organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o229-o230

Crystal structure of 2-(4-fluoro-3-methyl­phen­yl)-5-{[(naphthalen-1-yl)­­oxy]meth­yl}-1,3,4-oxa­diazole

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Anna University, Chennai 600 025, India, bOrchid Chemicals & Pharmaceuticals Ltd, R&D Centre, Sholinganallur, Chennai 600 119, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: kathsubramanianannauniv@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 2 February 2015; accepted 27 February 2015; online 11 March 2015)

The title compound, C20H15FN2O2, adopts an almost planar conformation. The oxa­diazole ring makes dihedral angles of 13.90 (1) and 7.93 (1)° with the naphthalene ring system and benzene ring, respectively, while the naphthalene ring system and benzene ring are inclined to one another by 6.35 (1)°. In the crystal, adjacent mol­ecules are linked via C—H⋯N hydrogen bonds, forming chains propagating along [100]. There are also ππ inter­actions present [inter­centroid distances = 3.5754 (9) and 3.7191 (12) Å], linking the chains to form ribbons lying parallel to (011).

1. Related literature

For the biological activities of triazole derivatives, see: Desai et al. (2014[Desai, N. C., Dodiya, A. M., Rajpara, K. M. & Rupala, Y. M. (2014). J. Saudi Chem. Soc. 18, 255-261.]), Khalilullah et al. (2012[Khalilullah, H., Ahsan, M. J., Hedaitullah, M., Khan, S. & Ahmed, B. (2012). Mini Rev. Med. Chem. 12, 789-801.]), Bethge et al. (2005[Bethge, K., Pertz, H. H. & Rehse, K. (2005). Arch. Pharm. Chem. Life Sci. 338, 78-86.]); Saha et al. (2013[Saha, R., Tanwar, O., Marella, A., Alam, M. M. & Akhter, M. (2013). Mini Rev. Med. Chem. 13, 1027-1046.]); Shailaja et al. (2010[Shailaja, M., Anitha, M., Manujla, A. & Vittal, R. B. (2010). Indian J. Chem. Sect. B, 49, 1088-1097.]); Sun et al. (2013[Sun, J., Makawana, J. A. & Zhu, H. L. (2013). Mini Rev. Med. Chem. 13, 1725-1743.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H15FN2O2

  • Mr = 334.34

  • Triclinic, [P \overline 1]

  • a = 7.4236 (4) Å

  • b = 7.5062 (4) Å

  • c = 16.3519 (8) Å

  • α = 77.092 (3)°

  • β = 77.494 (3)°

  • γ = 66.734 (3)°

  • V = 807.51 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

2.2. Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.990

  • 11476 measured reflections

  • 3368 independent reflections

  • 2306 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.134

  • S = 1.05

  • 3368 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯N2i 0.93 2.60 3.447 (2) 152
Symmetry code: (i) x+1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

1,3,4-Oxadiazole derivatives as typical heterocyclic compounds, exhibit a broad spectrum of biological activities and have polymer and material sciences application (Shailaja et al., 2010) and are vital leading compounds for the development of drugs (Sun et al., 2013). The presence of the oxadiazole motif in diverse types of compounds proves its importance in the field of medicinal chemistry (Saha et al., 2013).

1,3,4-oxadiazole including anti-inflammatory, analgesic, anti-HIV, antimycobacterial, cathepsin K inhibitors, tyrosinase inhibitors, monoamine oxidase (MAO) inhibitors (Desai et al., 2014), anticonvulsant, anticancer, antifungal, tuberculostatic (Khalilullah et al., 2012), analgesic, antiplatelet and antithrombotic activities (Bethge et al., 2005). Moreover the amino compounds are very commonly used as antimicrobial and germicidal drug.

The molecular structure of the title compound is shown in Fig. 1. The oxadiazole, naphthalene and flurophenyl rings adopt an almost planer conformation. The oxadiazole ring (C12/N1/N2/C13/O2) makes dihedral angles of 13.90 (1) ° and 7.93 (1) ° with naphthalene (C1-C10) and benzene ring (C14-C19/F1). The naphthalene ring makes a dihedral angle of 6.35 (1) ° with the benzene ring. The fluorine atom F1 and the methyl group C20 atom lie in the plane of the benzene ring to which they are attached [deviations from the benzene ring plane are 0.004 (1) and 0.003 (3) Å, respectively].

In the crystal, adjacent molecules are linked via C-H···N hydrogen bonds forming chains propagating along [100]; see Table 1 and Fig. 2. The chains are linked by π-π interactions, forming ribbons lying parallel to (011) [Cg1··· Cg1i = 3.5754 (9) Å; inter-planar distance = 3.2669 (6) Å, slippage = 1.453 Å; Cg2···Cg4i = 3.7191 (12) Å; Cg1, Cg2 and Cg4 are the centroids of rings O2/N1/N2/C12/C13, C1-C6 and C14-C19, respectively; symmetry code: (i) -x, -y+1, -z+1].

Related literature top

For the biological activities of triazole derivatives, see: Desai et al. (2014), Khalilullah et al. (2012), Bethge et al. (2005); Saha et al. (2013); Shailaja et al. (2010); Sun et al. (2013).

Experimental top

Iodobenzene diacetate (2.0 mol eq) was added to a solution of naphthalen -1-yloxy-acetic acid (4-fluoro-3-methyl-benzylidene)-hydrazide (1.0 mole eq) in dioxane (10mL) at 298 - 303 K, and stirred at the same temperature for 15-30 min. Completion of the reaction was confirmed by TLC (Mobile phase Ethyl acetate/hexane, 3:7) and dioxane was distilled off in a rota-vapor. The obtained residue was dissolved in ethyl acetate and washed with saturated sodium bicarbonate solution, followed by water and brine solution. The organic layer was collected and dried over anhydrous sodium sulphate and distilled under vacuum. The crude product obtained was purified by column chromatography over silica gel (60-120 mesh) using hexane and ethyl acetate as a eluent to afford the title compound as an off-white solid. It was crystallised in methanol by slow evaporation giving colourless block-like crystals.

Refinement top

The H atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93 - 0.97 Å, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Structure description top

1,3,4-Oxadiazole derivatives as typical heterocyclic compounds, exhibit a broad spectrum of biological activities and have polymer and material sciences application (Shailaja et al., 2010) and are vital leading compounds for the development of drugs (Sun et al., 2013). The presence of the oxadiazole motif in diverse types of compounds proves its importance in the field of medicinal chemistry (Saha et al., 2013).

1,3,4-oxadiazole including anti-inflammatory, analgesic, anti-HIV, antimycobacterial, cathepsin K inhibitors, tyrosinase inhibitors, monoamine oxidase (MAO) inhibitors (Desai et al., 2014), anticonvulsant, anticancer, antifungal, tuberculostatic (Khalilullah et al., 2012), analgesic, antiplatelet and antithrombotic activities (Bethge et al., 2005). Moreover the amino compounds are very commonly used as antimicrobial and germicidal drug.

The molecular structure of the title compound is shown in Fig. 1. The oxadiazole, naphthalene and flurophenyl rings adopt an almost planer conformation. The oxadiazole ring (C12/N1/N2/C13/O2) makes dihedral angles of 13.90 (1) ° and 7.93 (1) ° with naphthalene (C1-C10) and benzene ring (C14-C19/F1). The naphthalene ring makes a dihedral angle of 6.35 (1) ° with the benzene ring. The fluorine atom F1 and the methyl group C20 atom lie in the plane of the benzene ring to which they are attached [deviations from the benzene ring plane are 0.004 (1) and 0.003 (3) Å, respectively].

In the crystal, adjacent molecules are linked via C-H···N hydrogen bonds forming chains propagating along [100]; see Table 1 and Fig. 2. The chains are linked by π-π interactions, forming ribbons lying parallel to (011) [Cg1··· Cg1i = 3.5754 (9) Å; inter-planar distance = 3.2669 (6) Å, slippage = 1.453 Å; Cg2···Cg4i = 3.7191 (12) Å; Cg1, Cg2 and Cg4 are the centroids of rings O2/N1/N2/C12/C13, C1-C6 and C14-C19, respectively; symmetry code: (i) -x, -y+1, -z+1].

For the biological activities of triazole derivatives, see: Desai et al. (2014), Khalilullah et al. (2012), Bethge et al. (2005); Saha et al. (2013); Shailaja et al. (2010); Sun et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details). H atoms not involved in hydrogen bonds have been omitted for clarity.
2-(4-Fluoro-3-methylphenyl)-5-{[(naphthalen-1-yl)oxy]methyl}-1,3,4-oxadiazole top
Crystal data top
C20H15FN2O2Z = 2
Mr = 334.34F(000) = 348
Triclinic, P1Dx = 1.375 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4236 (4) ÅCell parameters from 3368 reflections
b = 7.5062 (4) Åθ = 1.3–26.6°
c = 16.3519 (8) ŵ = 0.10 mm1
α = 77.092 (3)°T = 293 K
β = 77.494 (3)°Block, colourless
γ = 66.734 (3)°0.20 × 0.15 × 0.10 mm
V = 807.51 (7) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3368 independent reflections
Radiation source: fine-focus sealed tube2306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and φ scansθmax = 26.6°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.981, Tmax = 0.990k = 99
11476 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.1875P]
where P = (Fo2 + 2Fc2)/3
3368 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C20H15FN2O2γ = 66.734 (3)°
Mr = 334.34V = 807.51 (7) Å3
Triclinic, P1Z = 2
a = 7.4236 (4) ÅMo Kα radiation
b = 7.5062 (4) ŵ = 0.10 mm1
c = 16.3519 (8) ÅT = 293 K
α = 77.092 (3)°0.20 × 0.15 × 0.10 mm
β = 77.494 (3)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3368 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2306 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.990Rint = 0.030
11476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
3368 reflectionsΔρmin = 0.22 e Å3
227 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2815 (2)0.9674 (2)0.27299 (10)0.0380 (4)
C20.0947 (3)1.0312 (3)0.24700 (11)0.0458 (4)
H20.01261.01790.28600.055*
C30.0698 (3)1.1126 (3)0.16502 (12)0.0559 (5)
H30.05491.15600.14860.067*
C40.2302 (3)1.1315 (3)0.10517 (12)0.0585 (5)
H40.21191.18530.04920.070*
C50.4113 (3)1.0721 (3)0.12833 (11)0.0542 (5)
H50.51621.08650.08810.065*
C60.4443 (3)0.9883 (3)0.21265 (11)0.0443 (4)
C70.6314 (3)0.9262 (3)0.23862 (12)0.0550 (5)
H70.73840.93870.19930.066*
C80.6573 (3)0.8484 (3)0.32022 (13)0.0572 (5)
H80.78170.80930.33630.069*
C90.4991 (3)0.8257 (3)0.38106 (11)0.0486 (4)
H90.51840.77380.43710.058*
C100.3179 (2)0.8801 (2)0.35759 (10)0.0400 (4)
C110.1845 (3)0.7566 (3)0.49454 (10)0.0460 (4)
H11A0.20940.83420.52790.055*
H11B0.29680.63380.49210.055*
C120.0001 (3)0.7192 (2)0.53259 (10)0.0427 (4)
C130.1993 (3)0.6253 (2)0.62939 (11)0.0430 (4)
C140.2765 (3)0.5508 (2)0.71406 (11)0.0444 (4)
C150.4706 (3)0.5567 (3)0.72898 (13)0.0577 (5)
H150.54870.60740.68570.069*
C160.5456 (3)0.4863 (3)0.80897 (15)0.0678 (6)
H160.67470.48850.82030.081*
C170.4279 (4)0.4138 (3)0.87090 (13)0.0653 (6)
C180.2365 (4)0.4046 (3)0.85990 (12)0.0590 (5)
C190.1633 (3)0.4763 (3)0.77889 (11)0.0505 (5)
H190.03410.47360.76830.061*
C200.1144 (4)0.3226 (4)0.93077 (13)0.0871 (8)
H20A0.17270.40330.97470.131*
H20B0.01760.32040.90980.131*
H20C0.10960.19150.95330.131*
F10.5067 (3)0.3450 (2)0.94919 (8)0.0999 (6)
N10.1472 (2)0.7432 (2)0.49750 (9)0.0555 (4)
N20.2797 (2)0.6806 (2)0.56191 (9)0.0545 (4)
O10.15466 (17)0.86032 (18)0.41174 (7)0.0494 (3)
O20.01882 (18)0.64483 (17)0.61616 (7)0.0440 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0433 (10)0.0364 (8)0.0348 (8)0.0165 (7)0.0051 (7)0.0032 (6)
C20.0467 (11)0.0496 (10)0.0438 (10)0.0229 (9)0.0085 (8)0.0004 (8)
C30.0602 (13)0.0593 (12)0.0522 (11)0.0256 (10)0.0218 (9)0.0038 (9)
C40.0791 (15)0.0614 (12)0.0368 (10)0.0317 (11)0.0148 (9)0.0066 (8)
C50.0635 (13)0.0584 (12)0.0397 (10)0.0297 (10)0.0001 (9)0.0012 (8)
C60.0482 (11)0.0431 (9)0.0416 (9)0.0203 (8)0.0020 (8)0.0040 (7)
C70.0457 (11)0.0655 (12)0.0529 (11)0.0267 (10)0.0010 (8)0.0028 (9)
C80.0449 (11)0.0699 (13)0.0590 (12)0.0262 (10)0.0115 (9)0.0007 (10)
C90.0493 (11)0.0568 (11)0.0413 (9)0.0225 (9)0.0141 (8)0.0024 (8)
C100.0416 (10)0.0428 (9)0.0353 (8)0.0175 (8)0.0043 (7)0.0026 (7)
C110.0509 (11)0.0511 (10)0.0330 (9)0.0198 (9)0.0069 (7)0.0028 (7)
C120.0540 (11)0.0421 (9)0.0311 (8)0.0189 (8)0.0070 (7)0.0003 (7)
C130.0476 (11)0.0390 (9)0.0421 (10)0.0176 (8)0.0045 (8)0.0043 (7)
C140.0532 (11)0.0383 (9)0.0402 (9)0.0188 (8)0.0002 (8)0.0055 (7)
C150.0552 (12)0.0541 (11)0.0633 (13)0.0235 (10)0.0006 (9)0.0088 (9)
C160.0651 (14)0.0620 (13)0.0748 (15)0.0338 (12)0.0202 (12)0.0167 (11)
C170.0882 (17)0.0523 (12)0.0489 (12)0.0346 (12)0.0231 (11)0.0099 (9)
C180.0824 (16)0.0473 (11)0.0391 (10)0.0205 (11)0.0018 (9)0.0066 (8)
C190.0581 (12)0.0486 (10)0.0405 (10)0.0197 (9)0.0009 (8)0.0057 (8)
C200.123 (2)0.0851 (17)0.0403 (12)0.0314 (16)0.0105 (13)0.0024 (11)
F10.1377 (14)0.0909 (10)0.0602 (8)0.0597 (10)0.0404 (8)0.0094 (7)
N10.0603 (11)0.0690 (11)0.0386 (8)0.0302 (9)0.0109 (7)0.0055 (7)
N20.0563 (10)0.0671 (10)0.0434 (9)0.0298 (9)0.0114 (7)0.0031 (7)
O10.0425 (7)0.0639 (8)0.0348 (6)0.0199 (6)0.0047 (5)0.0066 (5)
O20.0510 (8)0.0498 (7)0.0314 (6)0.0222 (6)0.0061 (5)0.0010 (5)
Geometric parameters (Å, º) top
C1—C21.405 (2)C11—H11B0.9700
C1—C61.422 (2)C12—N11.276 (2)
C1—C101.426 (2)C12—O21.3552 (19)
C2—C31.363 (2)C13—N21.277 (2)
C2—H20.9300C13—O21.371 (2)
C3—C41.401 (3)C13—C141.456 (2)
C3—H30.9300C14—C191.376 (3)
C4—C51.349 (3)C14—C151.393 (3)
C4—H40.9300C15—C161.381 (3)
C5—C61.412 (2)C15—H150.9300
C5—H50.9300C16—C171.359 (3)
C6—C71.408 (3)C16—H160.9300
C7—C81.354 (3)C17—F11.367 (2)
C7—H70.9300C17—C181.368 (3)
C8—C91.405 (3)C18—C191.393 (3)
C8—H80.9300C18—C201.497 (3)
C9—C101.357 (2)C19—H190.9300
C9—H90.9300C20—H20A0.9600
C10—O11.376 (2)C20—H20B0.9600
C11—O11.418 (2)C20—H20C0.9600
C11—C121.482 (2)N1—N21.412 (2)
C11—H11A0.9700
C2—C1—C6119.18 (15)H11A—C11—H11B108.7
C2—C1—C10123.22 (15)N1—C12—O2113.17 (16)
C6—C1—C10117.60 (16)N1—C12—C11129.27 (15)
C3—C2—C1120.36 (17)O2—C12—C11117.55 (15)
C3—C2—H2119.8N2—C13—O2112.28 (15)
C1—C2—H2119.8N2—C13—C14128.39 (17)
C2—C3—C4120.63 (19)O2—C13—C14119.32 (15)
C2—C3—H3119.7C19—C14—C15119.73 (17)
C4—C3—H3119.7C19—C14—C13121.76 (17)
C5—C4—C3120.33 (17)C15—C14—C13118.51 (18)
C5—C4—H4119.8C16—C15—C14119.1 (2)
C3—C4—H4119.8C16—C15—H15120.4
C4—C5—C6121.17 (17)C14—C15—H15120.4
C4—C5—H5119.4C17—C16—C15119.0 (2)
C6—C5—H5119.4C17—C16—H16120.5
C7—C6—C5122.32 (17)C15—C16—H16120.5
C7—C6—C1119.36 (16)C16—C17—F1117.4 (2)
C5—C6—C1118.31 (17)C16—C17—C18124.44 (19)
C8—C7—C6120.77 (17)F1—C17—C18118.2 (2)
C8—C7—H7119.6C17—C18—C19115.8 (2)
C6—C7—H7119.6C17—C18—C20121.8 (2)
C7—C8—C9121.02 (18)C19—C18—C20122.3 (2)
C7—C8—H8119.5C14—C19—C18121.9 (2)
C9—C8—H8119.5C14—C19—H19119.0
C10—C9—C8119.62 (17)C18—C19—H19119.0
C10—C9—H9120.2C18—C20—H20A109.5
C8—C9—H9120.2C18—C20—H20B109.5
C9—C10—O1124.18 (15)H20A—C20—H20B109.5
C9—C10—C1121.59 (16)C18—C20—H20C109.5
O1—C10—C1114.23 (14)H20A—C20—H20C109.5
O1—C11—C12106.29 (14)H20B—C20—H20C109.5
O1—C11—H11A110.5C12—N1—N2105.94 (14)
C12—C11—H11A110.5C13—N2—N1106.37 (15)
O1—C11—H11B110.5C10—O1—C11117.26 (13)
C12—C11—H11B110.5C12—O2—C13102.25 (13)
C6—C1—C2—C30.1 (2)O2—C13—C14—C15171.45 (15)
C10—C1—C2—C3179.64 (16)C19—C14—C15—C160.3 (3)
C1—C2—C3—C40.8 (3)C13—C14—C15—C16179.90 (16)
C2—C3—C4—C51.1 (3)C14—C15—C16—C170.2 (3)
C3—C4—C5—C60.6 (3)C15—C16—C17—F1179.84 (17)
C4—C5—C6—C7179.61 (19)C15—C16—C17—C180.1 (3)
C4—C5—C6—C10.2 (3)C16—C17—C18—C190.2 (3)
C2—C1—C6—C7179.40 (16)F1—C17—C18—C19179.88 (16)
C10—C1—C6—C71.1 (2)C16—C17—C18—C20179.9 (2)
C2—C1—C6—C50.4 (2)F1—C17—C18—C200.2 (3)
C10—C1—C6—C5179.18 (15)C15—C14—C19—C180.3 (3)
C5—C6—C7—C8179.28 (18)C13—C14—C19—C18179.86 (16)
C1—C6—C7—C80.5 (3)C17—C18—C19—C140.3 (3)
C6—C7—C8—C90.6 (3)C20—C18—C19—C14179.80 (18)
C7—C8—C9—C100.9 (3)O2—C12—N1—N20.0 (2)
C8—C9—C10—O1178.61 (16)C11—C12—N1—N2178.53 (17)
C8—C9—C10—C12.5 (3)O2—C13—N2—N10.2 (2)
C2—C1—C10—C9177.89 (17)C14—C13—N2—N1178.90 (16)
C6—C1—C10—C92.6 (2)C12—N1—N2—C130.1 (2)
C2—C1—C10—O11.1 (2)C9—C10—O1—C117.4 (2)
C6—C1—C10—O1178.44 (14)C1—C10—O1—C11173.68 (14)
O1—C11—C12—N110.3 (3)C12—C11—O1—C10168.05 (14)
O1—C11—C12—O2171.25 (13)N1—C12—O2—C130.12 (19)
N2—C13—C14—C19172.65 (18)C11—C12—O2—C13178.81 (14)
O2—C13—C14—C198.3 (2)N2—C13—O2—C120.17 (18)
N2—C13—C14—C157.5 (3)C14—C13—O2—C12178.98 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N2i0.932.603.447 (2)152
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···N2i0.932.603.447 (2)152
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

MG is thankful to the management of Orchid Chemicals & Pharmaceuticals Ltd for their support. The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection.

References

First citationBethge, K., Pertz, H. H. & Rehse, K. (2005). Arch. Pharm. Chem. Life Sci. 338, 78–86.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesai, N. C., Dodiya, A. M., Rajpara, K. M. & Rupala, Y. M. (2014). J. Saudi Chem. Soc. 18, 255–261.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhalilullah, H., Ahsan, M. J., Hedaitullah, M., Khan, S. & Ahmed, B. (2012). Mini Rev. Med. Chem. 12, 789–801.  CrossRef CAS PubMed Google Scholar
First citationSaha, R., Tanwar, O., Marella, A., Alam, M. M. & Akhter, M. (2013). Mini Rev. Med. Chem. 13, 1027–1046.  CrossRef CAS PubMed Google Scholar
First citationShailaja, M., Anitha, M., Manujla, A. & Vittal, R. B. (2010). Indian J. Chem. Sect. B, 49, 1088–1097.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, J., Makawana, J. A. & Zhu, H. L. (2013). Mini Rev. Med. Chem. 13, 1725–1743.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 4| April 2015| Pages o229-o230
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds