organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Bromo-1-nonylindoline-2,3-dione

aLaboratoire de Chimie Organique Appliquée-Chimie Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fès, Morocco, bUnité de Catalyse et de Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, Université Lille 1, 59650 Villeneuve d'Ascq Cedex, France, cUSR 3290 Miniaturisation pour l'analyse, la synthèse et la protéomique, 59655 Villeneuve d'Ascq Cedex, Université Lille1, France, and dLaboratoire de Chimie du Solide Appliquée, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: kharbachy26@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 May 2016; accepted 14 May 2016; online 20 May 2016)

In the title compound, C17H22BrNO2, the indoline ring system, the two ketone O atoms and the Br atom are nearly coplanar, with an r.m.s. deviation of 0.029 Å. The indoline ring system makes a dihedral angle of 70.64 (7)° with the mean plane through the nonyl chain, which has an extended conformation. In the crystal, mol­ecules pack in a herringbone arrangement. They are linked by two strong and two weak C—H⋯O hydrogen bonds, forming slabs parallel to (010).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1H-Indole-2,3-dione (isatin) is one of the most prevalent heterocyclic scaffolds found in natural products, pharmaceuticals and agrochemicals. Many indole derivatives are under development as drug candidates due to their biological properties, which include anti­viral, anti­tumor, anti­fungal, anti-angiogenic, anti­convulsant and anti­parkinsonian activity (Sridhar, Muniyandy & Ramesh, 2001[Sridhar, S. K., Muniyandy, S. & Ramesh, A. (2001). Eur. J. Med. Chem. 36, 615-625.]; Sridhar & Sreenivasulu, 2001[Sridhar, S. K. & Sreenivasulu, M. (2001). Indian Drugs, 38, 531-534.]; Sarangapani & Reddy, 1994[Sarangapani, M. & Reddy, V. M. (1994). Indian J. Heterocycl. Chem. 3, 257-260.]; Varma et al., 2004[Varma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49-56.]; Pandeya et al., 1999[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Eur. J. Med. Chem. 9, 25-31.]; Aboul-Fadl et al., 2010[Aboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578-4586.]). Continuing our work on the synthesis of new 5-bromo­isatins and the study of their applications (Qachchachi et al., 2013[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.], 2014[Qachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014). Acta Cryst. E70, o588.]; Kharbach et al., 2016[Kharbach, Y., Kandri Rodi, Y., Renard, C., Essassi, E. M. & El Ammari, L. (2016). IUCrData, 1, x160559.]), we report herein on the synthesis and crystal structure of 5-bromo-1-nonylindoline-2,3-dione.

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. It is composed of an indoline-2,3-dione unit substituted by a Br atom and a nonyl alkyl chain. The indoline ring system and the two ketonic O atoms are virtually coplanar, with an r.m.s. deviation of 0.029 Å; the largest deviation is 0.059 (1) Å for atom C9. The nonyl chain has an extended conformation and its mean plane is nearly perpendicular to the indoline ring system, as indicated by the C10—C9—N1—C8 torsion angle of 89.85 (15)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules pack in a herringbone arrangement. They are linked by two strong and two weak C—H⋯O hydrogen bonds, forming slabs parallel to the ac plane (Table 1[link] and Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.37 3.3028 (17) 166
C10—H10B⋯O1ii 0.99 2.50 3.4809 (17) 169
C5—H5⋯O1i 0.95 2.61 3.2431 (17) 124
C9—H9B⋯O2iii 0.99 2.66 3.2544 (17) 120
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z.
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of the title compound. The C—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]) and, for clarity, only the H atoms (grey balls) involved in these inter­actions have been included.

Synthesis and crystallization

A mixture of 5-bromo­isatin (0.4 g, 1.76 mmol) and 1-bromo­nonane (0.37 ml, 1.93 mmol) in DMF (25 ml) in the presence of a catalytic amount of tetra-n-butyl­ammonium bromide (0.1 g, 0.4 mmol) and potassium carbonate (0.6 g, 4.4 mmol) was stirred for 48 h. The reaction was monitored by thin-layer chromatography. On completion of the reaction, the mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol to afford the title compound as orange crystals (yield 78%; m.p. 338 K).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H22BrNO2
Mr 352.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 4.8428 (2), 31.7181 (14), 10.7171 (5)
β (°) 101.206 (2)
V3) 1614.81 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.55
Crystal size (mm) 0.20 × 0.17 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.658, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 33463, 4532, 4029
Rint 0.030
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.061, 1.10
No. of reflections 4532
No. of parameters 191
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.44, −0.43
Computer programs: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

A mixture of 5-bromoisatin (0.4 g, 1.76 mmol) and 1-bromononane (0.37 ml, 1.93 mmol) in DMF (25 ml) in the presence of a catalytic amount of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol) and potassium carbonate (0.6 g, 4.4 mmol) was stirred for 48 h. The reaction was monitored by thin-layer chromatography. On completion of the reaction the mixture was filtered and the solvent removed under vacuum. The solid obtained was recrystallized from ethanol to afford the title compound as orange crystals (yield 78%; m.p. 338 K).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

1H-Indole-2,3-dione (isatin) is one of the most prevalent heterocyclic scaffolds found in natural products, pharmaceuticals, and agrochemicals. Many indole derivatives are under development as drug candidates due to their biological properties, which include antiviral, antitumor, antifungal, anti-angiogenic, anticonvulsant and antiparkinsonian activity (Sridhar, Muniyandy & Ramesh, 2001; Sridhar & Sreenivasulu, 2001; Sarangapani & Reddy, 1994; Varma et al., 2004; Pandeya et al., 1999; Aboul-Fadl et al., 2010). Continuing our work on the synthesis of new 5-bromoisatins and the study of their applications (Qachchachi et al., 2013, 2014; Kharbach et al., 2016), we report herein on the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is illustrated in Fig. 1. It is composed of an indoline-2,3-dione unit substituted by a Br atom and a nonyl alkyl chain. The indoline ring system and the two ketonic atoms are virtually coplanar, with an r.m.s. deviation of 0.029 Å; the largest deviation is 0.059 (1) Å for atom C9. The nonyl chain has an extended conformation and its mean plane is nearly perpendicular to the indoline ring system, as indicated by torsion angle C10—C9—N1—C8 = 89.85 (15)°.

In the crystal, molecules pack in a herringbone arrangement. They are linked by two strong and two weak C—H···O hydrogen bonds, forming slabs parallel to the ac plane (Table 1 and Fig. 2).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The C—H···O hydrogen bonds are shown as dashed lines (see Table 1) and, for clarity, only the H atoms (grey balls) involved in these interactions have been included.
5-Bromo-1-nonylindoline-2,3-dione top
Crystal data top
C17H22BrNO2F(000) = 728
Mr = 352.26Dx = 1.449 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.8428 (2) ÅCell parameters from 4532 reflections
b = 31.7181 (14) Åθ = 1.3–29.6°
c = 10.7171 (5) ŵ = 2.55 mm1
β = 101.206 (2)°T = 100 K
V = 1614.81 (12) Å3Plate, orange
Z = 40.20 × 0.17 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
4029 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.030
φ and ω scansθmax = 29.6°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 65
Tmin = 0.658, Tmax = 0.746k = 4444
33463 measured reflectionsl = 1414
4532 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0246P)2 + 0.8548P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
4532 reflectionsΔρmax = 0.44 e Å3
191 parametersΔρmin = 0.43 e Å3
Crystal data top
C17H22BrNO2V = 1614.81 (12) Å3
Mr = 352.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.8428 (2) ŵ = 2.55 mm1
b = 31.7181 (14) ÅT = 100 K
c = 10.7171 (5) Å0.20 × 0.17 × 0.07 mm
β = 101.206 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4532 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4029 reflections with I > 2σ(I)
Tmin = 0.658, Tmax = 0.746Rint = 0.030
33463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.10Δρmax = 0.44 e Å3
4532 reflectionsΔρmin = 0.43 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.46011 (3)0.37424 (2)0.85103 (2)0.02240 (5)
C10.5594 (3)0.31889 (4)0.81017 (12)0.0151 (3)
C20.7367 (3)0.31325 (4)0.72398 (13)0.0144 (2)
H20.81060.33650.68530.017*
C30.8006 (3)0.27209 (4)0.69712 (12)0.0130 (2)
C40.6918 (3)0.23768 (4)0.75382 (12)0.0126 (2)
C50.5180 (3)0.24367 (4)0.84074 (12)0.0146 (3)
H50.44560.22040.88010.017*
C60.4529 (3)0.28509 (5)0.86841 (12)0.0157 (3)
H60.33440.29020.92780.019*
C70.9820 (3)0.25508 (4)0.61420 (12)0.0125 (2)
C80.9634 (3)0.20624 (4)0.62788 (12)0.0136 (2)
C90.6994 (3)0.15753 (4)0.74596 (13)0.0151 (3)
H9A0.69380.13810.67320.018*
H9B0.50660.15930.76370.018*
C100.8951 (3)0.13925 (4)0.86226 (13)0.0160 (3)
H10B0.95390.16190.92520.019*
H10A1.06610.12790.83660.019*
C110.7510 (3)0.10416 (4)0.92355 (13)0.0163 (3)
H11B0.59860.11660.96130.020*
H11A0.66370.08410.85670.020*
C120.9512 (3)0.08012 (4)1.02647 (13)0.0164 (3)
H12A1.09140.06500.98710.020*
H12B1.05410.10051.08850.020*
C130.8004 (3)0.04848 (5)1.09660 (13)0.0178 (3)
H13B0.66690.06391.13920.021*
H13A0.68920.02921.03360.021*
C140.9960 (3)0.02245 (4)1.19543 (13)0.0178 (3)
H14B1.11010.04171.25770.021*
H14A1.12660.00641.15280.021*
C150.8397 (3)0.00833 (5)1.26640 (14)0.0186 (3)
H15B0.71630.00791.31240.022*
H15A0.71760.02651.20350.022*
C161.0312 (3)0.03633 (5)1.36108 (14)0.0200 (3)
H16A1.14990.01841.42570.024*
H16B1.15760.05231.31590.024*
C170.8684 (4)0.06729 (5)1.42776 (16)0.0252 (3)
H17B0.74180.05171.47220.038*
H17C1.00070.08391.48930.038*
H17A0.75790.08611.36470.038*
N10.7852 (2)0.19929 (4)0.71043 (11)0.0134 (2)
O11.1213 (2)0.27258 (3)0.54746 (9)0.01603 (19)
O21.0843 (2)0.18008 (3)0.57614 (10)0.0181 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02663 (9)0.01885 (8)0.02210 (8)0.00614 (6)0.00564 (6)0.00365 (5)
C10.0154 (6)0.0157 (6)0.0134 (6)0.0036 (5)0.0008 (5)0.0017 (5)
C20.0131 (6)0.0156 (6)0.0141 (6)0.0004 (5)0.0018 (5)0.0022 (5)
C30.0107 (6)0.0165 (6)0.0119 (5)0.0007 (5)0.0023 (5)0.0020 (5)
C40.0103 (6)0.0153 (6)0.0112 (5)0.0008 (5)0.0003 (4)0.0018 (4)
C50.0114 (6)0.0198 (6)0.0124 (6)0.0004 (5)0.0020 (5)0.0032 (5)
C60.0124 (6)0.0239 (7)0.0110 (6)0.0021 (5)0.0022 (5)0.0008 (5)
C70.0104 (6)0.0154 (6)0.0110 (5)0.0011 (5)0.0001 (4)0.0023 (4)
C80.0125 (6)0.0158 (6)0.0121 (6)0.0004 (5)0.0011 (5)0.0029 (5)
C90.0153 (6)0.0134 (6)0.0161 (6)0.0028 (5)0.0021 (5)0.0029 (5)
C100.0157 (6)0.0150 (6)0.0163 (6)0.0017 (5)0.0008 (5)0.0031 (5)
C110.0159 (6)0.0176 (6)0.0149 (6)0.0025 (5)0.0018 (5)0.0038 (5)
C120.0171 (7)0.0157 (6)0.0159 (6)0.0018 (5)0.0015 (5)0.0028 (5)
C130.0181 (7)0.0182 (6)0.0170 (6)0.0009 (5)0.0029 (5)0.0053 (5)
C140.0186 (7)0.0172 (6)0.0169 (6)0.0012 (5)0.0019 (5)0.0039 (5)
C150.0198 (7)0.0178 (6)0.0177 (6)0.0018 (5)0.0023 (5)0.0046 (5)
C160.0213 (7)0.0171 (7)0.0214 (7)0.0016 (5)0.0036 (6)0.0050 (5)
C170.0296 (8)0.0197 (7)0.0260 (8)0.0007 (6)0.0049 (6)0.0089 (6)
N10.0137 (5)0.0131 (5)0.0139 (5)0.0005 (4)0.0042 (4)0.0028 (4)
O10.0152 (5)0.0199 (5)0.0140 (4)0.0007 (4)0.0053 (4)0.0039 (4)
O20.0194 (5)0.0179 (5)0.0180 (5)0.0034 (4)0.0062 (4)0.0000 (4)
Geometric parameters (Å, º) top
Br1—C11.8936 (13)C10—H10A0.9900
C1—C61.389 (2)C11—C121.5238 (19)
C1—C21.3898 (19)C11—H11B0.9900
C2—C31.3847 (18)C11—H11A0.9900
C2—H20.9500C12—C131.5229 (19)
C3—C41.4009 (18)C12—H12A0.9900
C3—C71.4684 (18)C12—H12B0.9900
C4—C51.3845 (19)C13—C141.5204 (19)
C4—N11.4092 (17)C13—H13B0.9900
C5—C61.396 (2)C13—H13A0.9900
C5—H50.9500C14—C151.526 (2)
C6—H60.9500C14—H14B0.9900
C7—O11.2093 (16)C14—H14A0.9900
C7—C81.5602 (19)C15—C161.5209 (19)
C8—O21.2102 (17)C15—H15B0.9900
C8—N11.3687 (17)C15—H15A0.9900
C9—N11.4606 (17)C16—C171.522 (2)
C9—C101.5261 (18)C16—H16A0.9900
C9—H9A0.9900C16—H16B0.9900
C9—H9B0.9900C17—H17B0.9800
C10—C111.5281 (19)C17—H17C0.9800
C10—H10B0.9900C17—H17A0.9800
C6—C1—C2122.04 (13)H11B—C11—H11A107.7
C6—C1—Br1118.59 (10)C13—C12—C11112.84 (12)
C2—C1—Br1119.37 (10)C13—C12—H12A109.0
C3—C2—C1116.84 (12)C11—C12—H12A109.0
C3—C2—H2121.6C13—C12—H12B109.0
C1—C2—H2121.6C11—C12—H12B109.0
C2—C3—C4121.75 (12)H12A—C12—H12B107.8
C2—C3—C7131.03 (12)C14—C13—C12114.08 (12)
C4—C3—C7107.21 (11)C14—C13—H13B108.7
C5—C4—C3120.93 (13)C12—C13—H13B108.7
C5—C4—N1128.07 (12)C14—C13—H13A108.7
C3—C4—N1110.99 (11)C12—C13—H13A108.7
C4—C5—C6117.64 (12)H13B—C13—H13A107.6
C4—C5—H5121.2C13—C14—C15113.10 (12)
C6—C5—H5121.2C13—C14—H14B109.0
C1—C6—C5120.79 (12)C15—C14—H14B109.0
C1—C6—H6119.6C13—C14—H14A109.0
C5—C6—H6119.6C15—C14—H14A109.0
O1—C7—C3131.11 (13)H14B—C14—H14A107.8
O1—C7—C8124.07 (12)C16—C15—C14114.14 (12)
C3—C7—C8104.82 (11)C16—C15—H15B108.7
O2—C8—N1127.40 (13)C14—C15—H15B108.7
O2—C8—C7126.58 (12)C16—C15—H15A108.7
N1—C8—C7106.02 (11)C14—C15—H15A108.7
N1—C9—C10113.23 (11)H15B—C15—H15A107.6
N1—C9—H9A108.9C15—C16—C17112.69 (13)
C10—C9—H9A108.9C15—C16—H16A109.1
N1—C9—H9B108.9C17—C16—H16A109.1
C10—C9—H9B108.9C15—C16—H16B109.1
H9A—C9—H9B107.7C17—C16—H16B109.1
C9—C10—C11111.40 (11)H16A—C16—H16B107.8
C9—C10—H10B109.3C16—C17—H17B109.5
C11—C10—H10B109.3C16—C17—H17C109.5
C9—C10—H10A109.3H17B—C17—H17C109.5
C11—C10—H10A109.3C16—C17—H17A109.5
H10B—C10—H10A108.0H17B—C17—H17A109.5
C12—C11—C10113.34 (11)H17C—C17—H17A109.5
C12—C11—H11B108.9C8—N1—C4110.93 (11)
C10—C11—H11B108.9C8—N1—C9124.18 (11)
C12—C11—H11A108.9C4—N1—C9124.88 (11)
C10—C11—H11A108.9
C6—C1—C2—C30.8 (2)O1—C7—C8—N1179.64 (12)
Br1—C1—C2—C3179.59 (10)C3—C7—C8—N10.39 (13)
C1—C2—C3—C40.07 (19)N1—C9—C10—C11160.28 (12)
C1—C2—C3—C7178.64 (13)C9—C10—C11—C12170.64 (12)
C2—C3—C4—C50.9 (2)C10—C11—C12—C13173.80 (12)
C7—C3—C4—C5178.12 (12)C11—C12—C13—C14177.11 (12)
C2—C3—C4—N1179.48 (12)C12—C13—C14—C15178.74 (12)
C7—C3—C4—N11.54 (14)C13—C14—C15—C16177.04 (12)
C3—C4—C5—C60.75 (19)C14—C15—C16—C17178.65 (13)
N1—C4—C5—C6179.65 (12)O2—C8—N1—C4178.27 (13)
C2—C1—C6—C50.9 (2)C7—C8—N1—C41.34 (14)
Br1—C1—C6—C5179.48 (10)O2—C8—N1—C93.0 (2)
C4—C5—C6—C10.10 (19)C7—C8—N1—C9177.35 (11)
C2—C3—C7—O10.4 (2)C5—C4—N1—C8177.75 (13)
C4—C3—C7—O1179.28 (14)C3—C4—N1—C81.88 (15)
C2—C3—C7—C8179.53 (13)C5—C4—N1—C93.6 (2)
C4—C3—C7—C80.68 (13)C3—C4—N1—C9176.80 (12)
O1—C7—C8—O20.7 (2)C10—C9—N1—C889.85 (15)
C3—C7—C8—O2179.23 (13)C10—C9—N1—C491.64 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.373.3028 (17)166
C10—H10B···O1ii0.992.503.4809 (17)169
C5—H5···O1i0.952.613.2431 (17)124
C9—H9B···O2iii0.992.663.2544 (17)120
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.373.3028 (17)166
C10—H10B···O1ii0.992.503.4809 (17)169
C5—H5···O1i0.952.613.2431 (17)124
C9—H9B···O2iii0.992.663.2544 (17)120
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H22BrNO2
Mr352.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)4.8428 (2), 31.7181 (14), 10.7171 (5)
β (°) 101.206 (2)
V3)1614.81 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.55
Crystal size (mm)0.20 × 0.17 × 0.07
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.658, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
33463, 4532, 4029
Rint0.030
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.061, 1.10
No. of reflections4532
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.43

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS2014 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

References

First citationAboul-Fadl, T., Bin-Jubair, F. A. S. & Aboul-Wafa, O. (2010). Eur. J. Med. Chem. 45, 4578–4586.  Web of Science CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKharbach, Y., Kandri Rodi, Y., Renard, C., Essassi, E. M. & El Ammari, L. (2016). IUCrData, 1, x160559.  Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Eur. J. Med. Chem. 9, 25–31.  CAS Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Bodensteiner, M. & El Ammari, L. (2014). Acta Cryst. E70, o588.  CSD CrossRef IUCr Journals Google Scholar
First citationQachchachi, F.-Z., Kandri Rodi, Y., Essassi, E. M., Kunz, W. & El Ammari, L. (2013). Acta Cryst. E69, o1801.  CSD CrossRef IUCr Journals Google Scholar
First citationSarangapani, M. & Reddy, V. M. (1994). Indian J. Heterocycl. Chem. 3, 257–260.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, S. K., Muniyandy, S. & Ramesh, A. (2001). Eur. J. Med. Chem. 36, 615–625.  CrossRef PubMed CAS Google Scholar
First citationSridhar, S. K. & Sreenivasulu, M. (2001). Indian Drugs, 38, 531–534.  CAS Google Scholar
First citationVarma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49–56.  PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds