organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Iodo-N-(o-tolyl­sulfon­yl)benzamide

CROSSMARK_Color_square_no_text.svg

aInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru-6, India, bDept. of Chemistry, University College of Science, Tumkur University, Tumkur 572 103, India, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru-6, India, and dDepartment of Physics, Science College, An-Najah National University, PO Box 7, Nablus, Palestinian Territories
*Correspondence e-mail: pasuchetan@yahoo.co.in, muneer@najah.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 December 2016; accepted 21 December 2016; online 6 January 2017)

The title compound, C14H12INO3S, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The dihedral angle between the two aryl rings is 83.1 (4)° in mol­ecule A and 79.8 (4)° in mol­ecule B. In the crystal, the two mol­ecules are linked by a pair of N—H⋯O hydrogen bonds, forming an AB dimer with an R22(8) ring motif. The dimer is further strengthened by a pair of C—H⋯O hydrogen bonds with an R22(14) motif. Another pair of C—H⋯O inter­actions assembles these dimers along the diagonal of the bc plane, forming ribbons. Adjacent ribbons are connected by C—H⋯πar­yl inter­actions between the A mol­ecules, and thus the overall supra­molecular architecture is one-dimensional.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Sulfonamide and amide moieties play a significant role as key constituents in a number of biologically active mol­ecules (Mohan et al., 2013[Mohan, N. R., Sreenivasa, S., Manojkumar, K. E. & Chakrapani Rao, T. M. (2013). J. Appl. Chem, 2, 722-729.]; Manojkumar et al., 2013[Manojkumar, K. E., Sreenivasa, S., Mohan, N. R., Madhu Chakrapani Rao, T. & Harikrishna, T. (2013). J. Appl. Chem, 2, 730-737.]; Hamad & Abed, 2014[Hamad, A. S. & Abed, F. S. (2014). J. Appl. Chem, 3, 56-63.]). In recent years, N-(aryl­sulfon­yl)-aryl­amides have received much attention as they constitute an important class of drugs for Alzheimer's disease (Hasegawa & Yamamoto, 2000[Hasegawa, T. & Yamamoto, H. (2000). Bull. Chem. Soc. Jpn, 73, 423-428.]), anti-bacterial inhibitors of tRNA synthetases (Banwell et al., 2000[Banwell, M. G., Crasto, C. F., Easton, C. J., Forrest, A. K., Karoli, T., March, D. R., Mensah, L., Nairn, M. R., O'Hanlon, P. J., Oldham, M. D. & Yue, W. (2000). Bioorg. Med. Chem. Lett. 10, 2263-2266.]), antagonists for angiotensin II (Chang et al., 1994[Chang, L. L., Ashton, W. T., Flanagan, K. L., Chen, T. B., O'Malley, S. S., Zingaro, G. J., Siegl, P. K. S., Kivlighn, S. D. & Lotti, V. J. (1994). J. Med. Chem. 37, 4464-4478.]) and as leukotriene D4-receptors (Musser et al., 1990[Musser, J. H., Kreft, A. F., Bender, R. H. W., Kubrak, D. M., Grimes, D., Carlson, R. P., Hand, J. M. & Chang, J. (1990). J. Med. Chem. 33, 240-245.]). Further, N-(aryl­sulfon­yl)-aryl­amides are known as potent anti-tumour agents against a broad spectrum of human tumour xenografts (colon, lung, breast, ovary and prostate) in nude mice (Mader et al., 2005[Mader, M., Shih, C., Considine, E., De Dios, A., Grossman, C., Hipskind, P., Lin, H., Lobb, K., Lopez, B., Lopez, J., Cabrejas, L., Richett, M., White, W., Cheung, Y., Huang, Z., Reilly, J. & Dinn, S. (2005). Bioorg. Med. Chem. Lett. 15, 617-620.]). In view of the importance of N-(aryl­sulfon­yl)-aryl­amides and in continuation of our work on the synthesis and crystal structures of N-(2-methyl­phenyl­sulfon­yl)-aryl­amides (Suchetan et al., 2010a[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o1024.],b[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1997.]; Gowda et al., 2010[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o747.]; Suchetan et al., 2011[Suchetan, P. A., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o929.]), the title compound was synthesized and we report herein on its crystal structure.

The asymmetric unit of the title compound, Fig. 1[link], contains two mol­ecules [A (N1) and B N2)], similar to the situation observed for N-(4-chloro­benzo­yl)-2-methyl­benzene­sulfonamide (Suchetan et al., 2010b[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1997.]) and N-(4-methyl­benzo­yl)-2-methyl­benzene­sulfonamide (Gowda et al., 2010[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o747.]). However, in the crystal structures of N-(benzo­yl)-2-methyl­benzene­sulfonamide (Suchetan et al., 2010a[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o1024.]) and N-(4-nitro­benzo­yl)-2-methyl­benzene­sulfonamide (Suchetan et al., 2011[Suchetan, P. A., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o929.]), there is only one mol­ecule in the asymmetric unit. The dihedral angles between the two aryl rings are 83.1 (4) and 79.8 (4)° in mol­ecules A and B, respectively, while the corresponding angle is 73.9 (1)°in N-(benzo­yl)-2-methyl­benzene­sulfonamide, 89.4 (1) and 82.4 (1)° in the two mol­ecules of N-(4-chloro­benzo­yl)-2-methyl­benzene­sulfonamide, 88.1 (1) and 83.5 (1)° in the two mol­ecules of N-(4-methyl­benzo­yl)-2-methyl­benzene­sulfonamide, and 83.8 (2)°in N-(4-nitro­benzo­yl)-2-methyl­benzene­sulfon­amide. In both mol­ecules of the title compound, the ortho-methyl substituent is syn to N—H bond in the central –C—SO2—N(H)—C(O)– segment, similar to that observed in all the reported structures, the only exception being N-(4-methyl­benzo­yl)-2-methyl­benzene­sulfonamide, where the conformation is anti.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The crystal structure, features two N—H⋯O hydrogen bonds, namely, N1—H1⋯O4i and N2—H2⋯O2i (Table 1[link]), linking the A and B mol­ecules and resulting in an [R_{2}^{2}](8) dimer. This arrangement is further strengthened by C9—H9⋯O4i and C27—H27⋯·O2i hydrogen bonds (Table 1[link]), with an [R_{2}^{2}](14) ring motif (Fig. 2[link]). Further, another pair of C—H⋯O inter­actions, C13—H13⋯O6ii and C23—H23⋯O3ii, assemble these dimers along the diagonal of the bc plane forming ribbons (Fig. 3[link], Table 1[link]). Adjacent ribbons are connected by C4—H4⋯πar­yl (the π-electron system of the iodo­benzene ring of mol­ecule A) inter­actions between the A mol­ecules (Fig. 4[link], Table 1[link]). Thus, the overall supra­molecular architecture is one-dimensional. In the structures mentioned above, the assembly of mol­ecules is only due to the N—H⋯O hydrogen-bonded [R_{2}^{2}](8) rings or C(4) chains that result in either zero- or one-dimensional architectures.

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the iodo­benzene ring (C8–C13) of mol­ecule A

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.88 2.06 2.900 (10) 158
N2—H2⋯O2i 0.88 2.12 2.970 (10) 161
C9—H9⋯O4i 0.95 2.36 3.301 (10) 170
C13—H13⋯O6ii 0.95 2.56 3.378 (11) 144
C23—H23⋯O3ii 0.95 2.40 3.201 (11) 142
C27—H27⋯O2i 0.95 2.51 3.428 (9) 163
C4—H4⋯Cgiii 0.93 2.81 3.656 (11) 151
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z; (iii) -x+1, -y+2, -z+2.
[Figure 2]
Figure 2
A view of the [R_{2}^{2}](8) and [R_{2}^{2}](14) dimeric patterns displayed in the crystal structure of the title compound, resulting from N—H⋯O hydrogen bonds and C—H⋯O inter­actions, respectively (dashed lines, see Table 1[link]).
[Figure 3]
Figure 3
Generation of the ribbons via C—H⋯O inter­molecular inter­actions (dashed lines, see Table 1[link]).
[Figure 4]
Figure 4
A view of the C—H⋯πar­yl inter­actions observed in the crystal structure of the title compound (dashed lines, see Table 1[link]).

Synthesis and crystallization

The title compound was prepared by refluxing a mixture of 4-iodo­benzoic acid, 2-methyl­benzene­sulfonamide and phos­pho­rousoxychloride for 3 h on a water bath. The resultant mixture was cooled and poured into ice-cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. It was then filtered, dried and recrystallized from methanol (m.p. 450 K). Colourless prismatic crystals were obtained by slow evaporation of a solution of the title compound in methanol (with a few drops of water).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H12INO3S
Mr 401.21
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 11.0543 (10), 12.1612 (10), 12.3464 (10)
α, β, γ (°) 119.140 (4), 94.668 (5), 93.182 (5)
V3) 1436.2 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 18.94
Crystal size (mm) 0.25 × 0.12 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.124, 0.266
No. of measured, independent and observed [I > 2σ(I)] reflections 17365, 4724, 3621
Rint 0.092
(sin θ/λ)max−1) 0.585
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.182, 1.05
No. of reflections 4724
No. of parameters 363
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.40, −1.39
Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2016 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXT2016 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015b).

4-Iodo-N-(o-tolylsulfonyl)benzamide top
Crystal data top
C14H12INO3SF(000) = 784
Mr = 401.21Dx = 1.855 Mg m3
Triclinic, P1Melting point: 450 K
a = 11.0543 (10) ÅCu Kα radiation, λ = 1.54178 Å
b = 12.1612 (10) ÅCell parameters from 133 reflections
c = 12.3464 (10) Åθ = 4.0–64.4°
α = 119.140 (4)°µ = 18.94 mm1
β = 94.668 (5)°T = 173 K
γ = 93.182 (5)°Prism, colourless
V = 1436.2 (2) Å30.25 × 0.12 × 0.07 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3621 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.092
ω and φ scansθmax = 64.4°, θmin = 5.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.124, Tmax = 0.266k = 1414
17365 measured reflectionsl = 1414
4724 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.113P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4724 reflectionsΔρmax = 1.40 e Å3
363 parametersΔρmin = 1.39 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.99795 (6)0.28147 (5)0.25297 (5)0.0394 (2)
S10.7516 (2)0.17454 (18)0.35284 (17)0.0273 (5)
O10.8316 (6)0.1073 (5)0.3869 (5)0.0318 (13)
O20.7190 (6)0.2922 (5)0.4501 (5)0.0321 (14)
O30.8181 (6)0.0118 (5)0.1084 (5)0.0330 (14)
N10.8113 (7)0.2141 (6)0.2560 (6)0.0269 (15)
H10.8278210.2948130.2795410.032*
C10.6178 (8)0.0717 (7)0.2660 (7)0.0297 (19)
C20.5212 (9)0.1108 (8)0.2142 (8)0.033 (2)
C30.4173 (10)0.0220 (9)0.1534 (9)0.042 (2)
H30.3503620.0438180.1170990.051*
C40.4096 (9)0.0963 (8)0.1449 (9)0.039 (2)
H40.3375880.1534140.1039830.047*
C50.5066 (9)0.1317 (8)0.1958 (8)0.038 (2)
H50.5023420.2136160.1878990.045*
C60.6086 (8)0.0465 (7)0.2577 (7)0.0304 (19)
H60.6739310.0688110.2954850.036*
C70.8359 (8)0.1234 (7)0.1386 (7)0.0256 (18)
C80.8786 (8)0.1684 (7)0.0545 (7)0.0258 (17)
C90.8854 (8)0.2944 (8)0.0827 (7)0.0289 (19)
H90.8658840.3577460.1610140.035*
C100.9214 (9)0.3274 (8)0.0055 (7)0.032 (2)
H100.9263720.4133210.0134690.039*
C110.9497 (9)0.2338 (8)0.1213 (7)0.0316 (19)
C120.9445 (8)0.1084 (8)0.1473 (7)0.0310 (19)
H120.9656310.0446220.2246120.037*
C130.9083 (8)0.0768 (8)0.0598 (7)0.0314 (19)
H130.9038280.0090000.0785780.038*
C140.5249 (10)0.2348 (9)0.2182 (9)0.044 (2)
H14A0.4461690.2415370.1803590.066*
H14B0.5898020.2415540.1715240.066*
H14C0.5410180.3031920.3051870.066*
I20.35056 (6)0.47630 (6)0.11241 (5)0.0407 (2)
S20.1444 (2)0.40351 (17)0.52510 (17)0.0275 (5)
O40.1960 (6)0.5154 (5)0.6401 (5)0.0320 (14)
O50.0172 (6)0.3659 (5)0.5076 (5)0.0355 (14)
O60.1204 (6)0.2389 (5)0.2576 (5)0.0338 (14)
N20.1819 (6)0.4363 (6)0.4157 (6)0.0268 (15)
H20.2126060.5137280.4379070.032*
C150.2244 (9)0.2757 (7)0.5050 (6)0.0288 (19)
C160.3543 (9)0.2878 (8)0.5247 (7)0.034 (2)
C170.4071 (10)0.1809 (9)0.5084 (8)0.041 (2)
H170.4935100.1851130.5214270.049*
C180.3371 (10)0.0675 (9)0.4733 (8)0.041 (2)
H180.3765240.0047670.4598780.049*
C190.2115 (9)0.0583 (8)0.4578 (7)0.035 (2)
H190.1644040.0180550.4388020.042*
C200.1550 (9)0.1618 (7)0.4703 (7)0.032 (2)
H200.0685940.1551700.4551170.038*
C210.1661 (8)0.3449 (8)0.2899 (7)0.0278 (18)
C220.2132 (8)0.3842 (8)0.2011 (7)0.0288 (18)
C230.2159 (9)0.2872 (8)0.0803 (7)0.034 (2)
H230.1890320.2026050.0585190.041*
C240.2564 (9)0.3118 (8)0.0073 (8)0.035 (2)
H240.2601780.2444190.0893850.042*
C250.2927 (9)0.4363 (9)0.0234 (8)0.038 (2)
C260.2897 (9)0.5353 (8)0.1443 (7)0.033 (2)
H260.3140580.6202550.1654110.040*
C270.2505 (9)0.5079 (7)0.2332 (7)0.031 (2)
H270.2492860.5742510.3163860.038*
C280.4340 (10)0.4063 (8)0.5610 (9)0.041 (2)
H28A0.4318420.4666250.6496230.062*
H28B0.4046020.4435500.5103890.062*
H28C0.5180410.3866880.5468630.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0546 (5)0.0361 (4)0.0307 (3)0.0023 (3)0.0084 (3)0.0191 (2)
S10.0345 (12)0.0241 (10)0.0250 (9)0.0008 (8)0.0023 (8)0.0140 (7)
O10.039 (4)0.031 (3)0.030 (3)0.002 (3)0.002 (2)0.020 (2)
O20.046 (4)0.026 (3)0.024 (3)0.004 (3)0.008 (2)0.013 (2)
O30.040 (4)0.027 (3)0.036 (3)0.007 (3)0.010 (3)0.018 (2)
N10.036 (4)0.025 (3)0.024 (3)0.002 (3)0.004 (3)0.016 (3)
C10.039 (6)0.025 (4)0.023 (4)0.002 (4)0.000 (3)0.011 (3)
C20.035 (5)0.030 (4)0.034 (4)0.005 (4)0.000 (4)0.015 (3)
C30.039 (6)0.039 (5)0.046 (5)0.002 (4)0.004 (4)0.021 (4)
C40.030 (5)0.033 (5)0.044 (5)0.000 (4)0.002 (4)0.012 (4)
C50.041 (6)0.026 (4)0.040 (5)0.001 (4)0.001 (4)0.013 (4)
C60.031 (5)0.031 (4)0.030 (4)0.003 (4)0.005 (3)0.015 (3)
C70.024 (5)0.019 (4)0.033 (4)0.003 (3)0.000 (3)0.014 (3)
C80.027 (5)0.024 (4)0.029 (4)0.006 (3)0.003 (3)0.015 (3)
C90.031 (5)0.029 (4)0.024 (4)0.002 (4)0.005 (3)0.011 (3)
C100.050 (6)0.024 (4)0.024 (4)0.004 (4)0.004 (4)0.013 (3)
C110.041 (6)0.028 (4)0.028 (4)0.008 (4)0.005 (4)0.015 (3)
C120.041 (6)0.028 (4)0.023 (4)0.012 (4)0.001 (3)0.011 (3)
C130.037 (5)0.024 (4)0.033 (4)0.002 (4)0.003 (4)0.013 (3)
C140.054 (7)0.033 (5)0.047 (5)0.001 (4)0.012 (5)0.024 (4)
I20.0423 (4)0.0562 (4)0.0381 (3)0.0068 (3)0.0069 (3)0.0340 (3)
S20.0382 (13)0.0222 (9)0.0259 (9)0.0050 (8)0.0072 (8)0.0142 (7)
O40.053 (4)0.019 (3)0.025 (3)0.001 (3)0.011 (3)0.011 (2)
O50.041 (4)0.029 (3)0.041 (3)0.001 (3)0.009 (3)0.020 (2)
O60.048 (4)0.021 (3)0.031 (3)0.001 (3)0.001 (3)0.013 (2)
N20.031 (4)0.024 (3)0.032 (3)0.002 (3)0.006 (3)0.019 (3)
C150.047 (6)0.026 (4)0.017 (3)0.007 (4)0.006 (3)0.012 (3)
C160.046 (6)0.038 (5)0.030 (4)0.011 (4)0.014 (4)0.024 (4)
C170.052 (7)0.045 (5)0.034 (4)0.016 (5)0.009 (4)0.024 (4)
C180.054 (7)0.037 (5)0.044 (5)0.019 (5)0.012 (4)0.028 (4)
C190.053 (7)0.023 (4)0.033 (4)0.003 (4)0.002 (4)0.017 (3)
C200.047 (6)0.026 (4)0.027 (4)0.003 (4)0.001 (4)0.018 (3)
C210.029 (5)0.025 (4)0.029 (4)0.005 (4)0.002 (3)0.012 (3)
C220.032 (5)0.029 (4)0.029 (4)0.000 (4)0.001 (3)0.018 (3)
C230.047 (6)0.029 (4)0.028 (4)0.006 (4)0.003 (4)0.014 (3)
C240.049 (6)0.034 (5)0.031 (4)0.010 (4)0.007 (4)0.022 (4)
C250.041 (6)0.052 (6)0.033 (4)0.007 (4)0.002 (4)0.029 (4)
C260.039 (6)0.032 (4)0.032 (4)0.003 (4)0.003 (4)0.020 (4)
C270.046 (6)0.026 (4)0.023 (4)0.005 (4)0.005 (4)0.012 (3)
C280.044 (6)0.036 (5)0.051 (5)0.002 (4)0.002 (4)0.028 (4)
Geometric parameters (Å, º) top
I1—C112.071 (8)I2—C252.095 (9)
S1—O11.408 (6)S2—O51.420 (7)
S1—O21.440 (6)S2—O41.447 (6)
S1—N11.659 (7)S2—N21.659 (6)
S1—C11.770 (9)S2—C151.753 (8)
O3—C71.219 (9)O6—C211.213 (10)
N1—C71.390 (10)N2—C211.389 (10)
N1—H10.8800N2—H20.8800
C1—C61.388 (11)C15—C201.393 (12)
C1—C21.419 (12)C15—C161.424 (13)
C2—C31.407 (13)C16—C171.385 (13)
C2—C141.483 (12)C16—C281.490 (13)
C3—C41.387 (13)C17—C181.390 (14)
C3—H30.9500C17—H170.9500
C4—C51.392 (13)C18—C191.376 (14)
C4—H40.9500C18—H180.9500
C5—C61.375 (13)C19—C201.383 (12)
C5—H50.9500C19—H190.9500
C6—H60.9500C20—H200.9500
C7—C81.485 (11)C21—C221.509 (11)
C8—C131.387 (11)C22—C231.383 (12)
C8—C91.392 (12)C22—C271.384 (12)
C9—C101.409 (11)C23—C241.357 (12)
C9—H90.9500C23—H230.9500
C10—C111.401 (12)C24—C251.395 (13)
C10—H100.9500C24—H240.9500
C11—C121.395 (12)C25—C261.393 (13)
C12—C131.390 (12)C26—C271.386 (12)
C12—H120.9500C26—H260.9500
C13—H130.9500C27—H270.9500
C14—H14A0.9800C28—H28A0.9800
C14—H14B0.9800C28—H28B0.9800
C14—H14C0.9800C28—H28C0.9800
O1—S1—O2118.2 (3)O5—S2—O4118.4 (4)
O1—S1—N1110.5 (4)O5—S2—N2110.8 (4)
O2—S1—N1103.9 (3)O4—S2—N2103.2 (3)
O1—S1—C1108.4 (4)O5—S2—C15109.0 (4)
O2—S1—C1109.7 (4)O4—S2—C15109.2 (4)
N1—S1—C1105.3 (4)N2—S2—C15105.4 (4)
C7—N1—S1121.8 (5)C21—N2—S2121.8 (6)
C7—N1—H1119.1C21—N2—H2119.1
S1—N1—H1119.1S2—N2—H2119.1
C6—C1—C2121.5 (8)C20—C15—C16121.3 (8)
C6—C1—S1116.5 (6)C20—C15—S2117.0 (7)
C2—C1—S1121.8 (6)C16—C15—S2121.7 (6)
C3—C2—C1115.9 (8)C17—C16—C15116.4 (8)
C3—C2—C14119.5 (8)C17—C16—C28119.5 (9)
C1—C2—C14124.6 (8)C15—C16—C28124.1 (8)
C4—C3—C2122.1 (9)C16—C17—C18121.8 (10)
C4—C3—H3119.0C16—C17—H17119.1
C2—C3—H3119.0C18—C17—H17119.1
C3—C4—C5120.4 (9)C19—C18—C17121.1 (8)
C3—C4—H4119.8C19—C18—H18119.5
C5—C4—H4119.8C17—C18—H18119.5
C6—C5—C4119.0 (9)C18—C19—C20119.0 (8)
C6—C5—H5120.5C18—C19—H19120.5
C4—C5—H5120.5C20—C19—H19120.5
C5—C6—C1121.1 (9)C19—C20—C15120.3 (9)
C5—C6—H6119.5C19—C20—H20119.9
C1—C6—H6119.5C15—C20—H20119.9
O3—C7—N1118.9 (7)O6—C21—N2119.8 (7)
O3—C7—C8123.4 (7)O6—C21—C22123.6 (7)
N1—C7—C8117.6 (6)N2—C21—C22116.5 (7)
C13—C8—C9119.6 (7)C23—C22—C27120.0 (8)
C13—C8—C7116.7 (7)C23—C22—C21115.7 (7)
C9—C8—C7123.6 (7)C27—C22—C21124.3 (7)
C8—C9—C10119.7 (7)C24—C23—C22120.6 (8)
C8—C9—H9120.2C24—C23—H23119.7
C10—C9—H9120.2C22—C23—H23119.7
C11—C10—C9120.2 (7)C23—C24—C25119.9 (8)
C11—C10—H10119.9C23—C24—H24120.1
C9—C10—H10119.9C25—C24—H24120.1
C12—C11—C10119.5 (8)C26—C25—C24120.3 (8)
C12—C11—I1120.3 (6)C26—C25—I2119.4 (7)
C10—C11—I1120.2 (6)C24—C25—I2120.3 (6)
C13—C12—C11119.8 (7)C27—C26—C25118.9 (8)
C13—C12—H12120.1C27—C26—H26120.5
C11—C12—H12120.1C25—C26—H26120.5
C8—C13—C12121.2 (8)C22—C27—C26120.2 (7)
C8—C13—H13119.4C22—C27—H27119.9
C12—C13—H13119.4C26—C27—H27119.9
C2—C14—H14A109.5C16—C28—H28A109.5
C2—C14—H14B109.5C16—C28—H28B109.5
H14A—C14—H14B109.5H28A—C28—H28B109.5
C2—C14—H14C109.5C16—C28—H28C109.5
H14A—C14—H14C109.5H28A—C28—H28C109.5
H14B—C14—H14C109.5H28B—C28—H28C109.5
O1—S1—N1—C763.1 (7)O5—S2—N2—C2162.5 (7)
O2—S1—N1—C7169.1 (6)O4—S2—N2—C21169.7 (7)
C1—S1—N1—C753.8 (7)C15—S2—N2—C2155.2 (8)
O1—S1—C1—C66.3 (7)O5—S2—C15—C203.3 (7)
O2—S1—C1—C6124.1 (6)O4—S2—C15—C20134.0 (6)
N1—S1—C1—C6124.6 (6)N2—S2—C15—C20115.7 (6)
O1—S1—C1—C2177.6 (6)O5—S2—C15—C16176.0 (6)
O2—S1—C1—C252.0 (8)O4—S2—C15—C1645.2 (7)
N1—S1—C1—C259.3 (8)N2—S2—C15—C1665.0 (7)
C6—C1—C2—C30.6 (12)C20—C15—C16—C170.5 (11)
S1—C1—C2—C3176.5 (7)S2—C15—C16—C17178.8 (6)
C6—C1—C2—C14179.3 (8)C20—C15—C16—C28179.5 (8)
S1—C1—C2—C144.8 (12)S2—C15—C16—C281.2 (11)
C1—C2—C3—C40.1 (14)C15—C16—C17—C180.7 (12)
C14—C2—C3—C4178.9 (9)C28—C16—C17—C18179.3 (8)
C2—C3—C4—C50.7 (15)C16—C17—C18—C192.4 (13)
C3—C4—C5—C61.8 (14)C17—C18—C19—C203.8 (13)
C4—C5—C6—C12.4 (13)C18—C19—C20—C153.6 (12)
C2—C1—C6—C51.8 (12)C16—C15—C20—C192.0 (11)
S1—C1—C6—C5177.9 (7)S2—C15—C20—C19177.3 (6)
S1—N1—C7—O33.3 (11)S2—N2—C21—O62.3 (12)
S1—N1—C7—C8174.6 (6)S2—N2—C21—C22175.2 (6)
O3—C7—C8—C135.3 (13)O6—C21—C22—C238.0 (13)
N1—C7—C8—C13177.0 (8)N2—C21—C22—C23169.4 (8)
O3—C7—C8—C9172.1 (8)O6—C21—C22—C27171.0 (9)
N1—C7—C8—C95.6 (12)N2—C21—C22—C2711.6 (13)
C13—C8—C9—C100.5 (13)C27—C22—C23—C240.9 (14)
C7—C8—C9—C10176.8 (8)C21—C22—C23—C24180.0 (9)
C8—C9—C10—C110.2 (14)C22—C23—C24—C251.8 (15)
C9—C10—C11—C121.3 (14)C23—C24—C25—C261.3 (15)
C9—C10—C11—I1178.3 (7)C23—C24—C25—I2178.2 (7)
C10—C11—C12—C131.6 (14)C24—C25—C26—C270.2 (14)
I1—C11—C12—C13178.0 (7)I2—C25—C26—C27179.6 (7)
C9—C8—C13—C120.2 (13)C23—C22—C27—C260.6 (14)
C7—C8—C13—C12177.4 (8)C21—C22—C27—C26178.4 (8)
C11—C12—C13—C80.9 (14)C25—C26—C27—C221.1 (14)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the iodobenzene ring (C8–C13) of molecule A
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.882.062.900 (10)158
N2—H2···O2i0.882.122.970 (10)161
C9—H9···O4i0.952.363.301 (10)170
C13—H13···O6ii0.952.563.378 (11)144
C23—H23···O3ii0.952.403.201 (11)142
C27—H27···O2i0.952.513.428 (9)163
C4—H4···Cgiii0.932.813.656 (11)151
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+2, z+2.
 

Acknowledgements

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction data.

References

First citationBanwell, M. G., Crasto, C. F., Easton, C. J., Forrest, A. K., Karoli, T., March, D. R., Mensah, L., Nairn, M. R., O'Hanlon, P. J., Oldham, M. D. & Yue, W. (2000). Bioorg. Med. Chem. Lett. 10, 2263–2266.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, L. L., Ashton, W. T., Flanagan, K. L., Chen, T. B., O'Malley, S. S., Zingaro, G. J., Siegl, P. K. S., Kivlighn, S. D. & Lotti, V. J. (1994). J. Med. Chem. 37, 4464–4478.  CrossRef CAS Web of Science Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o747.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHamad, A. S. & Abed, F. S. (2014). J. Appl. Chem, 3, 56–63.  Google Scholar
First citationHasegawa, T. & Yamamoto, H. (2000). Bull. Chem. Soc. Jpn, 73, 423–428.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMader, M., Shih, C., Considine, E., De Dios, A., Grossman, C., Hipskind, P., Lin, H., Lobb, K., Lopez, B., Lopez, J., Cabrejas, L., Richett, M., White, W., Cheung, Y., Huang, Z., Reilly, J. & Dinn, S. (2005). Bioorg. Med. Chem. Lett. 15, 617–620.  Web of Science CrossRef PubMed CAS Google Scholar
First citationManojkumar, K. E., Sreenivasa, S., Mohan, N. R., Madhu Chakrapani Rao, T. & Harikrishna, T. (2013). J. Appl. Chem, 2, 730–737.  CAS Google Scholar
First citationMohan, N. R., Sreenivasa, S., Manojkumar, K. E. & Chakrapani Rao, T. M. (2013). J. Appl. Chem, 2, 722–729.  Google Scholar
First citationMusser, J. H., Kreft, A. F., Bender, R. H. W., Kubrak, D. M., Grimes, D., Carlson, R. P., Hand, J. M. & Chang, J. (1990). J. Med. Chem. 33, 240–245.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o929.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o1024.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o1997.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds