organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl 2-{[(6S*,7R*,8S*)-7-acetyl-8-(4-chloro­phen­yl)-4-cyano-6-hy­dr­oxy-1,6-di­methyl-5,6,7,8-tetra­hydro­isoquinolin-3-yl]sulfan­yl}acetate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry Department, Faculty of Science, Sana'a University, Sana'a, Yemen, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and fChemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
*Correspondence e-mail: s.mohamed@mmu.ac.uk

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 23 May 2017; accepted 11 June 2017; online 20 June 2017)

In the title compound, C23H23ClN2O4S, the 4-chloro­phenyl ring is inclined to the pyridine ring of the iso­quinoline group by 71.86 (13)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers, which stack along the b-axis direction. The methyl acetate group attached to the S atom is disordered over two sites in a 50:50 ratio, which appears to prevent close inter­molecular contacts between the methyl groups.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Many analogues of tetra­hydro­iso­quinolines have been found to possess anti-tumor activity (Lane et al., 2006[Lane, J. W., Estevez, A., Mortara, K., Callan, O., Spencer, J. R. & Williams, R. M. (2006). Bioorg. Med. Chem. Lett. 16, 3180-3183.]; Aubry et al., 2007[Aubry, S., Pellet-Rostaing, S., Fournier Dit Chabert, J., Ducki, S. & Lemaire, M. (2007). Bioorg. Med. Chem. Lett. 17, 2598-2602.]). They also have the potential to treat Alzheimer's disease (Hu et al., 2008[Hu, M. K., Liao, Y. F., Chen, J. F., Wang, B. J., Tung, Y. T., Lin, H. C. & Lee, K. P. (2008). Bioorg. Med. Chem. 16, 1957-1965.]) and are widely studied cytotoxic agents. Berberrubine, a protoberberine alkaloid, exhibits anti-tumor activity in animal models (Kim et al., 1998[Kim, S. A., Kwon, Y., Kim, J. H., Muller, M. T. & Chung, I. K. (1998). Biochemistry, 37, 16316-16324.]). It has also been reported that noscapine, a plant alkaloid, binds to tubulin and induces apoptosis selectively in tumor cells to display anti-cancer activity in ovarian and T-cell lymphoma cancers (Aneja et al., 2006[Aneja, R., Vangapandu, S. N., Lopus, M., Chandra, R., Panda, D. & Joshi, H. C. (2006). Mol. Pharmacol. 69, 1801-1809.]). These examples demonstrate the utility of the tetra­hydro­iso­quinoline core and why these types of compounds are of great inter­est. In this context, we report herein on the synthesis and crystal structure of the title compound.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The cyclo­hexene ring (C1–C6) of the tetra­hydro­iso­quinoline moiety, has a slightly distorted half-chair conformation [puckering parameters Q = 0.524 (3) Å, θ = 127.1 (3)° and φ = 319.0 (4)°]. The dihedral angle between the plane of the chloro-substituted phenyl ring (C13–C18) and the pyridine ring (N1/C1/C6–C9) of the tetra­hydro­iso­quinoline moiety is 71.86 (13)°. The methyl acetate group attached to atom S1 is disordered over two sites in a 50:50 ratio, which appears to prevent close inter­molecular contacts between the methyl groups.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling and 50% probability ellipsoids. Only the major portion of the disorder is shown.

In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonds, forming inversion dimers, which stack along the b-axis direction (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.92 (4) 2.00 (4) 2.918 (3) 174 (3)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound, with the inter­molecular O—H⋯O hydrogen bonds shown as dotted lines (see Table 1[link]).

Synthesis and crystallization

A mixture of 7-acetyl-8-(4-chloro­phen­yl)-1,6-dimethyl-6-hy­droxy-3-thioxo-2,3,5,6,7,8-hexa­hydro­iso­quinoline-4-carbo­nitrile (3.87 g, 10 mmol), methyl chloro­acetate (1.09 g, 10 mmol) and sodium acetate trihydrate (1.66 g,12 mmol) in ethanol (30 ml) was heated under reflux for one h. The precipitate that formed after cooling was collected and recrystallized from ethanol to give the title compound in the form of colourless needles (yield 83%, m.p. 422 K). IR: 3455 (OH), 2225(CN), 1740 (CO, ester), 1690 (CO, ketone) cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The methyl acetate group attached to S1 is disordered over two sets of sites with equal occupancy although it appears that the methyl carbon atoms may be more highly disordered. Attempts to model additional disorder were unsuccessful so the two-component model was retained.

Table 2
Experimental details

Crystal data
Chemical formula C23H23ClN2O4S
Mr 458.94
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 27.4679 (6), 9.5818 (2), 20.2584 (5)
β (°) 117.398 (1)
V3) 4733.78 (19)
Z 8
Radiation type Cu Kα
μ (mm−1) 2.51
Crystal size (mm) 0.33 × 0.16 × 0.09
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.65, 0.80
No. of measured, independent and observed [I > 2σ(I)] reflections 38901, 4440, 4119
Rint 0.035
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.166, 1.03
No. of reflections 4440
No. of parameters 308
No. of restraints 21
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.36, −0.63
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL Sheldrick, 2008).

Methyl 2-{[(6S*,7R*,8S*)-7-acetyl-8-(4-chlorophenyl)-4-cyano-6-hydroxy-1,6-dimethyl-5,6,7,8-tetrahydroisoquinolin-3-yl]sulfanyl}acetate top
Crystal data top
C23H23ClN2O4SF(000) = 1920
Mr = 458.94Dx = 1.288 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 27.4679 (6) ÅCell parameters from 9777 reflections
b = 9.5818 (2) Åθ = 3.3–69.9°
c = 20.2584 (5) ŵ = 2.51 mm1
β = 117.398 (1)°T = 150 K
V = 4733.78 (19) Å3Needles, colourless
Z = 80.33 × 0.16 × 0.09 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4440 independent reflections
Radiation source: INCOATEC IµS micro-focus source4119 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.4167 pixels mm-1θmax = 70.0°, θmin = 4.6°
ω scansh = 3231
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1111
Tmin = 0.65, Tmax = 0.80l = 2424
38901 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0975P)2 + 12.6727P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.166(Δ/σ)max = 0.001
S = 1.03Δρmax = 1.36 e Å3
4440 reflectionsΔρmin = 0.63 e Å3
308 parametersExtinction correction: (SHELXL2014; Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
21 restraintsExtinction coefficient: 0.00050 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.78857 (3)0.87497 (8)0.93943 (3)0.0365 (2)
S10.42650 (2)0.67486 (7)0.50425 (4)0.0337 (2)
O10.76188 (7)0.7626 (2)0.57782 (10)0.0337 (4)
O20.64464 (7)0.74788 (19)0.45364 (9)0.0286 (4)
H2O0.6734 (14)0.738 (4)0.4426 (19)0.043*
N10.53338 (9)0.6216 (2)0.58959 (12)0.0293 (5)
N20.43952 (11)0.9130 (3)0.37729 (15)0.0510 (7)
C10.56952 (10)0.8101 (3)0.51663 (13)0.0262 (5)
C20.58663 (10)0.9072 (3)0.47298 (14)0.0284 (5)
H2A0.58371.00450.48720.034*
H2B0.56100.89640.41940.034*
C30.64480 (10)0.8820 (3)0.48486 (13)0.0255 (5)
C40.68291 (10)0.8814 (3)0.56997 (13)0.0247 (5)
H40.6772 (12)0.972 (3)0.5899 (16)0.030*
C50.66910 (9)0.7603 (3)0.60879 (13)0.0240 (5)
H50.6839 (12)0.679 (3)0.5982 (16)0.029*
C60.60761 (9)0.7383 (3)0.57919 (13)0.0248 (5)
C70.58742 (10)0.6400 (3)0.61211 (13)0.0270 (5)
C80.49729 (10)0.6960 (3)0.53286 (14)0.0283 (5)
C90.51353 (10)0.7880 (3)0.49294 (13)0.0283 (5)
C100.66028 (11)0.9948 (3)0.44489 (15)0.0342 (6)
H10A0.66151.08560.46790.051*
H10B0.63290.99750.39240.051*
H10C0.69640.97390.44870.051*
C110.74318 (10)0.8721 (3)0.58661 (13)0.0269 (5)
C120.77729 (12)1.0014 (3)0.61275 (17)0.0421 (7)
H12A0.75921.07750.57760.063*
H12B0.81340.98400.61590.063*
H12C0.78161.02740.66190.063*
C130.69897 (9)0.7885 (2)0.69231 (13)0.0232 (5)
C140.75137 (10)0.7349 (3)0.73590 (13)0.0256 (5)
H140.76800.67840.71340.031*
C150.77968 (10)0.7624 (3)0.81162 (14)0.0272 (5)
H150.81550.72590.84080.033*
C160.75476 (10)0.8441 (3)0.84376 (13)0.0257 (5)
C170.70294 (10)0.8996 (3)0.80178 (14)0.0279 (5)
H170.68640.95580.82460.033*
C180.67548 (10)0.8723 (3)0.72617 (14)0.0268 (5)
H180.64010.91120.69700.032*
C190.47278 (11)0.8577 (3)0.42859 (15)0.0336 (6)
C200.62335 (10)0.5444 (3)0.67411 (15)0.0329 (6)
H20A0.65750.52700.67120.049*
H20B0.60420.45590.66970.049*
H20C0.63180.58800.72200.049*
C21A0.4275 (2)0.5666 (5)0.5770 (3)0.0353 (10)0.5
H21A0.39590.50190.55570.042*0.5
H21B0.46140.50960.59780.042*0.5
C22A0.4252 (2)0.6476 (7)0.6387 (4)0.0440 (10)0.5
O3A0.3854 (3)0.6537 (9)0.6501 (4)0.0937 (17)0.5
O4A0.46776 (19)0.7276 (5)0.6735 (3)0.0579 (9)0.5
C23A0.4722 (4)0.8397 (11)0.7324 (4)0.092 (2)0.5
H23A0.50750.88280.74920.138*0.5
H23B0.44400.90760.70720.138*0.5
H23C0.46890.80360.77440.138*0.5
C21B0.4273 (2)0.5115 (5)0.5455 (3)0.0353 (10)0.5
H21C0.39210.46380.51440.042*0.5
H21D0.45680.45400.54410.042*0.5
C22B0.4357 (2)0.5140 (6)0.6237 (3)0.0440 (10)0.5
O3B0.4116 (3)0.5907 (9)0.6469 (4)0.0937 (17)0.5
O4B0.46763 (19)0.4116 (5)0.6610 (2)0.0579 (9)0.5
C23B0.4711 (4)0.3458 (12)0.7333 (4)0.092 (2)0.5
H23D0.50000.26960.75000.138*
H23E0.48700.41730.77040.138*0.5
H23F0.43780.31300.73250.138*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0251 (3)0.0529 (4)0.0243 (3)0.0036 (3)0.0053 (3)0.0047 (3)
S10.0179 (3)0.0439 (4)0.0366 (4)0.0015 (2)0.0102 (3)0.0027 (3)
O10.0256 (9)0.0424 (11)0.0390 (10)0.0002 (8)0.0199 (8)0.0068 (8)
O20.0245 (9)0.0355 (10)0.0291 (9)0.0028 (7)0.0152 (8)0.0067 (7)
N10.0214 (10)0.0389 (12)0.0276 (11)0.0021 (9)0.0115 (9)0.0007 (9)
N20.0360 (14)0.0655 (18)0.0425 (14)0.0171 (13)0.0103 (12)0.0142 (13)
C10.0220 (12)0.0352 (13)0.0227 (11)0.0026 (10)0.0114 (10)0.0004 (10)
C20.0240 (12)0.0364 (13)0.0259 (12)0.0058 (10)0.0124 (10)0.0057 (10)
C30.0229 (12)0.0315 (13)0.0246 (12)0.0004 (9)0.0130 (10)0.0004 (9)
C40.0230 (12)0.0301 (13)0.0252 (12)0.0011 (9)0.0147 (10)0.0016 (9)
C50.0189 (11)0.0302 (12)0.0239 (12)0.0027 (9)0.0106 (10)0.0002 (9)
C60.0202 (12)0.0336 (13)0.0216 (11)0.0017 (9)0.0105 (9)0.0006 (9)
C70.0209 (12)0.0350 (13)0.0241 (12)0.0007 (10)0.0095 (10)0.0000 (10)
C80.0203 (12)0.0374 (14)0.0272 (12)0.0003 (10)0.0111 (10)0.0025 (10)
C90.0206 (12)0.0398 (14)0.0236 (12)0.0046 (10)0.0093 (10)0.0008 (10)
C100.0330 (14)0.0432 (15)0.0293 (13)0.0016 (11)0.0169 (11)0.0046 (11)
C110.0231 (12)0.0371 (14)0.0228 (11)0.0024 (10)0.0126 (10)0.0034 (10)
C120.0289 (14)0.0488 (17)0.0467 (16)0.0111 (12)0.0157 (13)0.0122 (13)
C130.0184 (11)0.0273 (11)0.0239 (11)0.0002 (9)0.0096 (9)0.0022 (9)
C140.0206 (11)0.0302 (12)0.0283 (13)0.0040 (9)0.0132 (10)0.0012 (10)
C150.0170 (11)0.0320 (12)0.0298 (12)0.0033 (9)0.0085 (10)0.0044 (10)
C160.0209 (12)0.0302 (12)0.0237 (12)0.0025 (9)0.0085 (9)0.0006 (9)
C170.0245 (12)0.0343 (13)0.0275 (12)0.0043 (10)0.0144 (10)0.0005 (10)
C180.0182 (11)0.0359 (13)0.0261 (12)0.0062 (10)0.0101 (10)0.0034 (10)
C190.0233 (13)0.0449 (15)0.0328 (14)0.0064 (11)0.0130 (11)0.0036 (12)
C200.0259 (13)0.0378 (14)0.0318 (13)0.0012 (11)0.0105 (11)0.0073 (11)
C21A0.0260 (17)0.030 (3)0.043 (3)0.0075 (18)0.010 (2)0.0018 (17)
C22A0.034 (2)0.057 (3)0.046 (2)0.015 (2)0.0227 (19)0.012 (2)
O3A0.085 (4)0.113 (5)0.112 (4)0.025 (3)0.070 (3)0.044 (3)
O4A0.0497 (19)0.073 (2)0.0431 (17)0.0192 (18)0.0142 (15)0.0105 (17)
C23A0.074 (3)0.166 (6)0.028 (2)0.021 (4)0.017 (2)0.008 (3)
C21B0.0260 (17)0.030 (3)0.043 (3)0.0075 (18)0.010 (2)0.0018 (17)
C22B0.034 (2)0.057 (3)0.046 (2)0.015 (2)0.0227 (19)0.012 (2)
O3B0.085 (4)0.113 (5)0.112 (4)0.025 (3)0.070 (3)0.044 (3)
O4B0.0497 (19)0.073 (2)0.0431 (17)0.0192 (18)0.0142 (15)0.0105 (17)
C23B0.074 (3)0.166 (6)0.028 (2)0.021 (4)0.017 (2)0.008 (3)
Geometric parameters (Å, º) top
Cl1—C161.747 (2)C12—H12B0.9800
S1—C81.767 (3)C12—H12C0.9800
S1—C21B1.770 (4)C13—C181.392 (3)
S1—C21A1.792 (4)C13—C141.395 (3)
O1—C111.217 (3)C14—C151.389 (4)
O2—C31.431 (3)C14—H140.9500
O2—H2O0.92 (4)C15—C161.384 (4)
N1—C81.328 (3)C15—H150.9500
N1—C71.349 (3)C16—C171.385 (3)
N2—C191.150 (4)C17—C181.386 (3)
C1—C61.398 (3)C17—H170.9500
C1—C91.400 (3)C18—H180.9500
C1—C21.500 (3)C20—H20A0.9800
C2—C31.521 (3)C20—H20B0.9800
C2—H2A0.9900C20—H20C0.9800
C2—H2B0.9900C21A—C22A1.496 (7)
C3—C101.524 (3)C21A—H21A0.9900
C3—C41.552 (3)C21A—H21B0.9900
C4—C111.533 (3)C22A—O3A1.219 (8)
C4—C51.544 (3)C22A—O4A1.300 (6)
C4—H41.00 (3)O4A—C23A1.569 (8)
C5—C61.525 (3)C23A—H23A0.9600
C5—C131.527 (3)C23A—H23B0.9600
C5—H50.95 (3)C23A—H23C0.9600
C6—C71.407 (3)C21B—C22B1.493 (7)
C7—C201.500 (3)C21B—H21C0.9900
C8—C91.401 (4)C21B—H21D0.9900
C9—C191.433 (4)C22B—O3B1.218 (8)
C10—H10A0.9800C22B—O4B1.301 (6)
C10—H10B0.9800O4B—C23B1.557 (7)
C10—H10C0.9800C23B—H23D1.0152
C11—C121.496 (4)C23B—H23E0.9600
C12—H12A0.9800C23B—H23F0.9601
C8—S1—C21B100.0 (2)C18—C13—C14118.5 (2)
C8—S1—C21A101.43 (19)C18—C13—C5120.9 (2)
C3—O2—H2O112 (2)C14—C13—C5120.5 (2)
C8—N1—C7119.3 (2)C15—C14—C13121.3 (2)
C6—C1—C9118.8 (2)C15—C14—H14119.4
C6—C1—C2122.2 (2)C13—C14—H14119.4
C9—C1—C2119.0 (2)C16—C15—C14118.7 (2)
C1—C2—C3113.5 (2)C16—C15—H15120.7
C1—C2—H2A108.9C14—C15—H15120.7
C3—C2—H2A108.9C15—C16—C17121.3 (2)
C1—C2—H2B108.9C15—C16—Cl1119.50 (19)
C3—C2—H2B108.9C17—C16—Cl1119.19 (19)
H2A—C2—H2B107.7C16—C17—C18119.3 (2)
O2—C3—C2106.4 (2)C16—C17—H17120.4
O2—C3—C10110.3 (2)C18—C17—H17120.4
C2—C3—C10109.4 (2)C17—C18—C13120.9 (2)
O2—C3—C4110.56 (19)C17—C18—H18119.6
C2—C3—C4107.39 (19)C13—C18—H18119.6
C10—C3—C4112.5 (2)N2—C19—C9179.0 (3)
C11—C4—C5109.7 (2)C7—C20—H20A109.5
C11—C4—C3110.66 (18)C7—C20—H20B109.5
C5—C4—C3111.7 (2)H20A—C20—H20B109.5
C11—C4—H4108.4 (17)C7—C20—H20C109.5
C5—C4—H4109.1 (17)H20A—C20—H20C109.5
C3—C4—H4107.1 (16)H20B—C20—H20C109.5
C6—C5—C13113.17 (19)C22A—C21A—S1113.3 (4)
C6—C5—C4113.0 (2)C22A—C21A—H21A108.9
C13—C5—C4107.37 (19)S1—C21A—H21A108.9
C6—C5—H5108.1 (18)C22A—C21A—H21B108.9
C13—C5—H5109.2 (18)S1—C21A—H21B108.9
C4—C5—H5105.6 (18)H21A—C21A—H21B107.7
C1—C6—C7117.7 (2)O3A—C22A—O4A122.0 (5)
C1—C6—C5121.3 (2)O3A—C22A—C21A124.7 (5)
C7—C6—C5120.9 (2)O4A—C22A—C21A112.7 (4)
N1—C7—C6122.6 (2)C22A—O4A—C23A123.6 (5)
N1—C7—C20113.7 (2)O4A—C23A—H23A106.1
C6—C7—C20123.7 (2)O4A—C23A—H23B107.3
N1—C8—C9121.9 (2)H23A—C23A—H23B109.5
N1—C8—S1119.52 (19)O4A—C23A—H23C114.9
C9—C8—S1118.54 (19)H23A—C23A—H23C109.5
C1—C9—C8119.2 (2)H23B—C23A—H23C109.5
C1—C9—C19121.1 (2)C22B—C21B—S1116.7 (4)
C8—C9—C19119.7 (2)C22B—C21B—H21C108.1
C3—C10—H10A109.5S1—C21B—H21C108.1
C3—C10—H10B109.5C22B—C21B—H21D108.1
H10A—C10—H10B109.5S1—C21B—H21D108.1
C3—C10—H10C109.5H21C—C21B—H21D107.3
H10A—C10—H10C109.5O3B—C22B—O4B124.9 (6)
H10B—C10—H10C109.5O3B—C22B—C21B125.0 (6)
O1—C11—C12121.9 (2)O4B—C22B—C21B109.8 (4)
O1—C11—C4120.3 (2)C22B—O4B—C23B125.8 (5)
C12—C11—C4117.8 (2)O4B—C23B—H23D107.7
C11—C12—H12A109.5O4B—C23B—H23E104.8
C11—C12—H12B109.5H23D—C23B—H23E104.4
H12A—C12—H12B109.5O4B—C23B—H23F118.1
C11—C12—H12C109.5H23D—C23B—H23F111.4
H12A—C12—H12C109.5H23E—C23B—H23F109.5
H12B—C12—H12C109.5
C6—C1—C2—C320.3 (3)C2—C1—C9—C8179.1 (2)
C9—C1—C2—C3158.2 (2)C6—C1—C9—C19179.2 (2)
C1—C2—C3—O266.7 (3)C2—C1—C9—C190.7 (4)
C1—C2—C3—C10174.1 (2)N1—C8—C9—C14.7 (4)
C1—C2—C3—C451.7 (3)S1—C8—C9—C1177.55 (19)
O2—C3—C4—C1170.3 (2)N1—C8—C9—C19175.1 (2)
C2—C3—C4—C11174.0 (2)S1—C8—C9—C192.6 (3)
C10—C3—C4—C1153.5 (3)C5—C4—C11—O149.8 (3)
O2—C3—C4—C552.3 (2)C3—C4—C11—O174.0 (3)
C2—C3—C4—C563.4 (3)C5—C4—C11—C12130.9 (2)
C10—C3—C4—C5176.1 (2)C3—C4—C11—C12105.3 (3)
C11—C4—C5—C6164.64 (19)C6—C5—C13—C1839.4 (3)
C3—C4—C5—C641.5 (3)C4—C5—C13—C1886.0 (3)
C11—C4—C5—C1369.9 (2)C6—C5—C13—C14142.9 (2)
C3—C4—C5—C13167.01 (19)C4—C5—C13—C1491.7 (3)
C9—C1—C6—C74.3 (4)C18—C13—C14—C150.7 (4)
C2—C1—C6—C7174.2 (2)C5—C13—C14—C15178.4 (2)
C9—C1—C6—C5178.6 (2)C13—C14—C15—C160.4 (4)
C2—C1—C6—C53.0 (4)C14—C15—C16—C170.9 (4)
C13—C5—C6—C1130.4 (2)C14—C15—C16—Cl1177.75 (19)
C4—C5—C6—C18.1 (3)C15—C16—C17—C180.3 (4)
C13—C5—C6—C752.5 (3)Cl1—C16—C17—C18178.4 (2)
C4—C5—C6—C7174.8 (2)C16—C17—C18—C130.9 (4)
C8—N1—C7—C61.8 (4)C14—C13—C18—C171.3 (4)
C8—N1—C7—C20177.2 (2)C5—C13—C18—C17179.0 (2)
C1—C6—C7—N15.7 (4)C8—S1—C21A—C22A93.2 (4)
C5—C6—C7—N1177.1 (2)S1—C21A—C22A—O3A107.5 (9)
C1—C6—C7—C20173.2 (2)S1—C21A—C22A—O4A63.5 (7)
C5—C6—C7—C204.0 (4)O3A—C22A—O4A—C23A0.5 (12)
C7—N1—C8—C93.5 (4)C21A—C22A—O4A—C23A170.8 (6)
C7—N1—C8—S1178.79 (19)C8—S1—C21B—C22B87.6 (4)
C21B—S1—C8—N118.7 (3)S1—C21B—C22B—O3B46.9 (8)
C21A—S1—C8—N18.5 (3)S1—C21B—C22B—O4B140.4 (4)
C21B—S1—C8—C9159.1 (3)O3B—C22B—O4B—C23B14.8 (11)
C21A—S1—C8—C9173.6 (3)C21B—C22B—O4B—C23B157.9 (6)
C6—C1—C9—C80.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.92 (4)2.00 (4)2.918 (3)174 (3)
Symmetry code: (i) x+3/2, y+3/2, z+1.
 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAneja, R., Vangapandu, S. N., Lopus, M., Chandra, R., Panda, D. & Joshi, H. C. (2006). Mol. Pharmacol. 69, 1801–1809.  CrossRef PubMed CAS Google Scholar
First citationAubry, S., Pellet-Rostaing, S., Fournier Dit Chabert, J., Ducki, S. & Lemaire, M. (2007). Bioorg. Med. Chem. Lett. 17, 2598–2602.  CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, M. K., Liao, Y. F., Chen, J. F., Wang, B. J., Tung, Y. T., Lin, H. C. & Lee, K. P. (2008). Bioorg. Med. Chem. 16, 1957–1965.  CSD CrossRef PubMed CAS Google Scholar
First citationKim, S. A., Kwon, Y., Kim, J. H., Muller, M. T. & Chung, I. K. (1998). Biochemistry, 37, 16316–16324.  CrossRef CAS PubMed Google Scholar
First citationLane, J. W., Estevez, A., Mortara, K., Callan, O., Spencer, J. R. & Williams, R. M. (2006). Bioorg. Med. Chem. Lett. 16, 3180–3183.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds