organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(Phenyl­sulfanyl)­aniline

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 December 2015; accepted 29 December 2015; online 16 January 2016)

In the title compound, C12H11NS, the aniline and phenyl rings have a skewed conformation with a dihedral angle of 81.31 (7)°. There is a short intra­molecular N–H⋯S contact enclosing an S(5) ring motif. In the crystal, mol­ecules are linked via N–H⋯S hydrogen bonds, forming chains along [10-3]. The chains are linked via N—H⋯π and C—H⋯π inter­actions, forming layers parallel to plane (010). No ππ inter­actions are noted between the layers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

2-(Aryl­sulfanyl)­anilines have potential as pharmaceuticals, and herein we report the crystal structure of the parent 2-(phenyl­sulfanyl)­aniline. In the title compound, Fig. 1[link], the aniline and phenyl rings have a skewed conformation with a dihedral angle of 81.31 (7)° and the C2—S1—C7 angle is 105.42 (10)°. This varies slightly from the values for 2-(p-tolyl­sulfanyl)­aniline, where the corresponding dihedral angle is 87.80 (7)° and the C—S—C angle is 103.21 (12)° (Betz et al., 2011[Betz, R., Gerber, T. & Schalekamp, H. (2011). Acta Cryst. E67, o489.]). There is a short intra­molecular N1—H1B⋯S1 contact forming an S(5) ring motif (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯S1 0.86 (1) 2.61 (3) 3.054 (2) 113 (2)
N1—H1A⋯S1i 0.86 (1) 2.73 (1) 3.580 (2) 174 (2)
N1—H1BCg1ii 0.86 (1) 2.87 (3) 3.510 (2) 132 (2)
C6—H6⋯Cg2i 0.95 2.72 3.506 (2) 141
C9—H9⋯Cg1iii 0.95 2.90 3.606 (2) 132
Symmetry codes: (i) [x-{\script{1\over 4}}, -y+{\script{5\over 4}}, z+{\script{3\over 4}}]; (ii) [x-{\script{1\over 4}}, -y+{\script{5\over 4}}, z-{\script{1\over 4}}]; (iii) [x+{\script{1\over 4}}, -y+{\script{5\over 4}}, z+{\script{1\over 4}}].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The short intra­molecular N—H⋯S contact is shown as a dashed line (see Table 1[link]).

In the crystal, mol­ecules are linked via N1—H1A⋯S1 hydrogen bonds, forming chains along [10[\overline{3}]]. The chains are linked by N—H⋯π and C—H⋯π inter­actions, forming layers that lie parallel to plane (010); Table 1[link] and Fig. 2[link]. No ππ inter­actions are noted between the layers.

[Figure 2]
Figure 2
A view along the c axis of the crystal packing of the title compound, with hydrogen bonds shown as dashed lines (see Table 1[link]).

Though other 2-aryl­sulfanyl­anilines demonstrate intra­molecular N—H⋯S hydrogen bonding, the observed inter­molecular inter­actions are N—H⋯N hydrogen bonds (Yao et al., 2012[Yao, L., Zhou, Q., Han, W. & Wei, S. (2012). Eur. J. Org. Chem. pp. 6856-6860.]; Beppu et al., 2014[Beppu, T., Kawata, S., Aizawa, N., Pu, Y.-J., Abe, Y., Ohba, Y. & Katagiri, H. (2014). ChemPlusChem, 79, 536-545.]; Sellmann et al., 1999[Sellmann, D., Engl, K., Gottschalk-Gaudig, T. & Heinemann, F. W. (1999). Eur. J. Inorg. Chem. pp. 333-339.]; Yuan et al., 2008[Yuan, Y.-Q., Guo, S.-R. & Wang, L.-J. (2008). Z. Kristallogr. New Cryst. Struct. 223, 507-508.]). The structure of 2-[(4-methyl­phen­yl)sulfan­yl]aniline has been reported (Betz et al., 2011[Betz, R., Gerber, T. & Schalekamp, H. (2011). Acta Cryst. E67, o489.]), as has that of another 2-aryl­thio­aniline, 2-[(4-bromo­phen­yl)sulfan­yl]-4-nitro­aniline (Yao et al., 2012[Yao, L., Zhou, Q., Han, W. & Wei, S. (2012). Eur. J. Org. Chem. pp. 6856-6860.]).

Synthesis and crystallization

A commercial sample (Tokyo Chemical Industries) of the title compound was used for crystallization. Single crystals suitable for X-ray diffraction studies were grown by slow evaporation of a hexa­nes solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H11NS
Mr 201.28
Crystal system, space group Orthorhombic, Fdd2
Temperature (K) 120
a, b, c (Å) 17.7430 (7), 37.3075 (19), 6.1420 (2)
V3) 4065.7 (3)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.4 × 0.2 × 0.2
 
Data collection
Diffractometer Bruker D8 Venture CMOS diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA.])
Tmin, Tmax 0.717, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 14523, 1862, 1776
Rint 0.043
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.055, 1.10
No. of reflections 1862
No. of parameters 134
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.16
Absolute structure Flack x determined using 779 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.04 (3)
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Experimental top

A commercial sample (Tokyo Chemical Industries) of the title compound was used for crystallization. Single crystals suitable for X-ray diffraction studies were grown by slow evaporation of a hexanes solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH2 H atoms, H1A and H2A, were found from a difference Fourier map and refined with a distance restraint: N—H = 0.860 (5) Å with Uiso(H) = 1.20Ueq(N). The remaining H atoms were placed in calculated positions and refined as riding: C—H = 0.95 Å with Uiso(H) = 1.20Ueq(C).

Structure description top

2-(Arylsulfanyl)anilines have potential as pharmaceuticals, and herein we report the crystal structure of the parent 2-(phenylsulfanyl)aniline. In the title compound, Fig. 1, the aniline and phenyl rings have a skewed conformation with a dihedral angle of 81.31 (7)° and the C2—S1—C7 angle is 105.42 (10)°. This varies slightly from the values for 2-(p-tolylsulfanyl)aniline, where the corresponding dihedral angle is 87.80 (7)° and the C–S–C angle is 103.21 (12)° (Betz et al., 2011). There is a short intramolecular N1—H1B···S1 contact forming an S(5) ring motif (Table 1).

In the crystal, molecules are linked via N1—H1A···S1 hydrogen bonds, forming chains along [103]. The chains are linked by N—H···π and C—H···π interactions, forming layers that lie parallel to plane (010); Table 1 and Fig. 2. No ππ interactions are noted between the layers.

Though other 2-arylsulfanylanilines demonstrate intramolecular N—H···S hydrogen bonding, the observed intermolecular interactions are N—H···N hydrogen bonds (Yao et al., 2012; Beppu et al., 2014; Sellmann et al., 1999; Yuan et al., 2008). The structure of 2-[(4-methylphenyl)sulfanyl]aniline has been reported (Betz et al., 2011), as has that of another 2-arylsulfanylaniline, 2-[(4-bromophenyl)sulfanyl]-4-nitroaniline (Yao et al., 2012).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The short intramolecular N—H···S contact is shown as a dashed line (see Table 1).
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound, with hydrogen bonds shown as dashed lines (see Table 1).
2-(Phenylsulfanyl)aniline top
Crystal data top
C12H11NSF(000) = 1696
Mr = 201.28Dx = 1.315 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 7209 reflections
a = 17.7430 (7) Åθ = 3.2–25.3°
b = 37.3075 (19) ŵ = 0.27 mm1
c = 6.1420 (2) ÅT = 120 K
V = 4065.7 (3) Å3Block, colourless
Z = 160.4 × 0.2 × 0.2 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
1862 independent reflections
Radiation source: fine-focus sealed tube1776 reflections with I > 2σ(I)
TRIUMPH monochromatorRint = 0.043
φ and ω scansθmax = 25.4°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 2121
Tmin = 0.717, Tmax = 0.745k = 4444
14523 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055 w = 1/[σ2(Fo2) + (0.0293P)2 + 1.8762P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
1862 reflectionsΔρmax = 0.15 e Å3
134 parametersΔρmin = 0.16 e Å3
3 restraintsAbsolute structure: Flack x determined using 779 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (3)
Crystal data top
C12H11NSV = 4065.7 (3) Å3
Mr = 201.28Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 17.7430 (7) ŵ = 0.27 mm1
b = 37.3075 (19) ÅT = 120 K
c = 6.1420 (2) Å0.4 × 0.2 × 0.2 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
1862 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
1776 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.745Rint = 0.043
14523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.055Δρmax = 0.15 e Å3
S = 1.10Δρmin = 0.16 e Å3
1862 reflectionsAbsolute structure: Flack x determined using 779 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
134 parametersAbsolute structure parameter: 0.04 (3)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.24353 (3)0.61620 (2)0.24971 (10)0.01900 (14)
N10.15876 (11)0.61631 (5)0.6825 (3)0.0238 (4)
C10.20904 (11)0.64429 (6)0.6541 (4)0.0175 (5)
C20.25623 (10)0.64606 (5)0.4712 (3)0.0169 (5)
C30.30828 (12)0.67388 (5)0.4495 (4)0.0206 (5)
H30.33990.67480.32490.025*
C40.31437 (13)0.70019 (6)0.6072 (4)0.0256 (5)
H40.35000.71910.59200.031*
C50.26753 (13)0.69856 (6)0.7883 (4)0.0245 (5)
H50.27110.71650.89730.029*
C60.21570 (12)0.67112 (6)0.8121 (4)0.0209 (5)
H60.18430.67050.93730.025*
C70.28473 (12)0.57490 (6)0.3348 (4)0.0171 (5)
C80.32540 (11)0.57064 (5)0.5250 (4)0.0194 (5)
H80.32860.58970.62720.023*
C90.36152 (12)0.53829 (6)0.5658 (4)0.0239 (5)
H90.39020.53540.69530.029*
C100.35599 (13)0.51019 (6)0.4184 (4)0.0267 (5)
H100.38150.48830.44570.032*
C110.31329 (12)0.51427 (6)0.2318 (4)0.0271 (5)
H110.30820.49480.13310.033*
C120.27773 (13)0.54671 (6)0.1877 (4)0.0230 (5)
H120.24890.54960.05850.028*
H1A0.1217 (10)0.6211 (6)0.767 (4)0.028*
H1B0.1497 (15)0.6036 (6)0.568 (3)0.037 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0204 (2)0.0204 (2)0.0162 (2)0.0016 (2)0.0004 (2)0.0009 (2)
N10.0230 (10)0.0262 (10)0.0222 (11)0.0040 (8)0.0085 (8)0.0004 (9)
C10.0157 (10)0.0181 (10)0.0186 (11)0.0045 (8)0.0003 (9)0.0051 (9)
C20.0149 (9)0.0161 (10)0.0198 (12)0.0032 (7)0.0016 (9)0.0007 (9)
C30.0181 (10)0.0205 (10)0.0233 (12)0.0007 (8)0.0027 (9)0.0052 (10)
C40.0252 (12)0.0176 (11)0.0339 (14)0.0032 (9)0.0025 (11)0.0027 (10)
C50.0324 (12)0.0167 (10)0.0245 (15)0.0062 (9)0.0057 (10)0.0030 (10)
C60.0196 (10)0.0245 (12)0.0187 (11)0.0084 (9)0.0006 (9)0.0023 (9)
C70.0144 (10)0.0158 (11)0.0212 (11)0.0020 (8)0.0037 (9)0.0009 (9)
C80.0213 (10)0.0172 (10)0.0197 (11)0.0036 (8)0.0006 (10)0.0005 (9)
C90.0244 (11)0.0241 (11)0.0233 (12)0.0007 (9)0.0001 (10)0.0034 (10)
C100.0285 (12)0.0176 (11)0.0339 (14)0.0021 (9)0.0063 (11)0.0032 (10)
C110.0300 (11)0.0196 (11)0.0318 (14)0.0033 (9)0.0069 (11)0.0088 (11)
C120.0215 (11)0.0275 (12)0.0202 (12)0.0029 (9)0.0005 (9)0.0031 (9)
Geometric parameters (Å, º) top
S1—C21.772 (2)C5—C61.384 (3)
S1—C71.784 (2)C6—H60.9500
N1—C11.384 (3)C7—C81.383 (3)
N1—H1A0.857 (7)C7—C121.392 (3)
N1—H1B0.862 (7)C8—H80.9500
C1—C21.403 (3)C8—C91.389 (3)
C1—C61.400 (3)C9—H90.9500
C2—C31.396 (3)C9—C101.388 (3)
C3—H30.9500C10—H100.9500
C3—C41.383 (3)C10—C111.382 (4)
C4—H40.9500C11—H110.9500
C4—C51.390 (3)C11—C121.391 (3)
C5—H50.9500C12—H120.9500
C2—S1—C7105.42 (10)C5—C6—C1120.8 (2)
C1—N1—H1A114.4 (16)C5—C6—H6119.6
C1—N1—H1B115.7 (19)C8—C7—S1124.12 (17)
H1A—N1—H1B118 (3)C8—C7—C12120.5 (2)
N1—C1—C2121.4 (2)C12—C7—S1115.22 (17)
N1—C1—C6120.4 (2)C7—C8—H8120.2
C6—C1—C2118.13 (19)C7—C8—C9119.5 (2)
C1—C2—S1120.60 (16)C9—C8—H8120.2
C3—C2—S1118.58 (16)C8—C9—H9119.8
C3—C2—C1120.4 (2)C10—C9—C8120.4 (2)
C2—C3—H3119.6C10—C9—H9119.8
C4—C3—C2120.8 (2)C9—C10—H10120.1
C4—C3—H3119.6C11—C10—C9119.7 (2)
C3—C4—H4120.6C11—C10—H10120.1
C3—C4—C5118.9 (2)C10—C11—H11119.8
C5—C4—H4120.6C10—C11—C12120.4 (2)
C4—C5—H5119.5C12—C11—H11119.8
C6—C5—C4121.0 (2)C7—C12—H12120.3
C6—C5—H5119.5C11—C12—C7119.4 (2)
C1—C6—H6119.6C11—C12—H12120.3
S1—C2—C3—C4172.78 (17)C4—C5—C6—C10.1 (3)
S1—C7—C8—C9173.59 (16)C6—C1—C2—S1172.52 (16)
S1—C7—C12—C11174.84 (17)C6—C1—C2—C30.1 (3)
N1—C1—C2—S19.5 (3)C7—S1—C2—C178.46 (18)
N1—C1—C2—C3177.8 (2)C7—S1—C2—C3108.74 (16)
N1—C1—C6—C5177.9 (2)C7—C8—C9—C101.0 (3)
C1—C2—C3—C40.0 (3)C8—C7—C12—C111.2 (3)
C2—S1—C7—C87.2 (2)C8—C9—C10—C111.1 (3)
C2—S1—C7—C12176.93 (16)C9—C10—C11—C121.9 (3)
C2—C1—C6—C50.1 (3)C10—C11—C12—C70.8 (3)
C2—C3—C4—C50.1 (3)C12—C7—C8—C92.1 (3)
C3—C4—C5—C60.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1B···S10.86 (1)2.61 (3)3.054 (2)113 (2)
N1—H1A···S1i0.86 (1)2.73 (1)3.580 (2)174 (2)
N1—H1B···Cg1ii0.86 (1)2.87 (3)3.510 (2)132 (2)
C6—H6···Cg2i0.952.723.506 (2)141
C9—H9···Cg1iii0.952.903.606 (2)132
Symmetry codes: (i) x1/4, y+5/4, z+3/4; (ii) x1/4, y+5/4, z1/4; (iii) x+1/4, y+5/4, z+1/4.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1B···S10.86 (1)2.61 (3)3.054 (2)113 (2)
N1—H1A···S1i0.86 (1)2.727 (8)3.580 (2)174 (2)
N1—H1B···Cg1ii0.862 (7)2.87 (3)3.510 (2)132 (2)
C6—H6···Cg2i0.952.723.506 (2)141
C9—H9···Cg1iii0.952.903.606 (2)132
Symmetry codes: (i) x1/4, y+5/4, z+3/4; (ii) x1/4, y+5/4, z1/4; (iii) x+1/4, y+5/4, z+1/4.

Experimental details

Crystal data
Chemical formulaC12H11NS
Mr201.28
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)120
a, b, c (Å)17.7430 (7), 37.3075 (19), 6.1420 (2)
V3)4065.7 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.4 × 0.2 × 0.2
Data collection
DiffractometerBruker D8 Venture CMOS
Absorption correctionMulti-scan
(SADABS; Bruker, 2014)
Tmin, Tmax0.717, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
14523, 1862, 1776
Rint0.043
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.055, 1.10
No. of reflections1862
No. of parameters134
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.16
Absolute structureFlack x determined using 779 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Absolute structure parameter0.04 (3)

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

Support from the National Science Foundation (CHE-1429086) is gratefully acknowledge.

References

First citationBeppu, T., Kawata, S., Aizawa, N., Pu, Y.-J., Abe, Y., Ohba, Y. & Katagiri, H. (2014). ChemPlusChem, 79, 536–545.  CSD CrossRef CAS Google Scholar
First citationBetz, R., Gerber, T. & Schalekamp, H. (2011). Acta Cryst. E67, o489.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, WI, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSellmann, D., Engl, K., Gottschalk-Gaudig, T. & Heinemann, F. W. (1999). Eur. J. Inorg. Chem. pp. 333–339.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, L., Zhou, Q., Han, W. & Wei, S. (2012). Eur. J. Org. Chem. pp. 6856–6860.  CSD CrossRef Google Scholar
First citationYuan, Y.-Q., Guo, S.-R. & Wang, L.-J. (2008). Z. Kristallogr. New Cryst. Struct. 223, 507–508.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds