organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Bromo-5-methyl­pyridine

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 13 January 2016; accepted 15 January 2016; online 23 January 2016)

The title compound, C6H6BrN, has half of a mol­ecule in the asymmetric unit, as it sits on a crystallographic plane of symmetry. In the crystal, weak C—H⋯N inter­actions link the mol­ecules, forming chains along [100]. No ππ inter­actions are observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

2-Bromo­pyridine and its derivatives are useful precursors for the formation of bi­pyridine and terpyridine ligands. Herein, we report the crystal structure of 2-bromo-5-methyl­pyridine, Fig. 1[link]. The planar mol­ecule lies on a crystallographic plane of symmetry, with a half mol­ecule present in the asymmetric unit. The only inter­molecular inter­actions observed are weak tip-to-tail C3—H3⋯N1 inter­actions that form infinite chains along [100]; see Table 1[link] and Fig. 2[link]. Similar C—H⋯N inter­actions have been observed in other 5-substituted 2-bromo­pyridines (Al-Far & Ali, 2009[Al-Far, R. H. & Ali, B. F. (2009). Acta Cryst. E65, o843.]; Bhasin et al., 2005[Bhasin, K. K., Arora, V., Sharma, S. K. & Venugopalan, P. (2005). Appl. Organomet. Chem. 19, 161-166.]; Ho & Pascal, 2014[Ho, D. M. & Pascal, R. A. Jr (2014). Private communication (deposition number CCDC 989200). CCDC, Cambridge, England.]), though not in the closely related 2,6-di­bromo-3,5-di­methyl­pyridine (Pugh, 2006[Pugh, D. (2006). Acta Cryst. C62, o590-o592.]). There are no other significant inter­molecular inter­actions present.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯N1i 0.95 2.46 3.409 (5) 179
Symmetry code: (i) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound.

Synthesis and crystallization

A commercial sample (Aldrich) of 2-bromo-5-methyl­pyridine was used for the crystallization. A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of an ethanol/water solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H6BrN
Mr 172.02
Crystal system, space group Monoclinic, P21/m
Temperature (K) 120
a, b, c (Å) 6.1889 (18), 6.614 (2), 7.835 (2)
β (°) 93.503 (9)
V3) 320.12 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 6.31
Crystal size (mm) 0.19 × 0.12 × 0.1
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.208, 0.259
No. of measured, independent and observed [I > 2σ(I)] reflections 4211, 639, 586
Rint 0.031
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.060, 1.10
No. of reflections 639
No. of parameters 53
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.50
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), olex2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

A commercial sample (Aldrich) of 2-bromo-5-methylpyridine was used for the crystallization. A sample suitable for single-crystal X-ray analysis was grown from the slow evaporation of an ethanol/water solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

2-Bromopyridine and its derivatives are useful precursors for the formation of bipyridine and terpyridine ligands. Herein, we report the crystal structure of 2-bromo-5-methylpyridine, Fig. 1. The planar molecule lies on a crystallographic plane of symmetry, with a half molecule present in the asymmetric unit. The only intermolecular interactions observed are weak tip-to-tail C3—H3···N1 interactions that form infinite chains along [100]; see Table 1 and Fig. 2. Similar C—H···N interactions have been observed in other 5-substituted 2-bromopyridines (Al-Far & Ali, 2009; Bhasin et al., 2005; Ho & Pascal, 2014), though not in the closely related 2,6-dibromo-3,5-dimethylpyridine (Pugh, 2006). There are no other significant intermolecular interactions present.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: olex2.refine (Bourhis et al. and 2015), SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound.
2-Bromo-5-methylpyridine top
Crystal data top
C6H6BrNF(000) = 167.5322
Mr = 172.02Dx = 1.785 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 6.1889 (18) ÅCell parameters from 2547 reflections
b = 6.614 (2) Åθ = 3.3–25.4°
c = 7.835 (2) ŵ = 6.31 mm1
β = 93.503 (9)°T = 120 K
V = 320.12 (17) Å3Block, colourless
Z = 20.19 × 0.12 × 0.1 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
586 reflections with I > 2σ(I)
TRIUMPH monochromatorRint = 0.031
φ and ω scansθmax = 25.4°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 67
Tmin = 0.208, Tmax = 0.259k = 77
4211 measured reflectionsl = 99
639 independent reflections
Refinement top
Refinement on F27 restraints
Least-squares matrix: full8 constraints
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.1977P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
639 reflectionsΔρmax = 0.53 e Å3
53 parametersΔρmin = 0.50 e Å3
Crystal data top
C6H6BrNV = 320.12 (17) Å3
Mr = 172.02Z = 2
Monoclinic, P21/mMo Kα radiation
a = 6.1889 (18) ŵ = 6.31 mm1
b = 6.614 (2) ÅT = 120 K
c = 7.835 (2) Å0.19 × 0.12 × 0.1 mm
β = 93.503 (9)°
Data collection top
Bruker D8 Venture CMOS
diffractometer
639 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
586 reflections with I > 2σ(I)
Tmin = 0.208, Tmax = 0.259Rint = 0.031
4211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0237 restraints
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.53 e Å3
639 reflectionsΔρmin = 0.50 e Å3
53 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28961 (6)0.250.03206 (4)0.03579 (17)
N10.3705 (5)0.250.3819 (4)0.0249 (6)
C10.4724 (6)0.250.2391 (4)0.0241 (7)
C20.6941 (6)0.250.2276 (5)0.0292 (8)
H20.7573 (6)0.250.1201 (5)0.0350 (9)*
C30.8195 (6)0.250.3790 (5)0.0276 (8)
H30.9729 (6)0.250.3775 (5)0.0331 (9)*
C40.7211 (6)0.250.5348 (5)0.0240 (7)
C50.4962 (6)0.250.5274 (4)0.0252 (7)
H50.4270 (6)0.250.6323 (4)0.0303 (9)*
C60.8515 (7)0.250.7021 (5)0.0341 (9)
H6a0.751 (5)0.250.794 (3)0.0409 (11)*
H6b0.944 (4)0.130 (3)0.714 (3)0.0409 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0341 (3)0.0495 (3)0.0228 (2)0.0000000.00615 (15)0.000000
N10.0209 (16)0.0293 (15)0.0245 (15)0.0000000.0022 (12)0.000000
C10.0244 (19)0.0262 (18)0.0215 (16)0.0000000.0001 (13)0.000000
C20.028 (2)0.036 (2)0.0236 (18)0.0000000.0062 (14)0.000000
C30.0206 (18)0.0278 (18)0.0345 (19)0.0000000.0030 (14)0.000000
C40.0262 (19)0.0198 (16)0.0257 (18)0.0000000.0020 (13)0.000000
C50.0269 (19)0.0286 (18)0.0207 (17)0.0000000.0057 (14)0.000000
C60.036 (2)0.038 (2)0.028 (2)0.0000000.0056 (16)0.000000
Geometric parameters (Å, º) top
Br1—C11.920 (4)C3—C41.397 (5)
N1—C11.317 (5)C4—C51.390 (5)
N1—C51.340 (5)C4—C61.496 (5)
C1—C21.380 (5)C5—H50.9500
C2—H20.9500C6—H6a0.979 (5)
C2—C31.378 (5)C6—H6bi0.979 (5)
C3—H30.9500C6—H6b0.979 (5)
C5—N1—C1116.1 (3)C6—C4—C3121.6 (3)
N1—C1—Br1115.5 (3)C6—C4—C5121.5 (3)
C2—C1—Br1118.8 (3)C4—C5—N1124.3 (3)
C2—C1—N1125.8 (3)H5—C5—N1117.85 (19)
H2—C2—C1121.5 (2)H5—C5—C4117.8 (2)
C3—C2—C1117.0 (3)H6a—C6—C4108 (2)
C3—C2—H2121.5 (2)H6b—C6—C4111.3 (17)
H3—C3—C2120.0 (2)H6bi—C6—C4111.3 (17)
C4—C3—C2120.0 (3)H6b—C6—H6a109.1 (5)
C4—C3—H3120.0 (2)H6bi—C6—H6a109.1 (5)
C5—C4—C3116.9 (3)H6bi—C6—H6b108 (3)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1ii0.952.463.409 (5)179
Symmetry code: (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.952.463.409 (5)179
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H6BrN
Mr172.02
Crystal system, space groupMonoclinic, P21/m
Temperature (K)120
a, b, c (Å)6.1889 (18), 6.614 (2), 7.835 (2)
β (°) 93.503 (9)
V3)320.12 (17)
Z2
Radiation typeMo Kα
µ (mm1)6.31
Crystal size (mm)0.19 × 0.12 × 0.1
Data collection
DiffractometerBruker D8 Venture CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.208, 0.259
No. of measured, independent and
observed [I > 2σ(I)] reflections
4211, 639, 586
Rint0.031
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.060, 1.10
No. of reflections639
No. of parameters53
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.50

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), olex2.refine (Bourhis et al. and 2015), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

We greatly acknowledge support from the National Science Foundation (grant No. CHE-1429086).

References

First citationAl-Far, R. H. & Ali, B. F. (2009). Acta Cryst. E65, o843.  CSD CrossRef IUCr Journals Google Scholar
First citationBhasin, K. K., Arora, V., Sharma, S. K. & Venugopalan, P. (2005). Appl. Organomet. Chem. 19, 161–166.  CSD CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2014). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHo, D. M. & Pascal, R. A. Jr (2014). Private communication (deposition number CCDC 989200). CCDC, Cambridge, England.  Google Scholar
First citationPugh, D. (2006). Acta Cryst. C62, o590–o592.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds