu Province (BY2014037–01), the Major Program for Natural Science Research of Jiangsu Colleges and Universities (12KJA150002 and 14KJA150002), and the Qing Lan Project of Jiangsu Province.

References

First citationArod, F., Gardon, M., Pattison, P. & Chapuis, G. (2005). Acta Cryst. C61, o317–o320.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatziefthimiou, S.-D., Lazarou, Y.-G., Hadjoudis, E., Dziembowska, T. & Mavridis, I. M. (2006). J. Phys. Chem. B, 110, 23701–23709.  CSD CrossRef PubMed CAS Google Scholar
First citationCismaş, C., Terec, A., Mager, S. & Grosu, I. (2005). Curr. Org. Chem. 9, 1287–1314.  Google Scholar
First citationGupta, K.-C. & Sutar, A.-K. (2008). Coord. Chem. Rev. 252, 1420–1450.  CrossRef CAS Google Scholar
First citationJiménez-Sánchez, A., Farfán, N. & Santillan, R. (2013). Tetrahedron Lett. 54, 5279–5283.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, X., Yu, S.-L., Li, Z.-Y. & Yang, Y. (2010). J. Mol. Struct. 973, 152–156.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds