organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,3′-[(Cyclo­hexane-1,4-di­yl)bis­­(aza­nedi­yl)]bis­(cyclo­hex-2-en-1-one)

CROSSMARK_Color_square_no_text.svg

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, and bDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 29 October 2015; accepted 16 November 2015; online 1 January 2016)

The title compound, C18H26N2O2, crystallizes with two half-mol­ecules in the asymmetric unit, both lying about inversion centres situated at the centers of the cyclo­hexane rings. In the crystal, the two mol­ecules are linked by a pair of N—H⋯O hydrogen bonds, forming an inversion dimer with an R22(18) ring motif; the dimers are linked by a second pair of N—H⋯O hydrogen bonds, enclosing an R22(18) ring motif, forming chains along [1-10] which are linked by bifurcated C—H⋯(O,O) hydrogen bonds, forming slabs parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C18H26N2O2, was prepared by a direct condensation reaction between cyclo­hexane-1,4-di­amine and cyclo­hexane-1,3-dione to afford the corresponding symmetrical di­amine. It crystallizes with two half-mol­ecules in the asymmetric unit, both lying about inversion centres situated at the centers of the cyclo­hexane rings. In the two mol­ecules (1 and 2; Fig. 1[link]) the central cyclo­hexane rings adopt chair conformations and are linked by NH bridges to two cyclo­hexenone rings. The latter each display envelope conformations with the central methyl­ene C atoms of the CH2–CH2–CH2 segment as the flaps. The adjacent C=C and C—N bond distances of 1.3771 (16) and 1.3394 (15) Å, respectively, for mol­ecule 1, and 1.3803 (15) and 1.3375 (14) Å, respectively, for mol­ecule 2, indicate a considerable degree of delocalization across the C—N bonds. In the crystal, the two mol­ecules are linked by a pair of N—H⋯O hydrogen bonds, forming an inversion dimer with an R22(18) ring motif (Table 1[link] and Fig. 2[link]). These dimers are linked by a second pair of N—H⋯O hydrogen bonds, enclosing an R22(18) ring motif, forming chains along [1[\overline{1}]0]; Table 1[link] and Fig. 2[link]. The chains are linked by bifurcated C—H⋯(O,O) hydrogen bonds, forming slabs parallel to the ab plane (Table 1[link] and Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11N⋯O21′ 0.896 (16) 1.944 (16) 2.8369 (13) 174.8 (14)
N21—H21N⋯O11′i 0.884 (15) 2.012 (15) 2.8930 (13) 174.1 (13)
C21—H21⋯O21′ii 1.00 2.59 3.4511 (13) 144
C22—H22B⋯O21′iii 0.99 2.50 3.3675 (14) 147
Symmetry codes: (i) x+1, y-1, z; (ii) -x+2, -y+1, -z+1; (iii) x, y-1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules (1 and 2) of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The N—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]), and unlabelled atoms are related to labelled atoms by symmetry operations −x + 1, −y + 1, −z + 1 for mol­ecule 1 and −x + 2, −y, −z + 1 for mol­ecule 2.
[Figure 2]
Figure 2
A view along the normal to the ab plane of the hydrogen-bonded chain of mol­ecules 1 and 2 of the title compound (dashed lines; see Table 1[link]).
[Figure 3]
Figure 3
A view along the a axis of the crystal packing of the title compound with hydrogen bonds shown as dashed lines (see Table 1[link]).

No structures of derivatives of cyclo­hexane-1,4-di­amine with either cyclo­hexene or cyclo­hexane substituents on the N atoms appear in the literature. The closest relatives of the title compound in the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) are found as Ru complexes of ligands that have either a phenyl ring on one N atom of the central cyclo­hexane-1,4-di­amine unit and a benzyl substituent on the other (Samec et al., 2006[Samec, J. S. M., Éll, A. H., Åberg, J. B., Privalov, T., Eriksson, L. & Bäckvall, J.-E. (2006). J. Am. Chem. Soc. 128, 14293-14305.]) or alternatively benzyl substituents on both N atoms (Casey et al., 2007[Casey, C. P., Clark, T. B. & Guzei, I. A. (2007). J. Am. Chem. Soc. 129, 11821-11827.]).

Synthesis and crystallization

A mixture of 114 mg (0.1 mmol) of cyclo­hexane-1,4-di­amine and 112 mg (0.1 mmol) of cyclo­hexane-1,3-dione was refluxed at 352 K in 30 ml ethanol. The reaction was monitored by TLC, was complete after 5 h and left to cool to room temperature. The excess solvent was evaporated under vacuum and the resulting solid filtered off, dried and recrystallized from acetic acid (m.p. 593 K). Crystals suitable for X-ray data collection were grown by slow evaporation of a solution of acetic acid over four days at ambient temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H26N2O2
Mr 302.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.1839 (2), 9.1461 (3), 11.7669 (4)
α, β, γ (°) 106.557 (3), 97.687 (2), 96.630 (2)
V3) 825.65 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.63
Crystal size (mm) 0.54 × 0.35 × 0.07
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.845, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12078, 3272, 3002
Rint 0.037
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.10
No. of reflections 3272
No. of parameters 219
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.30
Computer programs: CrysAlis PRO, Agilent (2013[Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]), WinGX (Farrugia 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: CrysAlis PRO, Agilent (2013); cell refinement: CrysAlis PRO, Agilent (2013); data reduction: CrysAlis PRO, Agilent (2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010), WinGX (Farrugia 2012).

3,3'-[(Cyclohexane-1,4-diyl)bis(azanediyl)]bis(cyclohex-2-en-1-one) top
Crystal data top
C18H26N2O2Z = 2
Mr = 302.41F(000) = 328
Triclinic, P1Dx = 1.216 Mg m3
a = 8.1839 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.1461 (3) ÅCell parameters from 9205 reflections
c = 11.7669 (4) Åθ = 4.0–74.1°
α = 106.557 (3)°µ = 0.63 mm1
β = 97.687 (2)°T = 100 K
γ = 96.630 (2)°Plate, orange
V = 825.65 (5) Å30.54 × 0.35 × 0.07 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
3272 independent reflections
Mirror monochromator3002 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1Rint = 0.037
ω scansθmax = 74.1°, θmin = 4.0°
Absorption correction: multi-scan
(CrysAlisPro; Agilent, 2013)
h = 910
Tmin = 0.845, Tmax = 1.000k = 1111
12078 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.2392P]
where P = (Fo2 + 2Fc2)/3
3272 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11'0.17860 (10)0.83044 (9)0.13490 (7)0.0202 (2)
C11'0.32063 (14)0.79299 (12)0.14231 (9)0.0170 (2)
C12'0.38277 (14)0.72110 (13)0.22838 (10)0.0177 (2)
H12'0.31400.70180.28320.021*
C13'0.53902 (14)0.67872 (12)0.23469 (9)0.0162 (2)
N110.59935 (12)0.60257 (11)0.30855 (9)0.0184 (2)
H11N0.708 (2)0.5950 (16)0.3150 (13)0.022*
C110.50682 (13)0.54283 (13)0.38859 (10)0.0165 (2)
H110.38730.50810.34830.020*
C120.57883 (15)0.40283 (13)0.40741 (10)0.0187 (2)
H12A0.69890.43420.44320.022*
H12B0.56900.32300.32860.022*
C160.51340 (15)0.66504 (13)0.50964 (10)0.0181 (2)
H1610.6304 (17)0.7022 (15)0.5469 (12)0.016 (3)*
H1620.4644 (18)0.7539 (16)0.4973 (13)0.022 (3)*
C14'0.65503 (14)0.71158 (13)0.15190 (10)0.0180 (2)
H14A0.64400.61870.08130.022*
H14B0.77190.73390.19500.022*
C15'0.61656 (15)0.84812 (14)0.10889 (10)0.0208 (3)
H15A0.68480.85840.04740.025*
H15B0.64520.94460.17740.025*
C16'0.43164 (15)0.82319 (14)0.05536 (11)0.0224 (3)
H16C0.40590.91590.03350.027*
H16D0.40720.73420.01920.027*
O21'0.94724 (10)0.59292 (9)0.34302 (7)0.01825 (19)
C21'0.98783 (13)0.47129 (12)0.28124 (9)0.0147 (2)
C22'1.01924 (13)0.34896 (12)0.32908 (9)0.0154 (2)
H22'1.01800.36300.41210.018*
C23'1.05146 (13)0.21036 (12)0.25822 (9)0.0148 (2)
N211.07308 (12)0.08956 (11)0.29800 (8)0.0164 (2)
H21N1.0982 (17)0.0065 (17)0.2477 (13)0.020*
C211.05449 (14)0.08363 (12)0.41861 (9)0.0149 (2)
H211.10540.18600.47820.018*
C221.14853 (14)0.03970 (12)0.44659 (9)0.0162 (2)
H22A1.26830.01370.44330.019*
H22B1.10380.14090.38540.019*
C260.86983 (14)0.05044 (13)0.42843 (10)0.0165 (2)
H2610.8108 (17)0.1327 (16)0.4127 (13)0.020*
H2620.8183 (17)0.0501 (16)0.3656 (13)0.020*
C24'1.06061 (15)0.18458 (12)0.12708 (9)0.0173 (2)
H24A0.95030.13300.07780.021*
H24B1.14290.11520.10380.021*
C25'1.11107 (14)0.33592 (13)0.10069 (9)0.0175 (2)
H25A1.22900.37880.13820.021*
H25B1.10110.31630.01270.021*
C26'0.99899 (14)0.45218 (12)0.15038 (10)0.0174 (2)
H26A1.04280.55370.14250.021*
H26B0.88540.41780.10150.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O11'0.0246 (4)0.0202 (4)0.0159 (4)0.0097 (3)0.0022 (3)0.0037 (3)
C11'0.0223 (5)0.0138 (5)0.0131 (5)0.0037 (4)0.0020 (4)0.0016 (4)
C12'0.0214 (5)0.0193 (6)0.0148 (5)0.0051 (4)0.0056 (4)0.0073 (4)
C13'0.0218 (5)0.0148 (5)0.0130 (5)0.0031 (4)0.0046 (4)0.0050 (4)
N110.0185 (5)0.0239 (5)0.0185 (5)0.0067 (4)0.0064 (4)0.0126 (4)
C110.0173 (5)0.0198 (6)0.0160 (5)0.0034 (4)0.0043 (4)0.0103 (4)
C120.0237 (6)0.0194 (6)0.0167 (5)0.0068 (4)0.0075 (4)0.0085 (4)
C160.0223 (6)0.0173 (5)0.0180 (5)0.0045 (4)0.0051 (4)0.0091 (4)
C14'0.0218 (5)0.0198 (6)0.0159 (5)0.0059 (4)0.0074 (4)0.0081 (4)
C15'0.0239 (6)0.0225 (6)0.0208 (5)0.0049 (5)0.0069 (4)0.0123 (5)
C16'0.0266 (6)0.0264 (6)0.0189 (5)0.0062 (5)0.0046 (5)0.0133 (5)
O21'0.0216 (4)0.0141 (4)0.0189 (4)0.0054 (3)0.0055 (3)0.0029 (3)
C21'0.0141 (5)0.0138 (5)0.0149 (5)0.0012 (4)0.0023 (4)0.0028 (4)
C22'0.0197 (5)0.0156 (5)0.0115 (5)0.0036 (4)0.0047 (4)0.0039 (4)
C23'0.0173 (5)0.0145 (5)0.0125 (5)0.0023 (4)0.0034 (4)0.0038 (4)
N210.0267 (5)0.0130 (5)0.0108 (4)0.0062 (4)0.0066 (4)0.0031 (4)
C210.0211 (5)0.0133 (5)0.0109 (5)0.0034 (4)0.0043 (4)0.0038 (4)
C220.0197 (5)0.0160 (5)0.0150 (5)0.0046 (4)0.0056 (4)0.0062 (4)
C260.0192 (5)0.0169 (5)0.0147 (5)0.0041 (4)0.0027 (4)0.0066 (4)
C24'0.0263 (6)0.0153 (5)0.0108 (5)0.0063 (4)0.0054 (4)0.0028 (4)
C25'0.0248 (6)0.0181 (5)0.0119 (5)0.0056 (4)0.0062 (4)0.0057 (4)
C26'0.0229 (6)0.0157 (5)0.0144 (5)0.0047 (4)0.0024 (4)0.0057 (4)
Geometric parameters (Å, º) top
O11'—C11'1.2481 (14)O21'—C21'1.2512 (13)
C11'—C12'1.4267 (15)C21'—C22'1.4217 (15)
C11'—C16'1.5167 (15)C21'—C26'1.5159 (14)
C12'—C13'1.3771 (16)C22'—C23'1.3803 (15)
C12'—H12'0.9500C22'—H22'0.9500
C13'—N111.3394 (15)C23'—N211.3375 (14)
C13'—C14'1.5131 (15)C23'—C24'1.5067 (14)
N11—C111.4654 (13)N21—C211.4629 (13)
N11—H11N0.896 (16)N21—H21N0.884 (15)
C11—C121.5287 (15)C21—C221.5223 (15)
C11—C161.5295 (16)C21—C261.5330 (15)
C11—H111.0000C21—H211.0000
C12—C16i1.5303 (14)C22—C26ii1.5274 (14)
C12—H12A0.9900C22—H22A0.9900
C12—H12B0.9900C22—H22B0.9900
C16—C12i1.5303 (14)C26—C22ii1.5274 (14)
C16—H1610.976 (14)C26—H2610.987 (15)
C16—H1620.984 (15)C26—H2621.005 (14)
C14'—C15'1.5241 (15)C24'—C25'1.5264 (15)
C14'—H14A0.9900C24'—H24A0.9900
C14'—H14B0.9900C24'—H24B0.9900
C15'—C16'1.5240 (17)C25'—C26'1.5259 (15)
C15'—H15A0.9900C25'—H25A0.9900
C15'—H15B0.9900C25'—H25B0.9900
C16'—H16C0.9900C26'—H26A0.9900
C16'—H16D0.9900C26'—H26B0.9900
O11'—C11'—C12'122.81 (10)O21'—C21'—C22'122.03 (10)
O11'—C11'—C16'118.83 (10)O21'—C21'—C26'118.86 (9)
C12'—C11'—C16'118.36 (10)C22'—C21'—C26'119.09 (9)
C13'—C12'—C11'122.23 (10)C23'—C22'—C21'121.82 (10)
C13'—C12'—H12'118.9C23'—C22'—H22'119.1
C11'—C12'—H12'118.9C21'—C22'—H22'119.1
N11—C13'—C12'124.62 (10)N21—C23'—C22'123.77 (10)
N11—C13'—C14'114.55 (10)N21—C23'—C24'115.16 (9)
C12'—C13'—C14'120.79 (10)C22'—C23'—C24'121.05 (10)
C13'—N11—C11125.64 (10)C23'—N21—C21124.53 (9)
C13'—N11—H11N117.4 (9)C23'—N21—H21N118.1 (9)
C11—N11—H11N116.7 (9)C21—N21—H21N117.4 (9)
N11—C11—C12108.57 (9)N21—C21—C22108.82 (9)
N11—C11—C16112.30 (9)N21—C21—C26111.15 (9)
C12—C11—C16110.44 (9)C22—C21—C26110.89 (9)
N11—C11—H11108.5N21—C21—H21108.6
C12—C11—H11108.5C22—C21—H21108.6
C16—C11—H11108.5C26—C21—H21108.6
C11—C12—C16i110.98 (9)C21—C22—C26ii110.27 (9)
C11—C12—H12A109.4C21—C22—H22A109.6
C16i—C12—H12A109.4C26ii—C22—H22A109.6
C11—C12—H12B109.4C21—C22—H22B109.6
C16i—C12—H12B109.4C26ii—C22—H22B109.6
H12A—C12—H12B108.0H22A—C22—H22B108.1
C11—C16—C12i110.90 (9)C22ii—C26—C21110.87 (9)
C11—C16—H161108.2 (8)C22ii—C26—H261109.2 (8)
C12i—C16—H161109.8 (8)C21—C26—H261110.3 (8)
C11—C16—H162110.2 (8)C22ii—C26—H262109.8 (8)
C12i—C16—H162110.0 (8)C21—C26—H262108.1 (8)
H161—C16—H162107.6 (11)H261—C26—H262108.5 (11)
C13'—C14'—C15'111.81 (9)C23'—C24'—C25'111.93 (9)
C13'—C14'—H14A109.3C23'—C24'—H24A109.2
C15'—C14'—H14A109.3C25'—C24'—H24A109.2
C13'—C14'—H14B109.3C23'—C24'—H24B109.2
C15'—C14'—H14B109.3C25'—C24'—H24B109.2
H14A—C14'—H14B107.9H24A—C24'—H24B107.9
C14'—C15'—C16'109.70 (9)C26'—C25'—C24'110.10 (9)
C14'—C15'—H15A109.7C26'—C25'—H25A109.6
C16'—C15'—H15A109.7C24'—C25'—H25A109.6
C14'—C15'—H15B109.7C26'—C25'—H25B109.6
C16'—C15'—H15B109.7C24'—C25'—H25B109.6
H15A—C15'—H15B108.2H25A—C25'—H25B108.2
C11'—C16'—C15'112.08 (9)C21'—C26'—C25'112.89 (9)
C11'—C16'—H16C109.2C21'—C26'—H26A109.0
C15'—C16'—H16C109.2C25'—C26'—H26A109.0
C11'—C16'—H16D109.2C21'—C26'—H26B109.0
C15'—C16'—H16D109.2C25'—C26'—H26B109.0
H16C—C16'—H16D107.9H26A—C26'—H26B107.8
O11'—C11'—C12'—C13'179.23 (10)O21'—C21'—C22'—C23'174.96 (10)
C16'—C11'—C12'—C13'0.02 (16)C26'—C21'—C22'—C23'3.27 (16)
C11'—C12'—C13'—N11175.70 (10)C21'—C22'—C23'—N21176.41 (10)
C11'—C12'—C13'—C14'1.92 (17)C21'—C22'—C23'—C24'2.13 (16)
C12'—C13'—N11—C114.30 (18)C22'—C23'—N21—C214.36 (17)
C14'—C13'—N11—C11173.45 (10)C24'—C23'—N21—C21174.25 (9)
C13'—N11—C11—C12152.07 (11)C23'—N21—C21—C22159.15 (10)
C13'—N11—C11—C1685.51 (13)C23'—N21—C21—C2678.46 (13)
N11—C11—C12—C16i179.88 (9)N21—C21—C22—C26ii179.35 (8)
C16—C11—C12—C16i56.59 (13)C26—C21—C22—C26ii56.80 (12)
N11—C11—C16—C12i177.89 (9)N21—C21—C26—C22ii178.33 (9)
C12—C11—C16—C12i56.54 (13)C22—C21—C26—C22ii57.15 (12)
N11—C13'—C14'—C15'156.94 (10)N21—C23'—C24'—C25'155.02 (10)
C12'—C13'—C14'—C15'25.22 (14)C22'—C23'—C24'—C25'26.32 (14)
C13'—C14'—C15'—C16'52.41 (13)C23'—C24'—C25'—C26'51.78 (12)
O11'—C11'—C16'—C15'151.78 (10)O21'—C21'—C26'—C25'157.43 (10)
C12'—C11'—C16'—C15'28.93 (14)C22'—C21'—C26'—C25'24.28 (14)
C14'—C15'—C16'—C11'54.51 (13)C24'—C25'—C26'—C21'51.07 (12)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11N···O210.896 (16)1.944 (16)2.8369 (13)174.8 (14)
N21—H21N···O11iii0.884 (15)2.012 (15)2.8930 (13)174.1 (13)
C21—H21···O21iv1.002.593.4511 (13)144
C22—H22B···O21v0.992.503.3675 (14)147
Symmetry codes: (iii) x+1, y1, z; (iv) x+2, y+1, z+1; (v) x, y1, z.
 

Acknowledgements

We thank the University of Otago for the purchase of the diffractometer and the Chemistry Department, University of Otago, for support of the work of JS. SKM thanks Dr Alaa F. Mohamed, National Organization for Drug Control and Research (NODCAR), Egypt, for providing the necessary chemicals.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCasey, C. P., Clark, T. B. & Guzei, I. A. (2007). J. Am. Chem. Soc. 129, 11821–11827.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamec, J. S. M., Éll, A. H., Åberg, J. B., Privalov, T., Eriksson, L. & Bäckvall, J.-E. (2006). J. Am. Chem. Soc. 128, 14293–14305.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds