organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Phen­­oxy­methyl-6-phenyl-1,2,4-triazolo[3,4-b][1,3,4]thia­diazole

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 9 April 2016; accepted 14 April 2016; online 26 April 2016)

In the title compound, C16H12N4OS, the bicyclic triazolo­thia­diazole core is approximately planar, with an r.m.s. deviation of 0.018 Å. The phenyl rings are inclined to its mean plane by 7.66 (7) and 71.79 (7)°. In the crystal, mol­ecules are linked via a C—H⋯π inter­action and a ππ inter­action [inter­centroid distance = 3.2942 (9) Å] involving inversion-related triazole rings. These inter­actions result in the formation of chains propagating along [10-1].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-Bridged heterocycles derived from 1,2,4-triazoles have applications in medicine, agriculture and industry (Farghaly et al., 2006[Farghaly, A. R., De Clercq, E. D. & El-Kashef, H. (2006). Arkivoc, 10, 137-151.]). Heterocycles bearing a triazole or 1,3,4-thia­diazole moiety are reported to show a wide spectrum of biological activity (Suresh Kumar et al., 2010[Suresh Kumar, G. V., Rajendraprasad, Y., Mallikarjuna, Y., Chandrashekar, B. P. & Kistayya, C. (2010). Eur. J. Med. Chem. 45, 2063-2074.]; Mallikarjuna et al., 2009[Mallikarjuna, B. P., Sastry, B. S., Suresh Kumar, G. V., Rajendraprasad, Y., Chandrashekar, S. M. & Sathisha, K. (2009). Eur. J. Med. Chem. 44, 4739-4746.]) such as anti-bacterial (Abdel-Rahman & Farghaly, 2004[Abdel-Rahman, & Farghaly, A. H. (2004). Jnl Chin. Chem. Soc. 51, 147-156.]), anti-aggregator agents (Czarnocka-Janowicz et al., 1991[Czarnocka-Janowicz, A., Foks, H., Nasal, A., Petrusewicz, J., Damasiewicz, B., Radwańska, A. & Kaliszan, R. (1991). Pharmazie, 46, 109-112.]), anti-viral (Srivastava et al., 1991[Srivastava, J., Swarup, S., Saxena, V. K. & Chaudhary, B. L. (1991). J. Indian Chem. Soc. 68, 103-107.]) and anti-inflammatory (Unangst et al., 1992[Unangst, P. C., Shrum, G. P., Connor, D. T., Dyer, R. D. & Schrier, D. J. (1992). J. Med. Chem. 35, 3691-3698.]) activities. Triazolo­thia­diazo­les in particular are reported to possess anti-bacterial, anti­fungal, CNS depressant, anti-viral, analgesic, anti-tuberculosis and plant-growth regulatory effects (Abdallah et al., 2005[Abdallah, M. A., Riyadh, S. M., Abbas, I. M. S. & Gomha, M. (2005). Jnl Chin. Chem. Soc. 52, 987-994.]; El-Khawass & Habib 1989[El-Khawass, S. M. & Habib, N. S. (1989). J. Heterocycl. Chem. 26, 177-181.]; Mishra, 1987[Mishra, B. (1987). Indian J. Chem. Sect. B, 27B, 576-580.]; Shiradkar & Kale, 2006[Shiradkar, M. & Kale, R. (2006). Indian J. Chem. Sect. B, 45, 1009-1013.]). Based on such facts, we report herein on the synthesis and crystal structure of the title compound.

In the title mol­ecule, (Fig. 1[link]), the bicyclic triazolo­thia­diazole core is approximately planar with an r.m.s. deviation of 0.018 Å and a maximum deviation of 0.021 (1) Å for atom N2. The phenyl rings, C2–C7 and C11–C16, are inclined to its mean plane by 7.66 (7) and 71.79 (7)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labeling and 50% probability displacement ellipsoids.

In the crystal, mol­ecules are linked via a C—H⋯π inter­action (Fig. 2[link] and Table 1[link]) and by ππ inter­actions between triazole rings [Cg2⋯Cg2i = 3.2942 (9) Å, Cg2 is the centroid of ring N2–N4/C8/C9, symmetry code (i): − x + 1, − y + 1, − z + 2]; see Fig. 3[link]. These inter­actions result in the formation of chains propagating along [10[\overline{1}]].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cgi 0.95 2.79 3.633 (2) 148
Symmetry code: (i) -x, -y+1, -z+1.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis. H atoms have been omitted for clarity.
[Figure 3]
Figure 3
Details of the offset π-stacking in the crystal of the title compound.

Synthesis and crystallization

A mixture of 4-amino-3-phen­oxy­methyl-1,2,4-triazoline-5-thione (2.22 g, 0.01 mol) and benzoic acid (1.22 g, 0.01 mol) in phospho­rus oxychloride (20 ml) was heated under reflux on a steam bath for 4 h and then left to cool. The reaction mixture was poured portionwise into ice–water (50 ml) with stirring and allowed to stand at room temperature for 2 h. The solid that formed was collected by filtration and crystallized from ethanol as colorless plates (yield: 82%; m.p.: 482–483 K). IR: 1600 cm−1 (C=N). 1H NMR (CDCl3): δ 6.7–7.5 (m, 10 H, Ar—H), δ 5.0 (s, 2H, OCH2).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H12N4OS
Mr 308.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 5.9850 (3), 21.0709 (10), 11.5617 (5)
β (°) 100.423 (2)
V3) 1433.98 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.07
Crystal size (mm) 0.30 × 0.16 × 0.02
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.79, 0.97
No. of measured, independent and observed [I > 2σ(I)] reflections 10736, 2799, 2464
Rint 0.038
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 1.03
No. of reflections 2799
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.30
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Experimental top

A mixture of 4-amino-3-phenoxymethyl-1,2,4-triazoline-5-thione (2.22 g, 0.01 mol) and benzoic acid (1.22 g, 0.01 mol) in phosphorus oxychloride (20 ml) was heated under reflux on a steam bath for 4 h and then left to cool. The reaction mixture was poured portionwise into ice–water (50 ml) with stirring and allowed to stand at room temperature for 2 h. The solid that formed was collected by filtration and crystallized from ethanol as colorless plates (yield: 82%; m.p.: 482–483 K). IR: 1600 cm-1 (CN). 1H NMR (CDCl3): δ 6.7–7.5 (m, 10 H, Ar—H), δ 5.0 (s, 2H, OCH2).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

N-Bridged heterocycles derived from 1,2,4-triazoles have applications in medicine, agriculture and industry (Farghaly et al., 2006). Heterocycles bearing a triazole or 1,3,4-thiadiazole moiety are reported to show a wide spectrum of biological activity (Suresh Kumar et al., 2010; Mallikarjuna et al., 2009) such as anti-bacterial (Abdel-Rahman & Farghaly, 2004), anti-aggregator agents (Czarnocka-Janowicz et al., 1991), anti-viral (Srivastava et al., 1991) and anti-inflammatory (Unangst et al., 1992) activities. Triazolothiadiazoles in particular are reported to possess anti-bacterial, antifungal, CNS depressant, anti-viral, analgesic, anti-tuberculosis and plant-growth regulatory effects (Abdallah et al., 2005; El-Khawass & Habib 1989; Mishra, 1987; Shiradkar & Kale, 2006). Based on such facts, we report herein on the synthesis and crystal structure of the title compound.

In the title molecule, (Fig. 1), the bicyclic triazolothiadiazole core is approximately planar with an r.m.s. deviation of 0.018 Å and a maximum deviation of 0.021 (1) Å for atom N2. The phenyl rings, C2–C7 and C11–C16, are inclined to its mean plane by 7.66 (7) and 71.79 (7)°, respectively.

In the crystal, molecules are linked via a C—H···π interaction (Fig. 2 and Table 1) and by ππ interactions between triazole rings [Cg2···Cg2i = 3.2942 (9) Å, Cg2 is the centroid of ring N2–N4/C8/C9, symmetry code (i): - x + 1, - y + 1, - z + 2]; see Fig. 3. These interactions result in the formation of chains propagating along [101].

Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labeling and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Details of the offset π-stacking in the crystal of the title compound.
3-Phenoxymethyl-6-phenyl-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole top
Crystal data top
C16H12N4OSF(000) = 640
Mr = 308.36Dx = 1.428 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 5.9850 (3) ÅCell parameters from 7818 reflections
b = 21.0709 (10) Åθ = 4.2–72.5°
c = 11.5617 (5) ŵ = 2.07 mm1
β = 100.423 (2)°T = 150 K
V = 1433.98 (12) Å3Plate, colourless
Z = 40.30 × 0.16 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2799 independent reflections
Radiation source: INCOATEC IµS micro–focus source2464 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.4167 pixels mm-1θmax = 72.5°, θmin = 4.2°
ω scansh = 76
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2225
Tmin = 0.79, Tmax = 0.97l = 1414
10736 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.5423P]
where P = (Fo2 + 2Fc2)/3
2799 reflections(Δ/σ)max = 0.002
199 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H12N4OSV = 1433.98 (12) Å3
Mr = 308.36Z = 4
Monoclinic, P21/cCu Kα radiation
a = 5.9850 (3) ŵ = 2.07 mm1
b = 21.0709 (10) ÅT = 150 K
c = 11.5617 (5) Å0.30 × 0.16 × 0.02 mm
β = 100.423 (2)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2799 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
2464 reflections with I > 2σ(I)
Tmin = 0.79, Tmax = 0.97Rint = 0.038
10736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
2799 reflectionsΔρmin = 0.30 e Å3
199 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.80639 (6)0.53901 (2)0.80341 (3)0.03014 (13)
O10.27388 (19)0.32989 (6)0.83039 (10)0.0355 (3)
N10.4069 (2)0.48387 (6)0.74636 (11)0.0293 (3)
N20.5213 (2)0.45919 (6)0.85076 (11)0.0273 (3)
N30.8120 (2)0.45577 (6)0.99887 (12)0.0315 (3)
N40.6450 (2)0.41284 (6)1.01880 (12)0.0327 (3)
C10.5389 (3)0.52624 (7)0.71208 (14)0.0286 (3)
C20.4730 (3)0.56291 (8)0.60310 (13)0.0308 (3)
C30.6286 (3)0.60294 (9)0.56407 (15)0.0378 (4)
H30.77840.60670.60790.045*
C40.5652 (4)0.63750 (10)0.46100 (17)0.0454 (5)
H40.67220.66450.43410.055*
C50.3467 (4)0.63270 (10)0.39754 (16)0.0473 (5)
H50.30350.65660.32740.057*
C60.1908 (3)0.59298 (10)0.43620 (16)0.0452 (5)
H60.04090.58960.39220.054*
C70.2524 (3)0.55821 (9)0.53848 (15)0.0374 (4)
H70.14480.53120.56480.045*
C80.7310 (2)0.48242 (7)0.89660 (14)0.0280 (3)
C90.4735 (3)0.41535 (7)0.92963 (14)0.0295 (3)
C100.2645 (3)0.37680 (8)0.91792 (15)0.0331 (4)
H10A0.25450.35630.99390.040*
H10B0.12900.40400.89460.040*
C110.1005 (3)0.28603 (7)0.81265 (13)0.0279 (3)
C120.0781 (3)0.28504 (8)0.87418 (14)0.0336 (4)
H120.08610.31550.93390.040*
C130.2456 (3)0.23880 (9)0.84714 (15)0.0393 (4)
H130.36790.23760.88930.047*
C140.2361 (3)0.19474 (8)0.75990 (15)0.0386 (4)
H140.35200.16360.74150.046*
C150.0568 (3)0.19615 (8)0.69943 (15)0.0360 (4)
H150.05000.16590.63920.043*
C160.1130 (3)0.24126 (8)0.72580 (14)0.0329 (4)
H160.23710.24160.68490.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0238 (2)0.0329 (2)0.0308 (2)0.00024 (14)0.00293 (15)0.00098 (15)
O10.0313 (6)0.0377 (6)0.0394 (6)0.0097 (5)0.0120 (5)0.0135 (5)
N10.0244 (6)0.0340 (7)0.0268 (6)0.0049 (5)0.0031 (5)0.0046 (5)
N20.0220 (6)0.0283 (7)0.0291 (6)0.0018 (5)0.0021 (5)0.0039 (5)
N30.0264 (6)0.0317 (7)0.0336 (7)0.0007 (5)0.0019 (5)0.0008 (5)
N40.0300 (7)0.0314 (7)0.0348 (7)0.0016 (5)0.0007 (6)0.0020 (6)
C10.0246 (7)0.0306 (8)0.0289 (8)0.0052 (6)0.0001 (6)0.0071 (6)
C20.0308 (8)0.0325 (8)0.0275 (7)0.0081 (6)0.0008 (6)0.0058 (6)
C30.0334 (9)0.0454 (10)0.0335 (8)0.0064 (7)0.0029 (7)0.0003 (7)
C40.0489 (11)0.0502 (11)0.0383 (10)0.0095 (8)0.0109 (8)0.0069 (8)
C50.0556 (12)0.0530 (12)0.0311 (9)0.0208 (9)0.0022 (8)0.0039 (8)
C60.0422 (10)0.0549 (12)0.0331 (9)0.0162 (9)0.0074 (8)0.0048 (8)
C70.0328 (9)0.0428 (10)0.0328 (8)0.0072 (7)0.0041 (7)0.0058 (7)
C80.0221 (7)0.0284 (8)0.0312 (8)0.0018 (6)0.0014 (6)0.0052 (6)
C90.0275 (8)0.0284 (8)0.0313 (8)0.0027 (6)0.0024 (6)0.0044 (6)
C100.0302 (8)0.0344 (9)0.0348 (8)0.0028 (6)0.0063 (7)0.0091 (7)
C110.0257 (7)0.0299 (8)0.0272 (7)0.0027 (6)0.0021 (6)0.0013 (6)
C120.0321 (8)0.0407 (9)0.0283 (8)0.0030 (7)0.0063 (6)0.0024 (7)
C130.0334 (9)0.0485 (11)0.0370 (9)0.0086 (7)0.0090 (7)0.0062 (8)
C140.0396 (9)0.0360 (9)0.0379 (9)0.0111 (7)0.0010 (7)0.0048 (7)
C150.0429 (9)0.0303 (9)0.0326 (8)0.0037 (7)0.0014 (7)0.0017 (7)
C160.0343 (9)0.0346 (9)0.0308 (8)0.0031 (7)0.0081 (7)0.0025 (6)
Geometric parameters (Å, º) top
S1—C81.7210 (17)C5—H50.9500
S1—C11.7716 (15)C6—C71.383 (3)
O1—C111.3772 (18)C6—H60.9500
O1—C101.4229 (19)C7—H70.9500
N1—C11.301 (2)C9—C101.477 (2)
N1—N21.3772 (18)C10—H10A0.9900
N2—C81.362 (2)C10—H10B0.9900
N2—C91.364 (2)C11—C121.387 (2)
N3—C81.320 (2)C11—C161.390 (2)
N3—N41.3976 (19)C12—C131.392 (2)
N4—C91.318 (2)C12—H120.9500
C1—C21.470 (2)C13—C141.379 (3)
C2—C31.391 (3)C13—H130.9500
C2—C71.398 (2)C14—C151.383 (3)
C3—C41.390 (3)C14—H140.9500
C3—H30.9500C15—C161.385 (2)
C4—C51.382 (3)C15—H150.9500
C4—H40.9500C16—H160.9500
C5—C61.387 (3)
C8—S1—C187.53 (7)N3—C8—S1139.50 (12)
C11—O1—C10116.52 (12)N2—C8—S1109.45 (11)
C1—N1—N2107.06 (12)N4—C9—N2108.78 (14)
C8—N2—C9105.86 (13)N4—C9—C10125.22 (15)
C8—N2—N1118.82 (13)N2—C9—C10125.99 (14)
C9—N2—N1135.27 (13)O1—C10—C9107.79 (13)
C8—N3—N4105.39 (13)O1—C10—H10A110.1
C9—N4—N3108.93 (13)C9—C10—H10A110.1
N1—C1—C2122.58 (14)O1—C10—H10B110.1
N1—C1—S1117.12 (12)C9—C10—H10B110.1
C2—C1—S1120.30 (12)H10A—C10—H10B108.5
C3—C2—C7119.53 (16)O1—C11—C12124.31 (14)
C3—C2—C1120.35 (15)O1—C11—C16115.17 (14)
C7—C2—C1120.12 (16)C12—C11—C16120.52 (15)
C4—C3—C2120.06 (17)C11—C12—C13119.05 (16)
C4—C3—H3120.0C11—C12—H12120.5
C2—C3—H3120.0C13—C12—H12120.5
C5—C4—C3120.15 (19)C14—C13—C12120.80 (16)
C5—C4—H4119.9C14—C13—H13119.6
C3—C4—H4119.9C12—C13—H13119.6
C4—C5—C6120.02 (17)C13—C14—C15119.57 (16)
C4—C5—H5120.0C13—C14—H14120.2
C6—C5—H5120.0C15—C14—H14120.2
C7—C6—C5120.29 (18)C14—C15—C16120.60 (16)
C7—C6—H6119.9C14—C15—H15119.7
C5—C6—H6119.9C16—C15—H15119.7
C6—C7—C2119.95 (18)C15—C16—C11119.45 (16)
C6—C7—H7120.0C15—C16—H16120.3
C2—C7—H7120.0C11—C16—H16120.3
N3—C8—N2111.04 (14)
C1—N1—N2—C81.29 (18)C9—N2—C8—S1179.52 (10)
C1—N1—N2—C9178.30 (16)N1—N2—C8—S11.71 (17)
C8—N3—N4—C90.08 (17)C1—S1—C8—N3177.26 (19)
N2—N1—C1—C2179.93 (13)C1—S1—C8—N21.16 (11)
N2—N1—C1—S10.27 (16)N3—N4—C9—N20.30 (17)
C8—S1—C1—N10.54 (13)N3—N4—C9—C10179.72 (14)
C8—S1—C1—C2179.13 (13)C8—N2—C9—N40.55 (17)
N1—C1—C2—C3173.41 (15)N1—N2—C9—N4176.72 (15)
S1—C1—C2—C36.9 (2)C8—N2—C9—C10179.47 (15)
N1—C1—C2—C77.2 (2)N1—N2—C9—C103.3 (3)
S1—C1—C2—C7172.46 (12)C11—O1—C10—C9175.43 (13)
C7—C2—C3—C40.6 (3)N4—C9—C10—O1106.96 (18)
C1—C2—C3—C4179.97 (16)N2—C9—C10—O173.1 (2)
C2—C3—C4—C50.6 (3)C10—O1—C11—C120.2 (2)
C3—C4—C5—C60.5 (3)C10—O1—C11—C16179.35 (14)
C4—C5—C6—C70.3 (3)O1—C11—C12—C13179.05 (15)
C5—C6—C7—C20.2 (3)C16—C11—C12—C130.4 (2)
C3—C2—C7—C60.4 (2)C11—C12—C13—C140.5 (3)
C1—C2—C7—C6179.76 (15)C12—C13—C14—C150.7 (3)
N4—N3—C8—N20.43 (17)C13—C14—C15—C160.1 (3)
N4—N3—C8—S1178.84 (15)C14—C15—C16—C111.0 (3)
C9—N2—C8—N30.62 (17)O1—C11—C16—C15178.35 (14)
N1—N2—C8—N3177.19 (12)C12—C11—C16—C151.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cgi0.952.793.633 (2)148
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cgi0.952.793.633 (2)148
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H12N4OS
Mr308.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)5.9850 (3), 21.0709 (10), 11.5617 (5)
β (°) 100.423 (2)
V3)1433.98 (12)
Z4
Radiation typeCu Kα
µ (mm1)2.07
Crystal size (mm)0.30 × 0.16 × 0.02
Data collection
DiffractometerBruker D8 VENTURE PHOTON 100 CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2016)
Tmin, Tmax0.79, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
10736, 2799, 2464
Rint0.038
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 1.03
No. of reflections2799
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.30

Computer programs: APEX3 (Bruker, 2016), SAINT (Bruker, 2016), SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), DIAMOND (Brandenburg & Putz, 2012), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The support of NSF–MRI Grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAbdallah, M. A., Riyadh, S. M., Abbas, I. M. S. & Gomha, M. (2005). Jnl Chin. Chem. Soc. 52, 987–994.  CrossRef CAS Google Scholar
First citationAbdel-Rahman, & Farghaly, A. H. (2004). Jnl Chin. Chem. Soc. 51, 147–156.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCzarnocka-Janowicz, A., Foks, H., Nasal, A., Petrusewicz, J., Damasiewicz, B., Radwańska, A. & Kaliszan, R. (1991). Pharmazie, 46, 109–112.  PubMed CAS Google Scholar
First citationEl-Khawass, S. M. & Habib, N. S. (1989). J. Heterocycl. Chem. 26, 177–181.  CAS Google Scholar
First citationFarghaly, A. R., De Clercq, E. D. & El-Kashef, H. (2006). Arkivoc, 10, 137–151.  CrossRef Google Scholar
First citationMallikarjuna, B. P., Sastry, B. S., Suresh Kumar, G. V., Rajendraprasad, Y., Chandrashekar, S. M. & Sathisha, K. (2009). Eur. J. Med. Chem. 44, 4739–4746.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMishra, B. (1987). Indian J. Chem. Sect. B, 27B, 576–580.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShiradkar, M. & Kale, R. (2006). Indian J. Chem. Sect. B, 45, 1009–1013.  Google Scholar
First citationSrivastava, J., Swarup, S., Saxena, V. K. & Chaudhary, B. L. (1991). J. Indian Chem. Soc. 68, 103–107.  CAS Google Scholar
First citationSuresh Kumar, G. V., Rajendraprasad, Y., Mallikarjuna, Y., Chandrashekar, B. P. & Kistayya, C. (2010). Eur. J. Med. Chem. 45, 2063–2074.  CrossRef CAS PubMed Google Scholar
First citationUnangst, P. C., Shrum, G. P., Connor, D. T., Dyer, R. D. & Schrier, D. J. (1992). J. Med. Chem. 35, 3691–3698.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds