organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(1S,3R,8R,11S)-2,2,11-Tri­bromo-10-bromo­methyl-3,7,7-tri­methyl­tri­cyclo­[6.4.0.01,3]dodec-9-ene

aLaboratoire de Physico-Chimie Moléculaire et Synthèse Organique, Département de Chimie, Faculté des Sciences, Semlalia BP 2390, Marrakech 40001, Morocco, and bLaboratoire de Chimie de Coordination, CNRS UPR8241, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: a.auhmani@uca.ac.ma

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 28 April 2016; accepted 19 May 2016; online 24 May 2016)

The title compound, C16H22Br4, was synthesized in two steps from β-himachalene, which was isolated from essential oil of the Atlas cedar (cedrus atlantica). It is built up from three fused rings, a seven-membered heptane ring, a six-membered cyclo­hexyl ring bearing both a bromine and a bromo­methyl substituent, and a three-membered propane ring bearing two Br atoms. In the crystal, mol­ecules are linked by C—H⋯Br hydrogen bonds, forming chains propagating along [001]. The absolute configuration was deduced from the chemical pathway and confirmed by resonant scattering [Flack parameter = 0.012 (10)].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Sesquiterpenes have been reported to possess several pharmacological activities such as cytotoxic (David et al., 1999[David, J. P., Santos, A. J. de O., Guedes, M. L. da S., David, J. M., Chai, H.-B., Pezzuto, J. M., Angerhoferand, C. K. & Cordell, G. A. (1999). Pharm. Biol. 37, 165-168.]; Kim et al., 2010[Kim, K. H., Noh, H. J., Choi, S. U., Park, K. M., Seok, S. J. & Lee, K. R. (2010). Bioorg. Med. Chem. Lett. 20, 5385-5388.]), anti­microbial (Sotanaphun et al., 1999[Sotanaphun, U., Lipipun, V., Suttisri, R. & Bavovada, R. (1999). Planta Med. 65, 257-258.]; Ait-Ouazzou et al., 2012[Ait-Ouazzou, A., Lorán, S., Arakrak, A., Laglaoui, A., Rota, C., Herrera, A., Pagán, R. & Conchello, P. (2012). Food. Res. Int. 45, 313-319.]) and anti-inflammatory (Wong et al., 1999[Wong, H. R. & Menendez, I. Y. (1999). Biochem. Biophys. Res. Commun. 262, 375-380.]; Lyss et al., 1998[Lyss, G., Knorre, A., Schmidt, T. J., Pahl, H. L. & Merfort, I. (1998). J. Biol. Chem. 273, 33508-33516.]). The essential cedar oil is mainly composed of sesquiterpene hydro­carbons with notable olfactory and important biological properties. In fact, many different methods for functionalization of this essential oil have been developed in order to prepare new products having olfactory properties suitable for the perfume, cosmetics or insecticides industries (Auhmani et al., 2002[Auhmani, A., Kossareva, E., Eljamili, H., Reglier, M., Pierrot, M. & Benharref, A. (2002). Synth. Commun. 32, 699-707.]; Eljamili et al., 2002[Eljamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]). In order to prepare new products with added value using sesquitertpene hydro­carbons isolated from essential cedar oil, we synthesized the title compound in two steps from β-himachalene. Its structure has been established by spectroscopic analysis 1H and 13C NMR. The absolute structure of the mol­ecule in the crystal, (1S,3R,8R,11S), has been determined by resonant scattering [Flack parameter = 0.012 (10)].

The title compound, Fig. 1[link], contains three fused rings. These include a seven-membered heptane ring, which has a chair conformation, a six-membered cyclo­hexyl ring bearing a bromine and a bromo­methyl substituents, which has a half-chair conformation, and a three-membered propane ring bearing two bromine atoms. The conformation and the geometrical parameters are very similar to those of the closely related compound, (1S,3R,8R,11S)-11-bromo-10-bromo­methyl-2,2-di­chloro-3,7,7-tri­methyl­tri­cyclo [6.4.0.01,3]dodec-9-ene (Benharref et al., 2013[Benharref, A., El karroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o1283.]), which has the same (1S,3R,8R,11S) absolute configuration.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

In the crystal, mol­ecules are linked via C—H⋯Br hydrogen bonds, forming chains propagating along the c axis direction (Table 1[link] and Fig. 2[link])

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯Br3i 0.99 3.01 3.911 (6) 152
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A partial view along the a axis of the crystal packing of the title compound. C—H⋯Br hydrogen bonds (see Table 1[link]) are shown as dashed lines.

Synthesis and crystallization

In a 100 ml flask, Br2 (0.216 g 1.333 mmol) was added drop wise to a solution of (1S,3R,8R)-2,2-di­bromo-3,7,7,10-tetra­methyl­tri­cyclo­[6,4,0,01,3]dodec-9-ene (0.25 g, 0.665 mmol) in 8 ml of CCl4 cooled to 273 K in an ice bath. The reaction mixture was left under magnetic stirring at 273 K for 15 min (the progress of the reaction was monitored by TLC). After completion of the reaction and evaporation of the solvent, the crude product obtained was purified by silica gel flash chromatography using hexane as eluent to give the title compound (yield 30%). Colourless block-like crystals were grown by slow evaporation of a petroleum ether solution of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H22Br4
Mr 533.97
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 8.2323 (3), 12.9269 (6), 16.6298 (8)
V3) 1769.71 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 9.09
Crystal size (mm) 0.43 × 0.40 × 0.30
 
Data collection
Diffractometer Agilent Xcalibur (Eos, Gemini ultra)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.])
Tmin, Tmax 0.419, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11268, 3613, 3134
Rint 0.040
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.059, 1.03
No. of reflections 3613
No. of parameters 184
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.64, −0.51
Absolute structure Flack x determined using 1187 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.012 (10)
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2013 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Structural data


Experimental top

In a 100 ml flask, Br2 (0.216 g 1.333 mmol) was added drop wise to a solution of (1S,3R,8R)-2,2-dibromo-3,7,7,10-tetramethyltricyclo[6,4,0,01,3]dodec-9-ene (0.25 g, 0.665 mmol) in 8 ml of CCl4 cooled to 273 K in an ice bath. The reaction mixture was left under magnetic stirring at 273 K for 15 min (the progress of the reaction was monitored by TLC). After completion of the reaction and evaporation of the solvent, the crude product obtained was purified by silica gel flash chromatography using hexane as eluent to give the title compound (yield 30%). Colourless block-like crystals were grown by slow evaporation of a petroleum ether solution of the title compound.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Sesquiterpenes have been reported to possess several pharmacological activities such as cytotoxic (David et al., 1999; Kim et al., 2010), antimicrobial (Sotanaphun et al., 1999; Ait-Ouazzou et al., 2012) and anti-inflammatory (Wong et al., 1999; Lyss et al., 1998). The essential cedar oil is mainly composed of sesquiterpene hydrocarbons with notable olfactory and important biological properties. In fact, many different methods for functionalization of this essential oil have been developed in order to prepare new products having olfactory properties suitable for the perfume, cosmetics or insecticides industries (Auhmani et al., 2002; Eljamili et al., 2002). In order to prepare new products with added value using sesquitertpene hydrocarbons isolated from essential cedar oil, we synthesized the title compound in two steps from β-himachalene. Its structure has been established by spectroscopic analysis 1H and 13C NMR. The absolute structure of the molecule in the crystal, (1S,3R,8R,11S), has been determined by resonant scattering [Flack parameter = 0.012 (10)].

The title compound, Fig. 1, contains three fused rings. These include a seven-membered heptane ring, which has a chair conformation, a six-membered cyclohexyl ring bearing a bromine and a bromomethyl substituents, which has a half-chair conformation, and a three-membered propane ring bearing two bromine atoms. The conformation and the geometrical parameters are very similar to those of the closely related compound, (1S,3R,8R,11S)-11-bromo-10-bromomethyl-2,2-dichloro-3,7,7-trimethyltricyclo [6.4.0.01,3]dodec-9-ene (Benharref et al., 2013), which has the same (1S,3R,8R,11S) absolute configuration.

In the crystal, molecules are linked via C—H···Br hydrogen bonds, forming chains propagating along the c axis direction (Table 1 and Fig. 2)

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015b).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atom labelling. Displacement ellipsoid are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view along the a axis of the crystal packing of the title compound. C—H···Br hydrogen bonds (see Table 1) are shown as dashed lines.
(1S,3R,8R,11S)-2,2,11-Tribromo-10-bromomethyl-3,7,7-trimethyltricyclo[6.4.0.01,3]dodec-9-ene top
Crystal data top
C16H22Br4Dx = 2.004 Mg m3
Mr = 533.97Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3346 reflections
a = 8.2323 (3) Åθ = 4.0–27.6°
b = 12.9269 (6) ŵ = 9.09 mm1
c = 16.6298 (8) ÅT = 173 K
V = 1769.71 (13) Å3Block, colourless
Z = 40.43 × 0.40 × 0.30 mm
F(000) = 1032
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
3613 independent reflections
Radiation source: Enhance (Mo) X-ray Source3134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.1978 pixels mm-1θmax = 26.4°, θmin = 3.2°
ω scansh = 109
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 1615
Tmin = 0.419, Tmax = 1.000l = 2020
11268 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0234P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3613 reflectionsΔρmax = 0.64 e Å3
184 parametersΔρmin = 0.51 e Å3
0 restraintsAbsolute structure: Flack x determined using 1187 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (10)
Crystal data top
C16H22Br4V = 1769.71 (13) Å3
Mr = 533.97Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.2323 (3) ŵ = 9.09 mm1
b = 12.9269 (6) ÅT = 173 K
c = 16.6298 (8) Å0.43 × 0.40 × 0.30 mm
Data collection top
Agilent Xcalibur (Eos, Gemini ultra)
diffractometer
3613 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
3134 reflections with I > 2σ(I)
Tmin = 0.419, Tmax = 1.000Rint = 0.040
11268 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.059Δρmax = 0.64 e Å3
S = 1.03Δρmin = 0.51 e Å3
3613 reflectionsAbsolute structure: Flack x determined using 1187 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
184 parametersAbsolute structure parameter: 0.012 (10)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.05260 (8)0.56106 (5)0.67535 (4)0.03128 (18)
Br20.13902 (7)0.76812 (5)0.76212 (4)0.02943 (18)
Br30.60458 (8)0.43670 (5)0.58816 (4)0.02900 (17)
Br40.55545 (9)0.74212 (6)0.50995 (4)0.0406 (2)
C10.3528 (6)0.5794 (4)0.7786 (3)0.0139 (12)
C20.1822 (6)0.6206 (4)0.7604 (4)0.0195 (14)
C30.2090 (7)0.5603 (4)0.8355 (4)0.0174 (13)
C40.2083 (8)0.6157 (5)0.9159 (4)0.0241 (15)
H4A0.10190.60420.94220.029*
H4B0.22000.69090.90640.029*
C50.3426 (7)0.5802 (4)0.9728 (4)0.0237 (15)
H5A0.30730.59191.02900.028*
H5B0.36010.50500.96560.028*
C60.5019 (7)0.6364 (5)0.9588 (4)0.0274 (16)
H6A0.57690.61711.00290.033*
H6B0.48080.71150.96380.033*
C70.5918 (7)0.6184 (4)0.8781 (4)0.0177 (13)
C80.4870 (7)0.6539 (4)0.8038 (4)0.0142 (13)
H80.43070.71870.82120.017*
C90.5864 (6)0.6831 (4)0.7325 (4)0.0160 (13)
H90.65680.74080.73870.019*
C100.5871 (7)0.6373 (4)0.6616 (3)0.0169 (13)
C110.4812 (7)0.5458 (4)0.6459 (4)0.0155 (13)
H110.38830.56810.61130.019*
C120.4136 (7)0.4963 (4)0.7215 (3)0.0161 (13)
H12A0.49940.45500.74810.019*
H12B0.32320.44920.70720.019*
C130.1367 (7)0.4518 (4)0.8427 (4)0.0279 (16)
H13A0.02270.45680.85910.042*
H13B0.19750.41220.88300.042*
H13C0.14370.41660.79060.042*
C140.6506 (8)0.5080 (5)0.8732 (4)0.0337 (18)
H14A0.71300.49120.92160.051*
H14B0.71990.49980.82570.051*
H14C0.55710.46140.86900.051*
C150.7424 (10)0.6898 (5)0.8830 (5)0.0389 (19)
H15A0.80110.67620.93320.058*
H15B0.70740.76220.88180.058*
H15C0.81400.67610.83720.058*
C160.6895 (8)0.6788 (5)0.5946 (4)0.0235 (15)
H16A0.75460.62190.57120.028*
H16B0.76570.73110.61630.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0204 (3)0.0462 (4)0.0273 (4)0.0028 (3)0.0094 (3)0.0014 (4)
Br20.0272 (3)0.0255 (3)0.0356 (4)0.0109 (3)0.0029 (3)0.0066 (3)
Br30.0374 (4)0.0256 (3)0.0240 (4)0.0037 (3)0.0084 (3)0.0079 (3)
Br40.0426 (4)0.0494 (4)0.0297 (4)0.0010 (4)0.0092 (4)0.0182 (4)
C10.011 (3)0.019 (3)0.012 (3)0.000 (2)0.001 (2)0.000 (3)
C20.015 (3)0.019 (3)0.024 (4)0.004 (2)0.006 (3)0.003 (3)
C30.013 (3)0.023 (3)0.016 (3)0.000 (3)0.003 (3)0.000 (3)
C40.026 (3)0.026 (3)0.020 (4)0.006 (3)0.005 (3)0.004 (3)
C50.030 (4)0.030 (4)0.012 (3)0.005 (3)0.002 (3)0.003 (3)
C60.028 (4)0.037 (4)0.017 (4)0.007 (3)0.003 (3)0.002 (3)
C70.017 (3)0.024 (3)0.013 (3)0.001 (3)0.005 (3)0.002 (3)
C80.015 (3)0.015 (3)0.013 (3)0.002 (2)0.003 (3)0.002 (3)
C90.011 (3)0.012 (3)0.025 (3)0.003 (2)0.003 (3)0.003 (3)
C100.018 (3)0.018 (3)0.014 (3)0.000 (2)0.002 (3)0.006 (3)
C110.013 (3)0.017 (3)0.016 (3)0.004 (2)0.000 (2)0.005 (3)
C120.017 (3)0.014 (3)0.017 (3)0.001 (2)0.004 (3)0.000 (3)
C130.025 (3)0.026 (3)0.034 (4)0.009 (3)0.006 (3)0.010 (3)
C140.037 (4)0.038 (4)0.026 (4)0.019 (3)0.011 (4)0.003 (3)
C150.039 (4)0.050 (4)0.028 (4)0.007 (4)0.015 (4)0.003 (4)
C160.023 (3)0.027 (3)0.021 (4)0.002 (3)0.004 (3)0.004 (3)
Geometric parameters (Å, º) top
Br1—C21.933 (6)C7—C81.575 (8)
Br2—C21.939 (5)C8—C91.490 (8)
Br3—C111.985 (5)C8—H81.0000
Br4—C161.968 (6)C9—C101.320 (8)
C1—C121.520 (8)C9—H90.9500
C1—C81.524 (7)C10—C111.492 (8)
C1—C21.532 (7)C10—C161.496 (8)
C1—C31.535 (7)C11—C121.516 (8)
C2—C31.488 (8)C11—H111.0000
C3—C41.516 (8)C12—H12A0.9900
C3—C131.529 (8)C12—H12B0.9900
C4—C51.526 (8)C13—H13A0.9800
C4—H4A0.9900C13—H13B0.9800
C4—H4B0.9900C13—H13C0.9800
C5—C61.517 (8)C14—H14A0.9800
C5—H5A0.9900C14—H14B0.9800
C5—H5B0.9900C14—H14C0.9800
C6—C71.550 (8)C15—H15A0.9800
C6—H6A0.9900C15—H15B0.9800
C6—H6B0.9900C15—H15C0.9800
C7—C141.508 (8)C16—H16A0.9900
C7—C151.547 (9)C16—H16B0.9900
C12—C1—C8112.3 (4)C9—C8—H8105.8
C12—C1—C2115.1 (5)C1—C8—H8105.8
C8—C1—C2119.9 (5)C7—C8—H8105.8
C12—C1—C3121.7 (5)C10—C9—C8126.8 (5)
C8—C1—C3119.4 (5)C10—C9—H9116.6
C2—C1—C358.1 (4)C8—C9—H9116.6
C3—C2—C161.1 (4)C9—C10—C11120.6 (5)
C3—C2—Br1119.2 (4)C9—C10—C16120.4 (5)
C1—C2—Br1120.8 (4)C11—C10—C16118.9 (5)
C3—C2—Br2122.0 (4)C10—C11—C12113.8 (5)
C1—C2—Br2120.5 (4)C10—C11—Br3110.4 (4)
Br1—C2—Br2107.5 (3)C12—C11—Br3106.8 (4)
C2—C3—C4119.5 (5)C10—C11—H11108.6
C2—C3—C13119.2 (5)C12—C11—H11108.6
C4—C3—C13111.3 (5)Br3—C11—H11108.6
C2—C3—C160.9 (4)C11—C12—C1109.9 (4)
C4—C3—C1118.1 (5)C11—C12—H12A109.7
C13—C3—C1119.7 (5)C1—C12—H12A109.7
C3—C4—C5113.7 (5)C11—C12—H12B109.7
C3—C4—H4A108.8C1—C12—H12B109.7
C5—C4—H4A108.8H12A—C12—H12B108.2
C3—C4—H4B108.8C3—C13—H13A109.5
C5—C4—H4B108.8C3—C13—H13B109.5
H4A—C4—H4B107.7H13A—C13—H13B109.5
C6—C5—C4112.8 (5)C3—C13—H13C109.5
C6—C5—H5A109.0H13A—C13—H13C109.5
C4—C5—H5A109.0H13B—C13—H13C109.5
C6—C5—H5B109.0C7—C14—H14A109.5
C4—C5—H5B109.0C7—C14—H14B109.5
H5A—C5—H5B107.8H14A—C14—H14B109.5
C5—C6—C7118.3 (5)C7—C14—H14C109.5
C5—C6—H6A107.7H14A—C14—H14C109.5
C7—C6—H6A107.7H14B—C14—H14C109.5
C5—C6—H6B107.7C7—C15—H15A109.5
C7—C6—H6B107.7C7—C15—H15B109.5
H6A—C6—H6B107.1H15A—C15—H15B109.5
C14—C7—C15108.0 (5)C7—C15—H15C109.5
C14—C7—C6110.0 (5)H15A—C15—H15C109.5
C15—C7—C6104.3 (5)H15B—C15—H15C109.5
C14—C7—C8114.1 (5)C10—C16—Br4111.4 (4)
C15—C7—C8107.8 (5)C10—C16—H16A109.3
C6—C7—C8111.9 (5)Br4—C16—H16A109.3
C9—C8—C1109.9 (5)C10—C16—H16B109.3
C9—C8—C7113.4 (5)Br4—C16—H16B109.3
C1—C8—C7115.4 (5)H16A—C16—H16B108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Br3i0.993.013.911 (6)152
Symmetry code: (i) x+1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···Br3i0.993.013.911 (6)152
Symmetry code: (i) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H22Br4
Mr533.97
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)8.2323 (3), 12.9269 (6), 16.6298 (8)
V3)1769.71 (13)
Z4
Radiation typeMo Kα
µ (mm1)9.09
Crystal size (mm)0.43 × 0.40 × 0.30
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini ultra)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2014)
Tmin, Tmax0.419, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11268, 3613, 3134
Rint0.040
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.059, 1.03
No. of reflections3613
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.51
Absolute structureFlack x determined using 1187 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.012 (10)

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a), SHELXL2013 (Sheldrick, 2015b), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

 

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Abingdon, England.  Google Scholar
First citationAit-Ouazzou, A., Lorán, S., Arakrak, A., Laglaoui, A., Rota, C., Herrera, A., Pagán, R. & Conchello, P. (2012). Food. Res. Int. 45, 313–319.  CAS Google Scholar
First citationAuhmani, A., Kossareva, E., Eljamili, H., Reglier, M., Pierrot, M. & Benharref, A. (2002). Synth. Commun. 32, 699–707.  Web of Science CrossRef CAS Google Scholar
First citationBenharref, A., El karroumi, J., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o1283.  CSD CrossRef IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDavid, J. P., Santos, A. J. de O., Guedes, M. L. da S., David, J. M., Chai, H.-B., Pezzuto, J. M., Angerhoferand, C. K. & Cordell, G. A. (1999). Pharm. Biol. 37, 165–168.  CrossRef CAS Google Scholar
First citationEljamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKim, K. H., Noh, H. J., Choi, S. U., Park, K. M., Seok, S. J. & Lee, K. R. (2010). Bioorg. Med. Chem. Lett. 20, 5385–5388.  CrossRef CAS PubMed Google Scholar
First citationLyss, G., Knorre, A., Schmidt, T. J., Pahl, H. L. & Merfort, I. (1998). J. Biol. Chem. 273, 33508–33516.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSotanaphun, U., Lipipun, V., Suttisri, R. & Bavovada, R. (1999). Planta Med. 65, 257–258.  CrossRef PubMed CAS Google Scholar
First citationWong, H. R. & Menendez, I. Y. (1999). Biochem. Biophys. Res. Commun. 262, 375–380.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds